• Aucun résultat trouvé

SURFACE DIFFUSION OF LITHIUM ON THE W(112) PLANE BY FIELD EMISSION SPECTRAL DENSITY ANALYSIS

N/A
N/A
Protected

Academic year: 2021

Partager "SURFACE DIFFUSION OF LITHIUM ON THE W(112) PLANE BY FIELD EMISSION SPECTRAL DENSITY ANALYSIS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00229920

https://hal.archives-ouvertes.fr/jpa-00229920

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SURFACE DIFFUSION OF LITHIUM ON THE W(112) PLANE BY FIELD EMISSION SPECTRAL

DENSITY ANALYSIS

T. Biernat, Ch. Kleint

To cite this version:

T. Biernat, Ch. Kleint. SURFACE DIFFUSION OF LITHIUM ON THE W(112) PLANE BY FIELD

EMISSION SPECTRAL DENSITY ANALYSIS. Journal de Physique Colloques, 1989, 50 (C8), pp.C8-

123-C8-128. �10.1051/jphyscol:1989822�. �jpa-00229920�

(2)

COLLOQUE D E P H Y S I Q U E

Colloque C 8 , supplement au n° 1 1 , Tome 5 0 , novembre 1989 C8-123

SURFACE D I F F U S I O N OF LITHIUM ON THE W ( 1 1 2 ) PLANE BY F I E L D EMISSION SPECTRAL DENSITY A N A L Y S I S

T. BIERNAT and C H . KLEINT*

Institute of Experimental Physics, Wroclaw University, 50-205 Wroclaw, CybulsTiiego 36, USSR

* S e k t i o n Physik, Karl-Marx-Universitat Leipzig, DDR-7010 Leipzig, Linnestrasse 5, D.R.G.

Abstract - T h e spectral density -functions W(f > of the field-emission

•flicker noise of lithium adsorbed on t h e tungsten (112) p l a n e were determined at different temperatures in a probe-hole field emission microscope. By an analysis in t e r m s of the Timm and van der Ziel model the surface diffusion coefficients have been obtained and their temperature dependence reveals the surface diffusion e n e r g i e s . For the two coverages of c = 0.38 and 0.75 investigated their values could b e determined to be Q = 0.56 and 1.08 eV« respectively. The diffusivity prefactors were also calculated. The results are compared with those obtained for the W(112)K system.

1 ~ INTRODUCTION

Alkali metal adsorption on m e t a l s is a subject of long-standing and current interest / l / and much effort h a s been made with different surface spectroscopies t o investigate its properties. Surface diffusion is important for many p r o c e s s e s but only a few parameters were obtained for lithium on s i n g l e planes on transition metals / 2 , 3 / . The flicker n o i s e or fluctuation m e t h o d s / 3 , 4 / Are advantageous in allowing easily to determine the coverage and even t h e directional d e p e n d e n c e / 5 , 6 / though a certain polarization contribution by t h e high voltage needed is unavoidable. From potassium investigations w e know of a strong effect of t h e coverage / 7 / and of surface structure / 8 / . Noise measurements of the spectral density in dependence on coverage of the same W(112)Li system / 9 / show clearly the influence of coherent and incoherent adlayer structures on the adatom mobility. The r e s u l t s presented here illustrate the applicability of the technique but can give only an example of the surface diffusion parameters for two selected coverages.

2 -

E^ERICIENIAL

A field emission microscope (FEM) of the Miiller probe-hole type w a s used to measure the current fluctuations from the central part of the (112) plane of a tungsten single crystal tip covered with a lithium submonolayer. T h e lithium source consisted of a Li zeolite placed on a resistively heated tantalum sheet. The temperature of the emitter was kept constant by means of a stabilized emitter loop current which w a s calibrated earlier.

The field emission current w a s analysed between 2 5 Hz and 2 0 kHz by a frequency spectrometer (Echtzeitanalys?,tor 0 1 0 1 2 , Messelektronik, D r e s d e n ) . More experimental d e t a i l s can b e found in r e f . / 9 / .

T h e flicker noise spectral density functions W(f) were measured in dependence on temperature (above room temperature) for some Li concentrations. The chosen coverages were obtained by heating the emitter covered with a thick layer of lithium - i . e . by thermal desorption of Li from the W(112) plane. The coverages were determined by measuring t h e voltage at a constant collector current from the W(112) p l a n e with and without lithium.

