• Aucun résultat trouvé

Structures secondaires d’ARN:

N/A
N/A
Protected

Academic year: 2022

Partager "Structures secondaires d’ARN: "

Copied!
46
0
0

Texte intégral

(1)

Nadia El-Mabrouk IFT3295, Automne 2011

Structures secondaires d’ARN:

prédiction et recherche

(2)

Plan

I. Introduction

II. Représentation formelle d’une structure secondaire d’ARN

III. Éléments struturaux

IV. Prédiction de la structure secondaire d’un ARN

1. Co-variance

2. Considérations thermodynamiques

3. Algorithme de Pipas & McMahon

4. Algorithme de Nussinov

5. Algorithme de Zuker

V. Recherche de structures secondaires

(3)

I. Introduction - ARN

y Les ARN étaient vus exclusivement comme l’intermédiaire entre l’ADN et les protéines. Rôle exclusif dans la

transcription/traduction du message contenu dans l’ADN.

y Depuis 1980: découverte d’ARN non codants (non transcrits en protéines), jouant de multiple rôles dans la cellule:

fonction catalytique, régulation de la transcription, épissage des introns, expression des gènes…

y De nouveaux ARN sont découverts continuellement.

y Conception d’ARN artificiels, en particulier miARN,

permettant de contrôler l’expression de certains gènes

impliqués dans des maladies comme le cancer.

(4)

I. Introduction - ARN non-codant

y Un ARN non-codant (ncRNA) est un ARN fonctionnel qui n’est pas traduit en protéine: tous les ARN autres que les ARNm.

y Gène d’ARN: Séquence d’ADN transcrite en un ARN non- codant.

y ARN non-codants inclu:

y

Les familles d’ARN ayant un rôle fondamentale dans la synthèse des protéines:

y ARN de transfert (ARNt ou tRNA)

y ARN ribosomique (ARNr)

y

Beaucoup d’autres familles découvertes plus récemment, dont les

fonctions ne sont pas toujours connues: snoRNAs, microRNAs,

siRNAs, piRNAs, RNase P…

(5)

I. Introduction - Séquence d’ARN

y Structure primaire: Séquence linéaire de 4 acides

ribonucléiques: A(dénine), C(ytosine), G(uanine), U(racile)

y Un gène d’ARN est transcrit en une séquence primaire

d’ARN:

(6)

I. Introduction - Séquence d’ARN

Major & Thibault (2007) In “From Genomes to Therapies” Wiley-VCH. pp 491-539

The riboses and the phosphate groups

constitute the backbone and are linked through diester bonds: C5’-O5’

and C3’-O3’. The chain C3’-O3’-P-O5’-C5’ from one ribose to another is therefore referred to as the phosphodiester linkage

(7)

I. Introduction - Structure secondaire

y En se repliant, la molécule d’ARN forme une structure stabilisée par la force des ponts hydrogènes entre certaines paires de bases (A-U, C-G, G-U) et l’empilement de paires de bases voisines. C’est la structure secondaire de la

molécule.

y Paires de bases Watson-Crick: G-C et A-U

y Paire de bases Wobble: G-U La paire G-C est celle qui donne

le plus de stabilité, puis A-U, puis G-U.

http://e-sante.futura-

sciences.com/_actualites/base-adn.html

(8)

I. Introduction

D’autres appariements sont possibles

Saenger (1984) Principles of Nucleic Acid Structure, Springer-Verlag, p.120-121

(9)

I. Introduction

Exemple: l’ARN de transfert

y L’ARN de transfert est l’« interpréteur » des codons de l’ARNm.

y Le rôle de l’ARN de transfert est de transférer les acides aminés du cytoplasme au ribosome.

y Il existe un ARNt spécifique pour chaque AA.

y Chaque ARN de transfert a un triplet spécifique appelé

« anticodon », qui s’apparie au codon complémentaire sur l’ARNm.

y Des enzymes appelées ARN Synthétases, chargent chaque

ARNt de son AA propre.

(10)

I. Introduction

Exemple: l’ARN de transfert

http://library.thinkquest.org/C004535/rna_translation.html

(11)

I. Introduction

Exemple: l’ARN de transfert

http://www.daviddarling.info/encyclopedia/T/tRNA.html

Molécule d’environ 70-80 nucléotides.

Structure secondaire de l’ARNt En « feuille de trèfle »

L’AA correspondant à l’anticodon

s’attache au bras accepteur.

