• Aucun résultat trouvé

Towards large-scale brain imaging studies

N/A
N/A
Protected

Academic year: 2021

Partager "Towards large-scale brain imaging studies"

Copied!
58
0
0

Texte intégral

(1)

HAL Id: inserm-03058348

https://www.hal.inserm.fr/inserm-03058348

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Towards large-scale brain imaging studies

Camille Maumet

To cite this version:

Camille Maumet. Towards large-scale brain imaging studies. workshop Virtual 2020 - Inteligencia Articicial en imagenes medicas, Dec 2020, Santiago (online), Chile. �inserm-03058348�

(2)

Towards large-scale

brain imaging studies

Camille Maumet

Univ Rennes, Inria, CNRS, Inserm

@cmaumet

Workshop | INTELIGENCIA ARTIFICIAL EN IMÁGENES MÉDICAS

Inria Chile - Dec 11, 2020

(3)

A brain imaging study

2

Analysis

Data preparation

(4)

A brain imaging study

2

Analysis

Data preparation

Derived data

about 30 participants

per study

(5)

The Atlantic Science, “A waste of 1000 research papers”, Ed Yong. 3

(6)

Faster in their forties

than twenties?

The Guardian, “Why are middle-aged marathon runners faster than twenty somethings?”. Oliver Balch 4

(7)

5

A brain imaging study

Analysis

Data preparation

Derived data

We need bigger & more

(8)

Open data

+ Images

+ Homogenous

- Datasets

Unique study

30 participants

6

(9)

Open data

+ Images

+ Homogenous

- Datasets

Unique study

30 participants

Consortium

1000 participants

6

(10)

Open data

+ Images

+ Homogenous

- Datasets

Unique study

30 participants

Consortium

1000 participants

Cohort

100 000 participants

6

(11)

Lack of diversity of the

input data

The New York Times, “Many Facial-Recognition Systems Are Biased, Says U.S. Study”, By Natasha Singer & Cade Metz,. 2019

7

(12)

Lack of diversity of the

team

8

Data privacy

Quartz, “Using a fitness app taught me the scary truth about why privacy settings are a feminist issue”. R. Spinks, 2017.

(13)

9

A brain imaging study

We need bigger and

representative samples

Analysis

Data preparation

Derived data

We need diversity in

datasets *and* in

leadership teams

(14)
(15)

Data

integration

11

Analysis

Data preparation

Raw data

Derived data

Results

(16)

11

Raw data

Derived data

Results

Raw data

Data

integration

Analysis

Data preparation

(17)

11

Raw data

Derived data

Results

Raw data

Data preparation

Derived data

Data

integration

Analysis

Data preparation

(18)

Data preparation

11

Data preparation

Raw data

Derived data

Results

Raw data

Derived data

Derived data

Data

integration

Analysis

Data preparation

(19)

11

Meta-analyses

Data preparation

Analysis

Raw data

Derived data

Results

Raw data

Data preparation

Derived data

Derived data

Results

Data

integration

Analysis

Data preparation

(20)

A new level of

(21)

Levels of variability

13

Variability in single-lab studies ○ Across subjects

(22)

Variability in single-lab studies ○ Across subjects

○ Across scans

Variability in multi-lab studies ○ All of the above plus ○ Across machines ○ Across sites

○ Across acquisition protocols

Levels of variability

(23)

Levels of variability

13

Variability in single-lab studies ○ Across subjects

○ Across scans

Variability in multi-lab studies ○ All of the above plus ○ Across machines ○ Across sites

○ Across acquisition protocols

Variability in data integration studies ○ All of the above plus

○ Across preparation protocols ○ Across analysis protocols

(24)

Levels of variability

13

Variability in single-lab studies ○ Across subjects

○ Across scans

Variability in multi-lab studies ○ All of the above plus ○ Across machines ○ Across sites

○ Across acquisition protocols

Variability in data integration studies ○ All of the above plus

○ Across preparation protocols

(25)

Analytic variability

Analysis

Data preparation

Derived data

“Different acceptable analysis methods”

Carp et al. (2012)

(26)

Analytic variability

(27)

Analytic variability

Spatial registration Segmentation Cross-modality registration etc. 15

(28)

Analytic variability

(29)

Analytic variability

≠ algorithm

≠ algorithm

(30)

Analytic variability

≠ software ≠ software ≠ algorithm 15

[Paul et al. 2016,

Bowring et al. 2019]

(31)

Analytic variability

≠ software version ≠ software ≠ software version ≠ algorithm 15

[Groenenschild et al. 2012]

(32)

Analytic variability

≠ parameters ≠ software ≠ parameters ≠ software version ≠ algorithm 15

(33)

Analytic variability

≠ environment ≠ software ≠ parameters ≠ software version ≠ environment ≠ algorithm 15

[Glatard et al. 2015]

(34)

Analytic variability

≠ software ≠ parameters ≠ software version ≠ environment ≠ algorithm 15

(35)

Towards data

integration in brain

(36)

17

Statistical modelling

of analytic variability

Standards for

data sharing

Towards data integration

in brain imaging studies

(37)

17

Statistical modelling

of analytic variability

Standards for

data sharing

Towards data integration

in brain imaging studies

(38)

18

Variations across software

Statistical modelling of analytic var.

Pipeline

Software 1

Pipeline

Software 2

Pipeline

Software 3

Alex Bowring Tom Nichols

Reproduced 3 published functional MRI studies

Using 3 different software

(39)

19

Variations across software

Statistical modelling of analytic var.