T h i s a l l o w s to calculate the work function, and w e obtain the adsorbate

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989822

(3)

c o n c e n t r a t i o n by t a k i n g i n t o account t h e dependence o f t h e work f u n c t i o n versus l i t h i u m d e p o s i t i o n doses which was c a l i b r a t e d by t h e c o n c e n t r a t i o n r a t i o c = n

.

/nWCii2, i n r e f . / 2 / (see also r e f . / ? / f .

L L

3

-

RESULTS

The temperature dependence o f t h e s p e c t r a l d e n s i t y f u n c t i o n i s i l l u s t r a t e d i n f i g s . 1 and 2 which correspond t o c = 0.75 and 0.38, r , e s p e c t i v e l y . (Other s p e c t r a a t i n t e r m e d i a t e temperatures and t h e same coverages n o t shown h e r e f i t w e l l i n t o t h e general t r e n d t o be described below.) The i n c r e a s e o f t h e e m i t t e r temperature l e a d s t o a change o f t h e W(f) shape i n t h e i n v e s t i g a t e d +requency range. A t room temperature (and s l i g h t l y above) W(f) can be represented by one s t r a i g h t l i n e i n a double l o g a r i t h m i c s c a l e and described by t h e equation W(f) oc f-= ! f i g s . la,b; 2a).

- FREQUENCY f [Hz1

NORMALIZED FREQUENCY up [-I

Fig. 1 - Experimental s p e c t r a l d e n s i t y f u n c t i o n s a t d i f f e r e n t temperatures f o r c = 0.75 ( c i r c l e s ) . Except f o r t h e curves a t T = 378 K and 450

K,

t h e experimental p o i n t s a r e f i t t e d by t h e o r e t i c a l curves o f t h e Timm and van der Z i e l model.

Z

2

2

l o 1 8 -

1019

gro-20-

m 5

D

lo2*

2 FREQUENCY f CHzl

1%

163

E10-17-\ T=48o K

-

- 102 1p" I?

18 18 1 ii2

-\

-

- -

- lo2 103 q4

(4)

NORMALIZED FREQUENCY U, 1-1

U)

N

NORMALIZED

'C

U

T=480 K

FREQUENCY up C-l

1b-l I&

1b1

I

NCY f [Hz1

NORMALIZED FREQUENCY

up[-]

1b0

161 I I&

1b1 160

dl ]

-

0 1u

L

Ul l0-21r

ip2 lp3 lo4 FREQUENCY t 1p2 f E H z l '93 I$

-

FREQUENCY f[Hz]

NORMALIZED FREQUENCY

U p

[-I

Fig.2. Experimental spectral density functions at different temperatures for c = 0.38 (circles). Except f a r t h e curve at. T = 378 K , t h e experimental points are fitted by theoretical curves of t h e Timm and van der Ziel model.

lo1=

l o I 7

1u20

la2'

4-2 6 0

'

- T= 594 K

;;::\

- 19' 1p3 1p4

- I$ 16' 1b0 16"

- T=633 K

-

-0.

1 *----I

1Q' 1p3 IT

(5)

F o r t h e h i g h e r t e m p e r a t u r e s t h e e x p e r i m e n t a l p o i n t s are a p p r o x i m a t e d b y t h e t h e o r e t i c a l s p e c t r a l d e n s i t y f u n c t i o n o b t a i n e d b y Timm a n d v a n d e r Z i e i /10/

a n d c o r r e c t e d by G e s l e y a n d Swansan /11/. T h e s e a u t h o r s h a v e a s s u m e d a model w h e r e s u r f a c e d i f f u s i o n a f t h e a d s o r b a t e o n a s m a l l c i r c u l a r p r o b e a r e a c a u s e s f l u c t u a t i n n s i n t h e number o f a d p a r t i c l e s o n t h i s a r e a . T h e f l u c t u a t i o n s a r e d e s c r i b e d b y t h e s p e c t r a l d e n s i t y f u n c t i o n S ( u ) g i v e n b y

w h e r e LI = 2n f r 2 / D i s t h e n o r m a l i z e d f r e o u e n c y a n d T f u ) a n e x p r e s s i o n

P P

composed of K e l v i n f u n c t i o n s !cp / 6 / ) .