(12)

I. Introduction

Exemple: l’ARN de transfert

http://www.web-books.com/MoBio/Free/Ch3C2.htm

Some nucleotides in tRNA have been

modified, such as dihydrouridine (D),pseudouridine (Y), and inosine (I). In dihydrouridine, a hydrogen atom is added to each C5 and C6 of uracil. In pseudouridine, the ribose is attached to C5, instead of the normal N1. Inosine plays an important role in codon

recognition. In addition to these

modifications, a few nucleosides are

methylated.

(13)

I. Introduction

Structure tertiaire

y La structure secondaire peut être vue comme une structure

« intermédiaire » entre la structure primaire et la structure tertiaire (3D)

http://www.mpi-inf.mpg.de/departments/d1/projects/CompBio/align.html

(14)

II. Représentation formelle

Définition « théorique » d’une structure sec. d’ARN

y Pairages permis: Watson-Crick (G-C, A-T) et Wobble (G-U);

y Chaque base ne peut être appariée qu’à une seule autre base;

y Pas de « sharp turn »: au moins 3 bases par boucle;

y Pas de pseudo-noeuds

(15)

II. Représentation formelle d’une

structure secondaire d’ARN

(16)

II. Représentation formelle d’une structure secondaire d’ARN

ACGGAGUGCUAAUGGACGUAUUGCCUCAGCUACUGCAAGGUAUACUGU

ACGGAGUGCUAAUGGACGUAUUGCCUCAGCUACUGCAAGGUAUACUGU

Expression bien parenthésée:

( ( ( ( ( ( ( ) ) ) ) ( ( ( ( ( ) ) ) ) ) ) ) )

(17)

III. Éléments structuraux

Tige-boucle ou hélice

Boucle interne

Empilements

Renflement

Boucle multiple

(18)

III. Élements structuraux

Intéractions Inter-éléments (Pseudo-nœuds)

D.

(19)

III. Éléments structuraux

Boucle interne Empilement

Boucle multiple

Tige-Boucle

• 1-boucle: Tige-Boucle

• 2-boucle:

• Empilement

• Boucle interne

• Bulge

• n-boucle: Boucle

multiple, i.e. fermée par n

appariements.

(20)

IV. Prédiction de structures secondaires.

1. Co-variance

y Une séquence peut se replier d’une multitude de façons.

y Alignement multiple de séquences homologues: permet de

retrouver les sites de co-variance (Woese & Pace, 1993)

(21)

IV. Prédiction

2. Considérations thermodynamiques

y Les ARN ne se replient pas dans des structures aléatoires

y En général, ils préfèrent les conformations de basses énergies

y En mécanique statistique, les conformations de basses énergies correspondent à celles qui sont souvent observées.

y Le calcul exact de l’énergie E pour une structure arbitraire S est impossible. En pratique:

y Évaluation expérimentale de l’énergie libre associée à de petits ARN synthétiques (boucles élémentaires);

y Utiliser l’hypothèse de Tinoco-Uhlenbeck pour évaluer l’énergie libre d’une structure complexe S formée par une suite de

boucles.

(22)

IV. Prédiction

2. Considérations thermodynamiques

Hypothèse de Tinoco-Uhlenbeck

y Soit S une structure, et s 1 , s 2 , … s n la suite des boucles formant S. Alors:

E(S) = e(s 1 )+e(s 2 )+…+e(s n )

e(s i ), pour 1≤ i ≤ n, estimées expérimentalement.

Dépend du type de boucle.

(23)

2. Caractéristiques générales de l’énergie libre

y e(s) est négatif si et seulement si s est un empilement:

seules boucles qui contribuent à la stabilité de la molécule.

y Un empilement (G-C)(G-C) plus stable qu’un empilement (A-U)(A-U).

y Les zones externes non appariées ne font partie d’aucun cycle Æ score nul.

y Si E(S)>0, alors S ne peut pas être stable.

