• Aucun résultat trouvé

φ ::= c | φ ⇒ ψ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φUφ | φRφ | ∃x φ where c denotes a linear constraint over molecular concentrations, their first derivative, and a set of variables x, including the Time variable.

N/A
N/A
Protected

Academic year: 2022

Partager "φ ::= c | φ ⇒ ψ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φUφ | φRφ | ∃x φ where c denotes a linear constraint over molecular concentrations, their first derivative, and a set of variables x, including the Time variable."

Copied!
3
0
0

Texte intégral

(1)

CORRECTION March 3rd 2014

MPRI C2-19 Examination, Part II, F. Fages Model calibration with respect to Temporal Logic

constraints: patterns and solvers

We consider the fundamental problem of calibrating an ODE model with respect to a temporal logic specification of the behavior of the system, observed in experiments. More precisely, we consider the following grammar of Linear Time Logic formulae with linear constraints over the Reals, LTL( R lin):

φ ::= c | φ ⇒ ψ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φUφ | φRφ | ∃x φ where c denotes a linear constraint over molecular concentrations, their first derivative, and a set of variables x, including the Time variable.

Timing constraints can be expressed with the time variable and free variables to relate the time of differents events. For instance, the formula

G(T ime ≤ t

1

⇒ [A] < 1 ∧ T ime ≥ t

2

⇒ [A] > 10) ∧ (t

2

− t

1

< 60) expresses that the concentration of molecule A is always less than 1 up to some time t

1

, always greater than 10 after time t

2

, and the switching time between t

1

and t

2

is less than 60 units of time.

We have seen in the course that the validity domains of the free variables of an LTL( R lin) formula on a finite trace ( s

0

, ..., s

n

), can be computed by finite unions and intersections of the validity domains of the linear constraints, as follows:

D

(s0,...,sn),φ

= D

s0

,

D

si,c(x)

= {v ∈ R

k

| s

i

| = c[v/x]} for a constraint c(x), D

si,φ∧ψ

= D

si

∩ D

si

,

D

si,φ∨ψ

= D

si

∪ D

si

, D

si,Xφ

= D

si+1

, D

si,Fφ

= S

n

j=i

D

sj

, D

si,Gφ

= T

n

j=i

D

sj

, D

si,φUψ

= S

n

j=i

(D

sj

∩ T

j−1 k=i

D

sk

), D

si,∃xφ

= Π

x

D

si

,

where the projection operator Π

x

returns the domain with all possible values for x.

This serves to compute a continuous violation degreee for a LTL( R lin) formula with objective values v

for the variables as the euclidian distance between the validity domain and the objective values:

vd

vs

i

= dist(D

si

, v

)

Furthermore, a “robustness” degree can be estimated as the interior distance to the borders of the validity domain, i.e. as the distance to the complement of the validity domain:

ro

vsi

= dist(D

si

, v

).

1

(2)

We are interested in finding more efficient algorithms for computing these val- ues for some common patterns of LTL( R lin) formulae. For instance, for the constraint

A ≥ v where v is a free variable, we have

D

si,A≥v

=] − ∞, val

si

(A)]

vd

vsi,A≥v

= max(0, v

− val

si

(A)) ro

vsi,A≥v

= max(0, val

si

(A) − v

) where val

si

(A) is the value of A in state s

i

,

For the reachability formula

F(A ≥ v) we have

D

si,F(A≥v)

=] − ∞, max

si

(A)]

vd

vsi,F(A≥v)

= max(0, v

− max

si

(A)) ro

vsi,F(A≥v)

= max(0, max

si

(A) − v

)

where max

si

(A) is the maximum value of A over the trace (s

i

, ..., s

n

), which can be computed in one pass over the trace, in time O(n − i).

Give similar expressions for the constraint A ≤ v

D

si,A≤v

= [val

si

(A), +∞[

vd

vs

i,A≤v

= max(0, val

si

(A) − v

) ro

vsi,A≤v

= max(0, v

− val

si

(A))

Give similar expressions and justify them for the formula F(A ≤ v)

D

si,F(A≤v)

= S

n

j=i

D

sj,A≤v

= S

n

j=i

[val

sj

(A), +∞[ = [min

si

(A), +∞[

vd

vs

i,F(A≤v)

= dist([max

si

(A), +∞[, v

) = max(0, min

si

(A) − v

)

ro

vs

i,F(A≤v)

= dist(] − ∞, max

si

(A)[, v

) = max(0, v

− min

si

(A))

2

(3)

Give similar expressions for the formula G(A ≤ v)

D

si,G(A≤v)

= T

n

j=i

D

sj, A≤v

= T

n

j=i

[val

sj

(A), +∞[ = [max

si

(A), +∞[

vd

vs

i,G(A≤v)

= dist([max

si

(A), +∞[, v

) = max(0, max

si

(A) − v

)

ro

vs

i,G(A≤v)

= dist(] − ∞, max

si

(A)[, v

) = max(0, v

− max

si

(A))

Give similar expressions for the amplitude con- straint ∃v(F(A ≤ v) ∧ F(A ≥ v + a))

The vector of variables by the tuple (v, a) in this order.

D

si,F(A≤v)∧F(A≥v+a)

= {(v, a) ∈ R

2

| min

si

≤ v ∧ max

si

≥ v + a}

D

si,∃vF(A≤v)∧F(A≥v+a)

= Π

v

({(v, a) ∈ R

2

| min

si

≤ v ∧ max

si

≥ v + a})

= (R, ] − ∞, max

si

(A) − min

si

(A)])

vd

as

i,∃vF(A≤v)∧F(A≥v+a)

= max(0, a

− max

si

(A) + min

si

(A))

ro

as

i,∃vF(A≤v)∧F(A≥v+a)

= max(0, max

si

(A) − min

si

(A) − a

)

3

Références

Documents relatifs

On note E l’espace vectoriel r´ eel des fonctions ` a valeurs r´ eelles, continues et d´ efinies sur

La lin´ earit´ e de φ r´ esulte de celle de

La qualit´ e de r´ edaction et de la pr´ esentation entrera pour une part importante dans l’appr´ eciation des copies.. Le barˆ eme tiendra compte de la longueur

the totality of 0-bounded harmonic functions on a Riemann surface R and by On* the class of all Riemann surfaces on which every ^-bounded harmonic function reduces to a constant..

[r]

[r]

Soit E un espace

Montrer que f est égale au suprémum de ses minorantes anes continues.. En déduire que f est convexe et