• Aucun résultat trouvé

On the Hausdorff summability of series associated with a Fourier and its allied series

N/A
N/A
Protected

Academic year: 2022

Partager "On the Hausdorff summability of series associated with a Fourier and its allied series"

Copied!
8
0
0

Texte intégral

(1)

A NNALES DE L ’ INSTITUT F OURIER

B. L. G UPTA

On the Hausdorff summability of series associated with a Fourier and its allied series

Annales de l’institut Fourier, tome 21, no3 (1971), p. 173-179

<http://www.numdam.org/item?id=AIF_1971__21_3_173_0>

© Annales de l’institut Fourier, 1971, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

21,3 (1971), 173-179

ON THE HAUSDORFF SUMMABILITY OF SERIES ASSOCIATED WITH A FOURRIER

AND ITS ALLIED SERIES

by B.L. GUPTA

1. Let S,, be the nth partial sum of an infinite series ^ a,, and i

let

^ - f ( ; ) ( A » - ^ ) S , . ( 1 . 1 )n

^b v v '

Then the sequence { ^ } is known as the Hausdorff means of sequence {S^} , where {fly} is a sequence of real or complex numbers and the sequence {A^} denotes the differences of order p.

00

The series ^ a^ is said to summable by Hausdorff mean to the i

sum S, if lim ^ -^ S, whenever S,, -^ S. The necessary and sufficient condition for the Hausdorff summability to be conservative is that the sequence { ^} should be a sequence of moment constant, i.e. ;

^ = / xn d\(x), n > 0 ;

where \(x) is a real function of bounded variation in 0 < x < 1. We may suppose without loss of generality that x(0) = 0, if also x(l) == 1 and ^(+ 0) = X(0) = 0, so that x(x) is continuous at the origin, then

^ is a regular moment constant and the Hausdorff method i.e. (H , ^) is a regular method of summation [2].

If

i i(^-^-i)i< 00 , d.2)

w=o

00

then the series S a'n ls salc* to ^e absolutely summable (H , p.^) or

(3)

174 B.L. GUPTA

summable I H , /xj . It is also known that the Cesaro, Holder and Euler methods of summation are the particular cases of the above method.

2. Let f(t) be a periodic function with period ITT and integrable in the sense of Lebesgue in (- TT ,7r). Let its Fourier series be

I °° oo

T ^o + L (ftn cosnt + b^sinnt) == 2 A^(r)

z 1 w = 0

and its allied series is

00 00

2L (&„ cos^r - ^ sin^r) = ^ B^(r) .

1

i

We write

<^)==^-{/(0 + ^ ) + / ( 0 - 0 } ,

^ 0 ) = ^ { / ( 0 + r ) - / ( 0 - r ) } .

Let ^(x) be integrable L in (0,1), then for e > 0 g^(x) = _ , ^ (x - i,)8-1 g(i,) ^ ,

gew = T^ ^1 (u ~ x)e^ g(u) du • Again, let

IW = i e^ , y=i

H(^^,r) = E ^ , x , r ) + /F(y!,jc,r)

= i ^(^^(l -^)"-yeI^ . y.=o v^/

The object of this paper is to prove the following :

(4)

THEOREM 1. - //

i) [ \^(u)\du = 0(/) -o

ii) (H,^) 75 conservative and

^ ( ^/^r (a) XOO =.^e00 + c, £ > 0 ; iii)

or (b) \(x) = g^^^(x) + c, £ > 0 ; /or wme ^(x)eL (0,1) ;

00 ^ ff\

then the series ^ -^- , for \ > j3 > 0 ^ summable \H,^\att = 0,

n = i 72

wA^r^ c ^ fl^z absolute constant.

THEOREM 2. - //

i) [ \^(u)\du = 0(0

"o

ii) (H,^) /5 conservative and

either (a) x00 = ^i+^+eM + c, c > 0 ; iii)

or (b) x00 = ^+ eM + c, c > 0 ; /or 5om^ g(x) E L (0,1),

00 T^ / A \

rt^^z rA^ ^r^ S -frr . /o^ I > P > 0 ^ summable I H , ^ |) or w=i w '

t = 0, w^re c z'5 ^71 absolute constant.

It may also be remarked if

XCO = 1 -(1 -x)6 , 6 > 0 ;

the method (H , /^) reduces to the well known Cesaro method of summation of order 6.

Further if we choose fi such that 6 > j3 + £ then it can be proved that x00 - 1 is the (1 + < ! + £ ) th backward integral of

(5)

176 B.L. GUPTA

^^(i-.)

6

-

6

-

1

r(5 - p - e)

and 'x.(x) is also the (e + (S + 1) th forward integral of

rd.^e:) x-^6)^ (1 - P ) f^d-v)6-2^ - v)-^^dv\ . Hence the method I C , 6 I satisfies the hypothesis of our theorem 1 and 2 for e > 0, 8 > j3 > 0 and the following theorems of Cheng [1]

becomes the corrollary of our theorems.

THEOREM. — The series ^ n . for 0 < j8 < 1 is summable n1 p

I C , 6 | for 8 > fS, at the point 0, whenever i) of theorem I holds and

00 R (t\

similarly the series ^ ^ ^ , for 0 < j3 < 1, is summable | C , 6 | , for 5 > j3, at the point 0, whenever i) o/ theorem 2 holds,

3. For the proof of the theorems, we require the following lemmas.

LEMMA 1. — Uniformly in 0 < t < TT

I U J D K - ^ • (3.1) This can be easily proved.