<

( b ~ j " Z i s t h e m e a n - s q u a r e f l u c t u a t i a n o f t h e a d p a r t i c l e number o n t h e p r o b e d a r e a w i t h r a d i u s r D is t h e , s u r f a c e

D~

d i f f u s i o n c o e f f i c i e n t a n d C t h e Fowler-Nordheim t e r m ,

F N

The t e m p e r a t u r e a b o v e w h i c h t h e c h a n g e o f t h e W f f ) s h a p e c a n b e o b s e r v e d d e p e n d s o n t h e l i t h i u m c o v e r a g e . F o r e x a m p l e a t t h e h i g h c o n c e n t r a t i o n o f c Z 2 . 4 5 a t e m p e r a t u r e i n c r e a s e a b o v e room t e m p e r a t u r e l e a d s a l r e a d y t o a d e c r e a s e of t h e l i t h i u m c o n c e n t r a t i o n o n t h e W(112) p l a n e ( a c c o r d i n g t a t h e v o l t a g e a t c o n s t a n t c o l l e c t o r c u r r e n t ) . A t a t e m p e r a t u r e of a b o u t 5 0 4 # c a p p r o a c h e s u n i t y . A v i s i b l e c h a n g e o f t h e Wtf 1 s h a p e t o o k p l a c e f a r c = 0.75 a n d c = 0.35 a t T = 4 6 0 K a n d T = 4 0 0 K, r e s p e c t i v e l y .

4 - EVALUATION AND DISSCSSION

By c o m p a r i n g t h e e x p e r i m e n t a l s p e c t r a l d e n s i t y f u n c t i o n Wff! w i t h t h e o r y t h e d i f f u s i o n c o e f f i c i e n t h a s b e e n c a l c u l a t e d . A s i t w a s d o n e i n r e f . / 7 / f o r t h e W-K s y s t e m t h e f r e q u e n c y s c a l e s t h a t c o r r e s p o n d t o t h e e x p e r i m e n t a l - M i + ) f l o w e r s c a l e i n f i g s . 1 a n d 2 ! w e r e c o m p a r e d w i t h t h e f r e q u e n c y s c a l e t h a t c o r r e s p o n d s t o t h e d i m e n s i o n l e s s n o r m a l i z e d " f r e q u e n c y " u d e f i n e d a b o v e

D

{ u p p e r s c a l e ) . From t h i s c o m p a r i s o n a n d t a k i n g t h e p r o b e d a r e a r a d i u s t o b e a b o u t c m t h e d i f f u s i o n c o e f f i c i e n t D c a n b e o b t a i n e d . F i g s . 3 a n d 4 i 1 l u s t r a t e i t s t e m p e r a t u r e d e p e n d e n c e f o r t h e W ( f

>

e x a m p l e s shown i n f i g s . 1 a n d 2, r e s p e c t i v e l y . T h e d a t a i s w e l l r e p r e s e n t e d b y a s t r a i g h t l i n e f i t .

RECIPROCAL TEMPERATURE 103/~ [ Id]

F i g . 3

-

A r r h e n i u s p l o t o f t h e d i f f u s i o n c o e f f i c i e n t s a t a c o n c e n t r a t i o n of c = 0.75

t Q = 1 . 0 8 e V ) .

F i g . 4 - A r r h e n i u s p l o t o f t h e d i f f u s i o n c o e f f i c i e n t s a t a c o n c e n t r a t i o n o f c = 0.38

( Q = 0.56 e V ) .

-

V)

N2 &

C3

5 1o8- 8

L

L L W 0

16'-

0

z 3 2 k1d0

C=0.38

\. \., ., .\.

' 0

b ,

,

a

1.6 1.8 2.0 22 24

RECIPROCAL TEMPERATURE I@[T [K']

(6)

From the Arrhenius p l o t s of t h e d i f f u s i o n c o e f f i c i e n t s we have t h e surface d i f f u s i o n a c t i v a t i o n energy Q = 0.56 eV and t h e p r e f a c t o r D = 2.4 xlO-scmZ/s

0

a t t h e L i concentration of c = 0.38.

