• Aucun résultat trouvé

X Physique et Sciences de l’ingénieur MP 2008 Corrigé

N/A
N/A
Protected

Academic year: 2021

Partager "X Physique et Sciences de l’ingénieur MP 2008 Corrigé"

Copied!
4
0
0

Texte intégral

(1)

c Éditions H&K Publié dans lesAnnales des Concours 1/18

X Physique et Sciences de l’ingénieur MP 2008 Corrigé

Ce corrigé est proposé par Olivier Frantz (Professeur agrégé) ; il a été relu par Arnaud Riegert (ENS Ulm) et Jean-Julien Fleck (Professeur en CPGE).

Ce sujet propose d’étudier quelques aspects de l’hélicoptère, qui fait partie des systèmes à voilure tournante. La rotation des pales crée une force de portance par réaction sur l’air, ce qui maintient l’appareil en l’air. Le problème principal de ce mode de propulsion est l’apparition d’un couple, dû à la rotation des pales, qui a tendance à faire tourner l’aéronef sur lui-même. Ce couple peut être éliminé par la présence d’un rotor sur la queue de l’appareil.

• La première partie représente la moitié du problème. Elle traite de la mécanique de la sustentation et de la compensation du couple de traînée par le rotor de queue. Il s’agit d’établir les torseurs associés à la portance et à la traînée de l’aéronef, dans le cas de pales droites puis vrillées. La fin de cette partie est consacrée aux relations liant le rotor principal au rotor anticouple.

• L’étude de la tête de rotor, dans la deuxième partie, s’intéresse aux liaisons entre les pièces qui le composent. Elle est assez courte et propose d’établir des lois de commande par l’analyse de mécanismes.

• La troisième partie traite d’asservissements à travers trois sous-parties. Le but est d’exprimer les fonctions de transfert de la boucle de régulation de vol station- naire. Elle débute par l’établissement, assez classique, de la fonction de trans- fert d’un système {masse-ressort-amortisseur}. Quelques aspects des condensa- teurs sont étudiés ensuite afin de modéliser un accéléromètre de type capacitif.

Enfin, un léger problème de régulation est abordé et la fonction de transfert de la boucle est établie, réalisant ainsi une synthèse de tout le problème.

Ce sujet doit se traiter rapidement. Il est un peu plus facile que ceux des précé- dentes années. Il permet de faire le point sur ses capacités de calcul d’éléments de réduction de torseurs et de fonctions de transfert. Les parties de physique pure étant très proches du cours, elles n’offrent pas de réelle difficulté.

Téléchargé gratuitement surwww.Doc-Solus.fr.

(2)

c Éditions H&K Publié dans lesAnnales des Concours 2/18

Indications

Partie I

I.3 Intégrer les éléments de portance et de traînée le long d’une pale. Faire de même avec les moments

−→ M=

Z R 0

r−→yr∧−−→

dFz

I.4 Utiliser la formule du changement de point d’un moment pour trouver le point où le moment est nul.

I.5 Le couple s’appliquant sur le rotor autour de son axe de rotation s’exprime comme la valeur absolue de la projection du moment total sur l’axe−→z,

C =|P−→ M · −→z|

I.6 La puissance est le comoment du torseur des actions mécaniques et du torseur cinématique. Trouver ensuite la vitesse de rotation nécessaire au décollage en écrivant que la portance2 Fz compense le poidsMg.

I.7 Étudier la dépendance de la portance en fonction de l’angleα.

I.10 Le coefficientκ0est exprimé en inverse de degrés.

I.14 Reprendre les calculs effectués à la question I.3 en remplaçant le coefficient de portance Cz par son expression en fonction de l’angle αpuis en fonction du rayonr.

I.15 Utiliser une partie de l’inégalité obtenue à la question I.13.

I.16 Utiliser la formule du changement de point d’un moment pour trouver le point où le moment est nul.

I.17 Reprendre les calculs effectués à la question I.3 en remplaçant le coefficient de portance Cx par son expression en fonction de l’angleαpuis en fonction du rayonr.

Partie II

II.1 Le torseur cinématique d’une liaison équivalente à l’association en parallèle de liaisons doit être compatible avec tous les torseurs cinématiques de ces liaisons. Le torseur cinématique d’une liaison équivalente à l’association en série de liaisons est égal à la somme des torseurs cinématiques de ces liaisons.

II.4 Écrire que la longueur BC de la biellette est constante.

Partie III

III.1 Effectuer un bilan des forces et appliquer le principe fondamental de la dyna- mique à la massem.

III.4 Commencer par tracer rapidement le diagramme de Bode asymptotique.

III.6 Utiliser la formule donnant la capacité d’un condensateur plan en fonction de sa géométrie.

III.13 Linéariser le sinus au carré présent dans la tension au carré.

Téléchargé gratuitement surwww.Doc-Solus.fr.

