• Aucun résultat trouvé

FIELD-EMISSION STUDIES OF THE ADSORPTION OF MERCURY ON TUNGSTEN AT 295 K

N/A
N/A
Protected

Academic year: 2021

Partager "FIELD-EMISSION STUDIES OF THE ADSORPTION OF MERCURY ON TUNGSTEN AT 295 K"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225913

https://hal.archives-ouvertes.fr/jpa-00225913

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FIELD-EMISSION STUDIES OF THE ADSORPTION OF MERCURY ON TUNGSTEN AT 295 K

J. Saleh

To cite this version:

J. Saleh. FIELD-EMISSION STUDIES OF THE ADSORPTION OF MERCURY ON TUNGSTEN AT 295 K. Journal de Physique Colloques, 1986, 47 (C7), pp.C7-111-C7-115.

�10.1051/jphyscol:1986720�. �jpa-00225913�

(2)

FIELD-EMISSION STUDIES OF THE ADSORPTION OF MERCURY ON TUNGSTEN AT 295 K

J . M . SALEH

Department of Chemistry, C o l l e g e o f S c i e n c e , U n i v e r s i t y o f Baghdad, Baghdad, J a d i r i y a , Republic of I r a q

The i n t e r a c t i o n of mercury vapeur with tunqsten has been studied by f i e l d - emission microscouy. Adserption of mercury a t 295 K occurred on (1 11 ) planes and on regkons 2 r r o u n d i n q (001 1 , (112) and (011 ) planes. The adserption a t a pressure of 10- N m w a s complete within 2 minutes. An increase i n t h e average work function of 0.182 v o l t has been estimated f o r t h e process. 01 heatinq a s u r f a c e s a t u r a t e d with mercury a t 295 K, s u r f a c e miqration began a t temperatures >750 K t o and over t h e c e n t r a l (01 1 ) lanes a l o n j t h e zones l i n k i n g it w i t ? t h e o t h e r (01 1 ) planes ; t h e a c t i v a t i o n energy (El of t h e process w a s 45-50 k J mol- . Desorption of t h e absorbed mercury s t a r t e d above 1200 K and t h e values of E f o r s u r f a c e migration and de-l sorption increased with temperature a t t a i n i n g a constant value of 120 k J mol- a t temperatures > 1700 K. The s u r f a c e ~ o t e n t i a l changes throughout adsorption, s u r f a c e migration and desorption have been determined.

Mercury is known t o show a s&ong tendency f o r adsorption on various (1 - 7) surfaces. Due t o such a behaviour, it is considered as a ~ o i s o n f o r many c a t a l y t i c r e a c t i o n s ( 1 , 4 ) . Mercury displaces adsorbed hydroaen from metal s u r f a c e s , and t h e mercury t h a t is adsorbed after hydrcuen displacement is shown t o be present as physically adsorbed l a y e r on t o p of t h e chemisorbd mercury l a y e r ( 1 , 4 ) . Paunev ard Mikhailev ( 6 ) have u t i l i z e d t h e f i e l d emission microscope t o i n v e s t i g a t e multilayer adsorption of mercury on tungsten a t 150 K.

I h e present work involves f i e l d emission microscope s t u d i e s of t h e adsorption of mercury on tungsten a t 245 K. me i n v e s t i g a t i o n covered many o t h e r aspects t h a t have been ignored i n t h e previous s t u d i e s .

EXPERIMENTAL

Ihe apparatus and t h e experimental technique have already been described ( 8 , 9 ) . Triply d i s t i l l e d mercury was used a f t e r thorough freezing and p n p i n g opera- t i o n s . Activation energies (E) f o r various processes, occurring throughout heating of a mercury s a t u r a t e d t i p t o temperatures higher than t h a t of adsorption, have been determined as explained previously ( 8 ) . The work functions (@) were derived from t h e current-voltage c h a r a c t e r i s t i c s which obeyed Fawler-Nordheim equation (10). The surface p o t e n t i a l ( v ) , characterizing any adsorption s t a t e , w a s defined by:

v = u clean - ads. (1

where 9 is t h e work function of t h e clean tungsten (8.0eV) s u r f a c e and gads is t h e worfC1=tion of t h e same s u r f a c e a f t e r mercury adsorption.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986720

(3)

C7-112 JOURNAL DE PHYSIQUE

RESULTS A M ) DISCUSSION

When mercury is adsorbed a t a pressure of N m-2 on a tungsten t i p which w a s kept a t 295 K p r e f e r e n t i a l adsorption occurs on t h e (111) planes and around