A t

t h e higher coverage I c = 0.752 the r e s p e c t i v e values are considerably higher: GI = 1.08 eV and D = 6.3 x10 icmz/s.

0

The L i a c t i v a t i o n energies are i n general l a r g e r than those f o r potassium on t h e W(lI2) plane /7/ which appears t o be a n a t u r a l consequence of t h e smaller s i z e o f L i atoms o r ions. (This i s not true, however, f o r the f i r s t value of Q . = 0.56 eV a t a coverage where Q was found t o be somewhat h i g h e r / 7 / . ) . A

L% K

d e t a i l e d comparison r e q u i r e s more L i data e s p e c i a l l y a t d i f f e r e n t coverages than a r e a v a i l a b l e a t present.

According t o f i g s . 1 and 2 t h e experimental s p e c t r a l d e n s i t y f u n c t i o n s are f i t t e d r a t h e r w e l l by t h e t h e o r e t i c a l curves o f t h e T i m m and van der Z i e l model is,) except i n t h e lower temperature range. There Wtf) can be described by t h e spectrum W f f ot f-= which r e v e a l s a s t r a i g h t l i n e i n a double l o g a r i t h m i c p l o t . With increasing temperature small discrepancies develop a t t h e h i g h frequency p a r t o f t h e measured spectra (only a p a r t of them i s shown i n f i g s . 1 and 2). F i n a l l y t h e curves of t h e two-dimensional (2D) f l u c t u a t i o n model Sm ( c f . / I T / ) describe t h e spectra as mentioned above. I t seems t h a t t h i s temperature dependence can be explained i n t h e f o l l o w i n g way: Near room temp=erature we observe i n f a c t a one-dimensional d i f f u s i o n along t h e raws o f t h e bcc ( 1 12) plane o f tungsten. The adequate ID-model g i v e s t h e spectrum

s * ~

derived by Gesley and Swanson 1 This f u n c t i o n p l o t t e d i n f i g . 1 of r e f . / l l / v e r s u s t h e n o r m a l i z e d f r e q u e n c y u = w r 2 / D i s n o t e x a c t l y a s t r a i g h t 1 i n e b u t can be approximated for,. say, - 192 o r 2 frequency decades by s t r a i g h t l i n e s w i t h a slope between E = 1 and 1.5. Considering t h e approximate d e s c r i p t i o n of the r e a l d i f f u s i o n by t h e ID-model one can i n f a c t e x p l a i n t h e spectra by these arguments.

A t higher temperatures, however. we f i n d some d e v i a t i o n s a t low frequencies ( f i g . 2h) and another mechanism might be responsible f o r them. We expect a phase t r a n s i t i o n +rom t h e ordered phase t o t h e disordered but t h e t h e o r i e s developed so f a r disregard t h i s t r a n s i t i o n . The beginning of an observable s u b s t r a t e atom m o b i l i t y might a l s o show up a t these temperatures /12/.

F i g 5

-

Spectral d e n s i t i e s W(f . ) J versus r e c i p r o c a l temperature f o r a concentration of c = 0.75.

V) ~ t ~ r l : : ~ r l : r t ~ I

25 2D 2.5 3.0

RECIPROCAL TEMPERATURE 1 0 7 ~ [K']

Fiq.6

-

Spectral d e n s i t i e s W(f .!

1

versus r e c i p r o c a l temperature f o r a concentration of c = 0.38.

(7)

The temperature dependence o f t h e s p e c t r a l d e n s i t i e s ( f i g s . 5 and 6 ) r e f l e c t s t h e general t r e n d o f t h e complete spectra: w i t h r i s i n g temperature t h e n o i s e power a l s o increases b u t we have a t t h e same t i m e d i m i n i s h i n g low frequency p a r t s o f t h e W l f ) ' s according t o t h e change from t h e ID- t o t h e 2D- spectra. namely S iD changing t o S,,. Therefore, a t t h e coverage o f c = 0.38

( f i g . 6 ) we observe a t f i r s t a W(l kHz) maximum f o l l o w e d by t h e W(10 kHz) maximum. A s i m i l a r behaviour a t c = 0.75 ( f i g . 5) i s expected a t h i g h e r temperatures because o f t h e f u l l o w i n g reason. From t h e Arrhenius p l o t s o f t h e d i f f u s i o n c o e f f i c i e n t s we found t h e s u r f a c e d i f f u s i o n a c t i v a t i o n energy Q = 0.56 and 1.08 eV a t t h e L i c o n c e n t r a t i o n o f c = 0.38 and 0.75 r e s p e c t i v e l y . Therefore one expects i n f a c t t h e maximum o f f i g . 5 a t h i g h e r temperatures.