LEMMA 2. — // g(x) and h(x) be Lebesgue integrable in (0,1), then for e > 0

I '1 gW h(x) dx = [ ' g(x) h^(x) dx . (3.2)

"o ^o This is known [3].

LEMMA 3. — Uniformly in 0 < x < 1

/»x /np^l\

j H(n,v,t)dv=o(———) (3.3)

(6)

LEMMA 4. - Let j3 > 0 £ > 0 a^d /fcc^d, rACT /or j3 + £ < 1 /x (x-u)^^ H(n,u^)du=o(n^) (3.4)

uniformly in 0 < x < 1 a^d similarly

f\u-x)^E-l xH(n^u^)du=o(^j^) • (3.5) The lemma 3 and 4 are due to Tripathy [4].

Proof of Theorem 1. - If ^ and u^ denote the Hausdorff means of ^ ^ and the sequence {n A^(6)} then for M > 1

^ "^(^ - ^ - i ) •

Hence, from (1.2) the series ^ ^-Q is summable | H , H^ |, ifn = l A2i-^

I = = tM = l ^2 | y = l ^V 1 t C;)(A"-'^)^A,(0)|<oo.

Since (H , ^i^) is conservative, we have

- 1 /'

n=i n ^0

I=s ^ ^xM^ax-o-^-^A^)

= ^ x ^ ix 1 dxw s ,(^ xv(l -^-'^r ^x^

< 21 ^ f " 1 ^ 0 ) l | /lr f x W S (")^''(l-^)"-''^cos^|df n=i n "o l - o i,=iM'/

n = l " "0

+ 1 -1- f "

„=! W ^^ " I ^ Q " ^\^V

= Ii + I, , say.

Since

I H O i ^ D K ^ l t (")x''(l -x)"-

p=o v t'/

= „ ?

+ i -1- f" 1^)1 I f1 dx(x) S (");ۥ'( 1 - ;c)"-1'^ cos 1^ |A1

„=! W «/! [ • / Q y=i V V

(7)

^S B.L. GUPTA We have

Ii = 0(1) § - n<3 f^ \^t)\dt f1 \d^(x)\

n=i n " Q ^Q

- 0 ( 1 ) S ^.1 n=i n1 i' n

=0(1) .

Without loss of generality, we can suppose that j3 + e < 1 if a) XOO = gr+^e(x) + c, then

0 °° 1

12 ^ „?!« A" i^i-l.^w^ 1 ^^.^!^

-

2

v

J

r \ r

1

i

" ^ ^ ^ J l ^ ^ l - l ^ 8(x)E^(n.x.t)dx\dt.

Since

E ^ 6 ( « . ^ , 0 = ^ ^ ^ / ^ ( x - ^ / ^ - ' E ^ ^ . O ^ __1 /.x

^Q^e) A ^ - ^ ^ ^ ' ^ H ^ . ^ , / ) ^

:= 0 (^e^sTe) ' ''y lemma-4.

Therefore

I,</;I,MIA£_H'|^)|.O(^),,,

^.'^'-s^r^ 1 -

/»! °° 1

= j \g(x)\dx Z -^7i{0(l)+0(7!'^+6-l)}

o n=i n

=W f^ \g(.x)\dx

= 0 ( 1 ) .

(8)

If b) \(x) = g^+^+eC^) + c, then proceeding in a similar way as in case a) and using estimate (4.5) of lemma 4, it can be proved that

l2 = 0 ( 1 ) . This completes the proof of theorem-1.

If we use the condition i) of Theorem-2 instead of the condition

•Q /n\

i) of theorem-1, we can prove that the series V " . is summable n1'^

I H . ^ 1 .

In the last, the author would like to express his deep sense of gratitude to Dr. P.L. Sharma for his encouragement in the preparation of this paper.

BIBLIOGRAPHY

[1] M.T. CHENG, Summability factors of Fourier series. Duke Math.

Jour: 15 (1948), 17-27.

[2] G.H. HARDY, Divergent series. Oxford 1949.

[3] B. KUTTNER, On the "second theorem of consistency" for riesz summability (II), Jour. Lond. Math. Soc. 27 (1952), 207- 217.

[4] N. TRIPATHY, On the absolute Hausdorff summability of some series associated with Fourier series and its allied series, Jour. Ind.,Math. Soc. 32 (1960) 141-154.

Manuscrit re<?u Ie 3 a out 1970 B.L. GUPTA

Department of Mathematics, Govt. Engineering College,

Rewa, M.P. India.

Références

Documents relatifs

There exist old results measuring the size of sets of points of divergence of Fourier series.. For example, in the book of Kahane and Salem [9], we can find such results for

It will be convenient to introduce the notion of the « Tauberian index &amp;#x3E;&amp;#x3E; of any method of summation of divergent series. Thus the CESÀRO and

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

RIESZ, Sur l’équivalence de certaines méthodes de sommation [Pro- ceedings of the

LITTLEWOOD, Solution of the Cesàro summability problem for power series and Fourier series [Math. LITTLEWOOD, The Allied series of a

Séries de Fourier : Définitions ,Propriétés et Résultats - BTS -GO 1-Polynômes trigonométriques et série de

Various results on summability factors of Fourier series due to Prasad [12], Izumi and Kwata [5], Cheng [3], Pati [8] and Dikshit [4] were generalized by Pati and Sinha [11].. in

[r]