(001 ) , (112) and (011 planes as indicated i n at terns 2 t o 9 of p l a t e 1. Surface s a t u r a t i o n with Hq a t 295 K occurs i n 2 min ( p a t t e r n 9 ) and t h e i n t e n s i t y d i s t r i - bution p a t t e r n of t h e s a t u r a t e d s u r f a c e does not chanqe t h e r e a f t e r with time.Ad- sorption of Hg a t 295 K increases t h e average work function of tungsten as idi- cated by t h e s u r f a c e p o t e n t i a l . P o t e n t i a l ( v ) changes with t i m e i g fig,l ( A ) . Adsorption of Hg on tungsten a t 295 K and under a pressure of 10- N m was l i k e l y t o r e s u l t i n a chemisorbed mercury l a y e r on t h e t i p surface. The f a c t t h a t p a t t e r n 9 of p l a t e 1 was s t a b l e over t h e t e m v r a t u s e range 295 - 750 K even when t h e mercury pressure was reduced down t o 10- N m excludes t h e p o s s i b i l i t y of physical adsorption on t h e t i p s u r f a c e o r on t h e top of t h e chemisorbed mercury l a y e r . Physical adsorption of mercury on t o p of chemisorked mercury l a y e r was reported ( 1 ) t o occur on N i f i l m when t h e v a m r pressure (p) of mercury r e l a t i v e t o its s a t u r a t e d vapour pressure ( p O ) , t h a t is p/pO, was considerably higher than 0.1 ; t h e value o f p/pO i n t h e present work w a s only 0.01 . Mercury whiskers have been r e m r t e d (13 - 16) t o g r p on metal surfaces a t temperatures .h 195 K under pressures of 10- - 1 o - ~ N m- . Th? growtq of s 1 u r whiskers on a W t i p a t 295 K occured (8) under pressures of 10- - 1 N rnY.Pho such qmwth was observed i n t h e presegt i n v e s t i g a t i o n as t h e experimental pressure was always f a r lower than 1 0-4 N m- . A t lower pressures it would be u n l i k e l y t o observe whiskers during adsorption on a W t i p s i n c e a t low supersaturation t h e formation of h y p e r c r i t i c a l nuclei i s d i f f i c u l t because evaporation e x c e d e ---krth.

When t h e mercury s a t u r a t e d t i p is qeated2under a pressure o f 10- N m t o temtxratures

750 K t h e adsorption imaae ( p a t t e r n 9) is a l t e r e d consider- ably and t h e adsorbed mercury underqoes s u r f a c e migration and eventually is desorked by way of many c h a r a c t e r i s t i c s i n between steps ( p a t t e r n 10-32 of p l a t e 2 ) . The s u r f a c e p o t e n t i a l v a r i a t i o n s throughout migration and desorption a r e indicated i n fig.1 (B). The sequence of events durinq heating t h e t i p subsequent

t o s u r f a c e s a t u r a t i o n with Hg a t 295 K may be resolved i n t o t h r e e d i s t i n c t stages.

1 - Stage I , covering p a t t e r n s 10-l-ate 2, which occurs with a constant energy of a c t i v a t i o n of 45 t o 50 k J mol- l and t h i s value is smaller than t h e h e a t o f eva r a t i o n of mercury

of 61.5 k J molq. Paunev and P

Mikhailev ( 6 ) have found t h a t t h e heat of evaporation of H q from multiadsorbed mercury l a y e r s on W a t 150 K converged

with t h e l a t e n t heat of subli- P l a t e 1 - P a t t e r n 1 t o 9 which have

mation of bulk Hg. Such a low been obtained throughout

energy of a c t i v a t i o n which is adsorption of mercury vapour measured f o r t h i s s t a g e is u n d y a p y ~ ~ m r e of

l i k e l y t o correspond t o purely 10- N m- on W a t 295 K.

Hg migration on t h e W surface.

(4)

( i ) t h e decrease of emission a r o u d (111) region as shown i n p a t t e r n s 10 and 11 of p l a t e 2, and t h e extension of t h e dark (112) region towards (113), (123) and (223) planes, thus enlarqina a t t h e exoense of t h e (001 and (111) regions.

(ii) the emission increases once again from t h e (111) reqion i n p a t t e r n s 12 - 17 of p l a t e 2. I n t h e meantime, t h e dark a r e a around (011) decreases considerably. It is knum t h a t c e n t r a l (011) plane and t h e s p e c i a l zones l i n k i n g i t t o o t h e r (011) planes c o n s t i t u t e a network of lm-impedance paths f o r t h e d i f f u s i n g atoms. The Hg atoms w i l l t h e r e f o r e migrate rapidly t o and over t h e c e n t r a l (011) plane of t h e t i p , but w i l l be trapped on t h e rough s u r f a c e a t its edge. Mimation of chemisor- bed CO on W was found (17 - 19) t o s t a r t round 700 K and w a s rapid over t h e (011) plane and t h e zones connecting it with (111) planes: t h e a c t i v a t i o n enerqy of such process was estimated t o be 88 k J mol- .

2 - Staqe 11, covering p a t t e r n s 18 - 28 of p l a t e 2, which occurs on heatinq t h e t i p t o t e m ~ e r a t u r e s 1200 - 1700 K involvinq probably both s u r f a c e migration and desorption processes. q e energy of a c t i v a t i o n a t t h i s s t a g e increased gradually from 50 t o 110 k J mol- as indicated i n fig.2. me major events of t h i s s t a g e are :

( i ) t h e continuous growing of t h e (112) region a t t h e expense of (111) and (001) regions. Some of t h e Hg which is removed from t h e s e reqions may be deposited on t h e (111) region from t h e t h r e e nearest (112) planes. 'Ihese accumulations o r pro- trusions above t h e hemispherical s u r f a c e produce e x t r a l o c a l f i e l d and show up as regions of increased emission.