[Bowring et. al, HBM 2019]

Comparison of the final results

(40)

20

Statistical modelling

of analytic variability

Standards for

data sharing

Towards data integration

in brain imaging studies

(41)

21

Analysis

Data preparation

Derived data

Sharing more research outputs

Image credits: Parcels 1 2 & 4 (CC0), Parcel 3 (CC0), Parcel 5 (CC0).

Standards for data sharing

(42)

21

Analysis

Data preparation

Derived data

Image credits: Parcels 1 2 & 4 (CC0), Parcel 3 (CC0), Parcel 5 (CC0).

Sharing more research outputs

Standards for data sharing

(43)

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed

Sharing more research outputs

Standards for data sharing

21

(44)

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed

Sharing more research outputs

Standards for data sharing

21

(45)

22

● Extensions: MEG, iEEG, EEG

Slide by R. Poldrack & K. Gorgolewski (CC BY), adapted.

Brain Imaging Data Structure

(BIDS)

Standards for data sharing

[Gorgolewski et al., Sci. Data 2016]

Krys

(46)

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed

Sharing more research outputs

Standards for data sharing

23

(47)

Sharing more research outputs

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed Standards for data sharing 23

(48)

Sharing more research outputs

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed Standards for data sharing 23

(49)

fMRI Results

24

Publication

Peak locations

Figure

(selected slices)

Thresholded

statistics

❌ Incomplete statistical results

❌ Ambiguous/incomplete methods

❌ Metadata is not searchable

Standards for data sharing

(50)

NIDM-Results pack

NIDM-Results .nidm.zip 25

[Maumet et al.,

Sci. Data 2016]

Standards for data sharing

(51)

NIDM-Results pack

NIDM-Results .nidm.zip 26

[Maumet et al.,

Sci. Data 2016]

Standards for data sharing

(52)

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed

NIDM

Sharing more research outputs

Standards for data sharing

27

(53)

Analysis

Data preparation

Derived data

HAL, BiorXiv Pubmed

NIDM

???

Sharing more research outputs

Standards for data sharing

27

(54)

BIDS Prov Bridging BIDS & NIDM

BIDS

NIDM

File naming convention + JSON files

60 labs worldwide

Semantic web (RDF) —

10 labs US / Europe / Canada 28

Standards for data sharing

(55)

BIDS

NIDM

File naming convention + JSON files

60 labs worldwide

Semantic web (RDF) —

10 labs US / Europe / Canada

BIDS Prov

BIDS Prov Bridging BIDS & NIDM

28

Standards for data sharing

(56)

Analysis

Data preparation

Derived data

BIDS Provenance

Image credits: Parcels 1 2 & 4 (CC0), Parcel 3 (CC0), Parcel 5 (CC0).

Satra

Ghosh Rémi Adon

Looking for

contributors and

community input

https://github.com/bids-standard/BEP028_BIDSprov 29 Standards for data sharing

(57)

References

30

Bowring, A., Maumet*, C., & Nichols*, T. E. (2019). Exploring the impact of analysis software

on task fMRI results. Human Brain Mapping, 0(0).

https://doi.org/10.1002/hbm.24603

Carp, J. (2012). On the Plurality of (Methodological) Worlds: Estimating the Analytic

Flexibility of fMRI Experiments. Frontiers in Neuroscience, 6.

https://doi.org/10.3389/fnins.2012.00149

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G.,

Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li, X.,

Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., … Poldrack, R. A. (2016).

The brain imaging data structure, a format for organizing and describing outputs of

neuroimaging experiments. Scientific Data, 3(1), 160044.

https://doi.org/10.1038/sdata.2016.44

Maumet, C., Auer, T., Bowring, A., Chen, G., Das, S., Flandin, G., Ghosh, S., Glatard, T.,

Gorgolewski, K. J., Helmer, K. G., Jenkinson, M., Keator, D. B., Nichols, B. N., Poline, J.-B.,

Reynolds, R., Sochat, V., Turner, J., & Nichols, T. E. (2016). Sharing brain mapping statistical

results with the neuroimaging data model. Scientific Data, 3, 160102.

https://doi.org/10.1038/sdata.2016.102

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R.,

Nichols, T. E., Poline, J.-B., Vul, E., & Yarkoni, T. (2017). Scanning the horizon: Towards

transparent and reproducible neuroimaging research. Nature Reviews Neuroscience,

18(2), 115–126.

https://doi.org/10.1038/nrn.2016.167

(58)

Thank you!

Credit: Presentation template by SlidesCarnival, adapted

@cmaumet

Towards large-scale brain

imaging studies

Camille Maumet

Références

Documents relatifs

Libé­ rée dans le cytoplasme, la β­caténine passe dans le noyau des cellules et active l’expression de gènes comme c-myc, un oncogène impliqué dans le contrôle de

To evaluate this novelty detection approach on a visual navigation domain, we trained an autoencoder on a set of simulated camera images from a hallway-type

gondii by lowering early IFNγ production, we asked whether IL-12 administration to Batf3 −/− mice also restored normal IFNγ production during infection (Figure 5D–5G)..

The overall conclusion from these experiments is that our paradigm is correct, and that our cross-cumulant tensor diagonal- ization approach indeed successfully exploits

Methods We included consecutive pediatric patients un- der the age of 2, from Lucile Packard Children’s Hos- pital, who underwent cranial vault reconstruction with the use of

Cattani (2017), The isotopic composition of near-surface water vapor at the Maïdo observatory (Reunion Island, southwestern Indian Ocean) documents the controls of the humidity of

We computed the Repetition X Prior knowledge interaction contrast to test whether the encoding networks differed along with prior knowledge, then looked for

In their experiment, one surface of the specimen with black coating is used to perform infrared thermography using infrared camera so as to obtain the thermal