(24)

A/U C/G G/C U/A G/U U/G A/U -0.9 -1.8 -2.3 -1.1 -1.1 -0.8

C/G -1.7 -2.9 -3.4 -2.3 -2.1 -1.4 G/C -2.1 -2.0 -2.9 -1.8 -1.9 -1.2 U/A -0.9 -1.7 -2.1 -0.9 -1.0 -0.5 G/U -0.5 -1.2 -1.4 -0.8 -0.4 -0.2 U/G -1.0 -1.9 -2.1 -1.1 -1.5 -0.4

Turner, Sugimoto (1988)

Énergie d’empilement de paires de base (kcal/mole à 37degC) :

Énergie de destabilisation pour les autres boucles:

Nombre de bases 1 5 10 20 30

Boucle interne - 5.3 6.6 7.0 7.4

Bulge 3.9 4.8 5.5 6.3 6.7

Épingle à cheveux - 4.4 5.3 6.1 6.5

Serra, Turner (1995)

(25)

IV. Prédiction de structures secondaires par minimisation de l’énergie libre

y Algorithmes combinatoires:

y Pipas & McMahon 1975

y Algorithmes récursifs (Prog. dynamique ):

y Nussinov 1978

y Zuker & Steigler 1981,

y Zuker & Sankoff 1984,

y Sankoff 1985

y … Æ O(n

3

) en espace, O(n

2

) en temps.

y Logiciels:

y ViennaRNA software: Schuster et al. 1994,

y MFOLD software: Zuker et al. 1989

(26)

IV. Prédiction

3. Algorithme de Pipas & McMahon

y Faire la liste de toutes les tige-boucles possibles

y Dans l’algorithme, n est la taille de la séquence, et p la taille minimale d’une boucle

Pour i = 1 à n-(p+1) Faire Pour j = i+p+1 à n Faire

Si ( pair( i, j ) ) Faire

// Former l’hélice ( i, j ) l = 1

Tant que ( pair( i+l, j-l ) ) Faire l++

// Si ( l > lmin ) conserver l’hélice( i, j, l ) dans un ensemble FinPour

FinPour

(27)

IV. Prédiction

3. Algorithme de Pipas & McMahon

y Faire la liste de toutes les tige-boucles possibles

y Créer toutes les structures secondaires possibles en

formant tous les sous-ensemble de tiges-boucles (hélices) compatibles possibles.

y Compléter chaque structure et évaluer son énergie libre.

y Problème: Il y a 2

n

structures secondaires possibles!!

(28)

IV Prédiction

Algorithme de Nussinov (1978)

y Premier algorithme de programmation dynamique pour

calculer le repliement d’une séquence d’ARN qui maximise le nombre de paires de bases créées.

y Problématique: Étant donnée une séquence S[1,n], trouver le repliement de S qui maximise le nombre de paires de bases.

y Idée: Il y a 4 façons de calculer la meilleure structure du facteur S[i,j], pour 1≤i ≤j ≤n, à partir de facteurs de S[i,j]:

Notes de cours d’Alessandra Carbone

(29)

y (i,j) forment un appariement qu’on ajoute à la meilleure structure pour la séquence S[i+1, j-1]

y i est non-apparié et on l’ajoute à la meilleure structure pour la séquence S[i+1, j]

y j est non-apparié et on l’ajoute à la meilleure structure pour la séquence S[i, j-1]

y Combiner deux structures optimales, l’une pour la séquence S[i,k], et l’autre pour la séquence S[k+1,j], pour i+1≤k ≤j-1

Notes de cours d’Alessandra Carbone

IV Prédiction

Algorithme de Nussinov (1978)

(30)

y D(i,j): nombre max. de paires de bases qui peuvent être formées pour la sous-séquence S[i,j].

y Remplire une Table de programmation dynamique D de n lignes et n colonnes:

y Cas de base:

y D(i,i) =0, pour 1≤i ≤n

y D(i,i-1) = 0 pour 2≤i ≤n

IV Prédiction

Algorithme de Nussinov (1978)

(31)

G G G A A A U C C G 0

G 0 0

G 0 0

A 0 0

A 0 0

A 0 0

U 0 0

C 0 0

C 0 0

i

j

(32)

y D(i,j): nombre max. de paires de bases qui peuvent être formées pour la sous-séquence S[i,j].

y Remplire une Table de programmation dynamique D de n lignes et n colonnes:

y Cas de base:

y D(i,i) =0, pour 1≤i ≤n

y D(i,i-1) = 0 pour 2≤i ≤n

y Remplire D diagonale par diagonale, pour 0<i<j, par la relation de récurrence:

D(i,j) = max { D(i+1,j), D(i,j-1), D(i+1,j-1)+1,

max

i+1<k ≤j

[D(i,k)+D(k+1,j)] }

IV Prédiction

Algorithme de Nussinov (1978)

(33)

G G G A A A U C C G 0

G 0 0

G 0 0

A 0 0

A 0 0

A 0 0

U 0 0

C 0 0

C 0 0

1 i=2

3 4 5 6 7 8 9

1 2 3 4 5 6 7 j=8 9

(34)