(3)

c Éditions H&K Publié dans lesAnnales des Concours 3/18

I. Principe d’une voilure tournante

Voilure tournante

I.1 L’écoulement de l’air étant provoqué par le mouvement circulaire des pales par rapport au corps de l’appareil, on a directement

Vair(r) =r ω

I.2 Les expressions données dans l’énoncé permettent d’écrire, avecdS =ℓdr,





dFz = 1

2ρ ℓCz(α)ω2r2dr dFx= 1

2ρ ℓCx(α)ω2r2dr

I.3 La résultante des torseurs des actions mécaniques dues à la portance et à la traînée sont

−→ Fz =

Z R 0

1

2ρ ℓCz(α)ω2r2dr−→z

−→ Fz = 1

6ρ ℓCz(α)ω2R3−→z

et −→

Fx = Z R

0

1

2ρ ℓCx(α)ω2r2dr−→xr

−→ Fx = 1

6ρ ℓCx(α)ω2R3−x→r

Explicitons maintenant au point O les moments associés à la portance et à la traînée

−−→Mz(O) = Z R

0

r−→yr∧−−→

dFz

= Z R

0

r−→yr∧ 1

2ρ ℓCz(α)ω2r2−→z

dr

−−→Mz(O) = 1

8ρ ℓCz(α)ω2R4−→xr

et −−→

Mx(O) = Z R

0

r−→yr∧ 1

2ρ ℓCx(α)ω2r2−→xr

dr

−−→Mx(O) = −1

8ρ ℓCx(α)ω2R4−→z

I.4 Pour montrer que ces torseurs sont des glisseurs, cherchons le point G où le moment est nul,

−−→Mz(G) =−→ 0

−−→Mz(O) +−−→

GO∧−→ Fz =−→

0 1

8ρ ℓCz(α)ω2R4−→z = Rg

→yr∧1

6ρ ℓCz(α)ω2R3−→xr

Téléchargé gratuitement surwww.Doc-Solus.fr.

(4)

c Éditions H&K Publié dans lesAnnales des Concours 4/18

Il existe donc bien un point G pour lequel le moment du torseur de portance est nul, ce qui prouve que c’est un glisseur dont le point d’application est situé à une distance Rg de l’axe du rotor telle que

Rg= 3 4R

Les calculs sont menés de la même manière pour la traînée et on tombe sur le même point d’application.

→z

3R/4 Fz

Fz

Fx

Fx

I.5 Le couple total C s’appliquant sur le rotor autour de son axe de rotation est la somme des couples associés à la portance et à la traînée, pour chaque pale, en projection sur l’axe−→z. Seules les forces de traînée contribuent donc à ce couple et ainsi, de par la symétrie du problème et d’après l’expression obtenue à la question I.3,

C = 1

4ρ ℓCxω2R4

I.6 La portance suffisante pour assurer le décollage compense juste le poidsP = Mg de l’hélicoptère. Exprimons le torseur des actions mécaniques qui s’exercent sur l’hé- licoptère

{T }=

( (2 Fz−Mg)−→z

−C−→z )

(O,R)

Or, puisque seules les pales sont en mouvement, le torseur cinématique associé au mouvement de l’hélicoptère lors du décollage n’est autre que

{V}=

 ω−→z

→0

(O,R)

La puissance développée étant égale au comoment de ces deux torseurs, on a ainsi P =−Cω=−1

4ρ ℓCxω3R4

Exprimons à présent la vitesse de rotation minimale ω0 qui assure le décollage.

On a, pour2 Fz= Mg,

1

3ρ ℓCzω02R3= Mg

et donc ω0=

r 3 Mg ρ ℓCzR3

Téléchargé gratuitement surwww.Doc-Solus.fr.

Références

Documents relatifs

Les t´ el´ ephones portables doivent ˆ etre

Les calculatrices sont interdites, les deux fiches distribu´ ees en cours sont admises.. Les t´ el´ ephones portables doivent ˆ etre

Après ces calculs pour conjecturer la réponse, un raisonnement par récurrence se fait sans difficulté pour rédiger de manière plus rigoureuse.. La fonction ln et la fonction t 1

•  Varient parfois de manière simple/lisse ⇒ peuvent être modélisés par des polynômes – rarement le cas en réalité.. •  Estimation à chaque époque

Berne les mardis et sam. Berthoud Berne 5 Bischoffszell, Thurg. De la neige. Clair et beau. De la pluie. ) les lundis. Vevey tous les mardis. Zoug, chaque mardi..

On obtient l’int´ egrale d’une fraction rationnelle en

Vous numéroterez vos copies et ferez apparaître clairement sur la première page le nombre de copies. Donner la valeur en 0 de

On peut présenter une fonction sous trois formes différentes : algébrique (expression algébrique), numérique (tableau de valeurs) ou graphique