I t i s i n t e r e s t i n g t o n o t e t h a t a s i m i l a r dependence o f t h e s p e c t r a l d e n s i t i e s w i t h r e c i p r o c a l temperature was observed a l s o f o r c l e a n /12/ and h e a v i l y covered /13/ tungsten t i p s as w e l l as f o r e p i t a x i a l K c r y s t a l s /14/.

The l i t h i u m i n v e s t i g a t i o n s and t h e i r i n t e r p r e t a t i o n i n terms o f s u r f a c e d i f f u s i o n presented above may a l s o e x p l a i n t h e general f l u c t u a t i o n behaviour o f t h e t h r e e mentioned s u r f a c e s (cp a l s o /15/) i f t h e number o f mobile atoms i s n o t t o o l a r g e .

ACMNDWLEDGEHENTS

Discussions w i t h Professor R.Meclewski on t h i s s u b j e c t a r e q r a t e + u l l y acknowl edged.

Work sponsored by t h e P o l i s h M i n i s t r y o+ N a t i o n a l Education w i t h i n t h e C e n t r a l P r o j e c t o f Basic Research CPBP 01.08. A.

REFERENCES

/ 1 / 5 0 t h WE-Heraeus-Seminar: P h y s i c a l and Chemical Aspects o f A1 k a l i Metal Adsorption. Bad Honnef

,

Febr. 1989.

/ 2/ V.K. Hedvedev, A. G . Naumovets and T. P. Smereka, Surf ace S c i

. 34

f 1973) 368.

/ 3/ A.G.Naumovets and Yu.S.Vedula, Surface Sci. Reports

4

(1984) 365.

/ 4/ C h - K l e i n t , Surface Sci. 200 (1988) 472.

/ 5 / R.Bkaszczysiyn and ~h.Kle:nt, Surface Sci. 171 (1986) 615.

/ 6 / J.Beben, C h - K l e i n t and R.?leclewski, J. ~ h y s T q c e

48

(1978) Cb

-

545.

/ 7 / J-Beben, Ch. E l e i n t and R-Meclewski, Z. Phys.

R-69

(1987) 319.

/ 8 / R.Rkaszczysiyn and Ch.Kleint, Appl. Phys. (1988) 145.

/ 9 / T - B i e r n a t and C h - K l e i n t , Appl. Phys. A ( i n p r e s s ) .

/ l o /

G.W.Timm and A.van der Z i e l , Physica

22

(1966) 1333.

/ 11 / M. A. Gesley and L. W. Swanson, Phys. Rev.

B-32

( 1985) 7703.

/12/ T - B i e r n a t and C h - K l e i n t , Appl. Surface Sci. 27 (1987) 411.

/13/ T - R i e r n a t and C h - K l e i n t , Acta Phys. Polon.

fiI59

(1986) 507.

/14/ T - H i e r n a t and C h - K l e i n t , Surface Sci.

LZZ

(1983) 498.

/15/ Ch.Kleint, Ann. Phys. ( L e i p i i g )

28

(1981) 305.

Références

Documents relatifs

At higher Ni coverages a roughening effect occurs which is also present in the Ni - K coadsorption layers nn the W(110) plane /9/.The cross-correlation picture of the Ni

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

6 - Variation of energy spectra of the electrons field-emitted from the (111)-oriented Si tip by hydrogen coverage.. Disappearance of P,I could be the result of

The mean square fluctuations for successive slit positions were measured and the corresponding values of the diffusion coefficient were calculated by using theoretical

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Ions are emitted from such a restricted surface area, yielding a very high brightness (ca. Thus the liquid metal ion source seems to be most suitable for producing submicron

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Although the cross-correlation was measured of the coadsorption nickel-potassium layer and a certain mobility of single nickel adatoms on the W(110) plane at room