G G G A A A U C C G 0

G 0 0

G 0 0

A 0 0

A 0 0

A 0 0

U 0 0

C 0 0

C 0 0

i

j

0

0

0

0

0

1

0

0 0

0

0

0

1

1

0 0

0

0

1

1

1 0

0

1

1

1

0 1 2 3

1 2 3

2 2

1

(35)

G G G A A A U C C G 0

G 0 0

G 0 0

A 0 0

A 0 0

A 0 0

U 0 0

C 0 0

C 0 0

0

0

0

0

0

1

0

0 0

0

0

0

1

1

0 0

0

0

1

1

1 0

0

1

1

1

0 1 2 3

1 2 3

2 2

1 3

G

G -C G -C A -U

A A

(36)

IV Prédiction

Algorithme de Zuker (1981- 1989)

• Une différence importante avec l’algorithme de Nussinov est que

l’énergie d’une paire de bases est calculée en fonction de la paire de bases

précédente (stacking)

(37)

IV Prédiction

Algorithme de Zuker (1981- 1989)

(38)

Algorithme de Zuker

(39)

G G G A A A U C C G 0

G 0 0

G 0 0

A 0 0

A 0 0

A 0 0

U 0 0

C 0 0

C 0 0

1 i=2

3 4 5 6 7 8 9

1 2 3 4 5 6 7 j=8 9

α μ

β

γ β

(40)

y Complexité:

y Épingles à cheveux et empilements: Temps constant pour chaque (i,j) Æ O(n 2 )

y Bulge: O(n) pour chaque (i,j) Æ O(n 3 )

y Boucles internes: O(n 2 ) pour chaque (i,j) Æ O(n 4 )

IV Prédiction

Algorithme de Zuker (1981- 1989)

(41)

V. Recherche de structures secondaires

y Entrée: Une

caractérisation de la structure secondaire d’une famille d’ARN

y But: Identifier tous ces

ARN dans un génome

(42)

V. Recherche

Expression régulière

y EXPRESSION RÉGULIÈRE définie sur un alphabet Σ par: Ø, e, et tout a de Σ sont des expressions régulières et si S et R sont deux expressions régulières alors:

y RS est une expression régulière (concaténation)

y R | S est une exp. Reg. (ou)

y R

*

est une ex. reg (étoile de Kleene)

y Exemple: hélice

G (C|U)(A|C|G|U)N*(A|C|G|U)(A|G)C

G Y N C R N

N*

(43)

V. Recherche Automate fini

y Une expression régulière est reconnue par un automate fini.

y Exemple:

((AC)|G)(A|C)T(T|G)((GT)|C)

(44)

V. Recherche

Alignement d’une expression régulière avec une séquence

y Revient à l’alignement d’automates (Myers and Miller 1989)

y Exemple:

y E = (A|C) T (T|G)

y S = A T

A

T

(45)

V. Recherche

Structure secondaire

y Peut-être reconnue par un automate à piles

y Exemple:

R Y

Y R

N*

A G

C T

N

G A

T C 1

2

3

4

3 1

4 2

1ère partie de l’hélice boucle 2ème partie de l’hélice

(46)

A G

C T

N

G A

T C 1

2

3

4

3 1

4 2

1ère partie de l’hélice boucle 2ème partie de l’hélice

P = A T G G G A C

1 4

La pile n’est pas vide Î Le mot n’est pas reconnu par l’automate à piles.

Références

Documents relatifs

[r]

Y en el campo de la enseñanza superior, más concretamente, la aprobación en 1985 del programa COMETT, de cooperación en- tre la Universidad y la Industria, vino a dar un

[r]

Activité d'approche n°3 : Dérivée de Sinus et Cosinus Dérivabilité de sinus et de cosinus. On travaille sur l'intervalle ]0

Il est conçu pour vous aider à lancer un dialogue sur l’âgisme à la maison, au travail, à l’école ou encore dans la sphère... MENER UN DIALOGUE AVEC VOS PROCHES ET

Ceci justifie que, de même, une expression quadratique “opportuniste” du lagrangien de base est aussi efficace, tout en étant plus simple pour certains calculs

(Here, ayy, coy are the canonical symplectic forms on T*X, T*r, respectively, and p : T*X x r*y -^ T*^, TT : r*JT x T* y -^ T* Y are the projections onto the first and second

— Let X be a separable Banach space X &#34;which is an M-ideal in its bidual, and let Y be an arbitrary Banach space.. - Does there exist a separable Asplund space with property