Fig. 1

-

Energies of a c t i v a t i o n (E) f o r s u r f a c e migration and desorption as a function of temperature (TI.

Fig. 2

I h e changes of s u r f a c e p o t e n t i a l ( v ) against ( A ) t i m e of ad- sorption ( t ) ; and (B) temperature

(T) throughout heating of a mercury;

s a t u r a t e d t i p t o 750 - 1900 K.

Y '3

40

(5)

C7-114 JOURNAL DE PHYSIQUE

In patterns 27 - 28 of p l a t e 2, t h e Hg adsorbates a r e not shown t o be uniformly d i s t r i b u t e d on t h e (111) region but appear t o be concentrated i n t h e form of

"clusters". The c l u s t e r s a r e shown i n patterns 27 - 28 t o be surrounded by neigh- bouring regions having considerably smaller concentrations and consequently d i f f e r - ent i n t e n s i t i e s of electron emission. Some of t h e adsorbed Hg on ( 1 1 1 ) and ( 1 1 2 ) regions may d i f f u s e i n t o (011) plane, along t h e edges of t h e l a t t e r plane, from which desorption is l i k e l y t o take place.

(ii changes occurring around (01 1 ) plane. The central dark rectangle appears most c l e a r l y i n pattern 18 with its boundary l i n e s a t t h e edges of t h e (011) plane.

This is interpreted t o mean t h a t t h e adsorbed Hg can migrate along t h e (112) -

(011 zone concentrating on t h e edge of t h e (011) plane, then migrating t o t h e surface of t h e (011) plane from which desorption begins.

3 - Stage 111, involving myrely desorption which occurs with a constant enerqy of activation of 11 0 k J mol- ffig.2), covering patterns 29 - 32. This s t a q e begins a t temuerature z 1700 K i n which l e s s Hg remains on t h e (112) and (111) regions and consequently t h e (112) planes shrink t o t h e normal s i z e ( w t t e r n 32). A t tem- peratures a1700 K , t h e removal of Hg atoms takes place from (1231, (1341, (213) and (223) planes on which Hg atoms make strong bonds. The (001) regions a l s o re- s t o r e t h e i r o r i g i n a l shapes.

The applied voltage increased throughout adsorption (pattern 2 - 9) but de-

creased smoothly on desorption ( p a t t e r n 10 - 32). The d e t a i l s of t h e changes i n t h e values of 0 and v due t o Hg adsorption and subsequent migration and desorption processes a r e indicated i n t a b l e 1 .

P l a t e 11 - Patterns 10 t o 33, which have been obtained on heating mercury- saturated tips t o temperatures ,750 K.

(6)

Pattern tem/K 0 / e V - v /e V Pattern t m / K 0 / e v - v / e v

2 295 4.535 0.035 16 1050 4.632 0.132

3 2 95 4.573 0.073 17 1100 4.621 0.121

4 2 95 4.587 0.087 18 1200 4.61 1 0.111

5 295 4.61 1 0.111 19 1300 4.606 0.106

6 295 4.629 0.129 20 1375 4.608 0.103

7 2 95 4.646 0.146 2 1 1420 4.598 0.098

8 2 95 4.665 0.165 22 1480 4.587 0.087

9 ,295 4 -682 0.182 23 1550 4.587 0 -087

10 750 4 -684 0.184 24-28 1550-1 700 4.573 0.073 1 1 78 0 4.676 0.176 29-30 1 700-1 750 4 -555 0.055

12 850 4.669 0.169 31 1800 4.535 0.035

13 900 4.656 0.156 32 1870 4.518 0.01 8

14 940 4.646 0.146

15 980 4.639 0.139

REFERENCES

1. Cambell, K.C. and Hislop, J.S., J. Catal, 1969, 13, 12.

2. Bond, G.C. and Wells, P.B., Actes Congr.Int .Catalyse 2,Paris, 1960.1 ''1 150.

3. Naimovskii, S.G., Prqr. Eletrochim.Org.Seedin, 1969,l , 76 (Russ .) .

4. Casnpbell, K.C., Fryer, J.R. and Gray, K.G., Surf. 3ci.,1972, 33, 198.

5. Cheweris, M.S., Strewberg, A.G. and Vasilev, Yu.B. ElectroKhimeya,l975,11,811.

6. Paunev, K. and Mikhailev, E., Isv. Khim, 1978, 11, 688 (sefia-Bulg.).

7. Kiekens, P. Van deu Broocke, F., Bogaert, M. and Tewmennans, E., WI11.Sec.Chirn Belg., 1983, 92, 729.

8. Saleh, J.M., Roberts, K.W. and Kemball, C., J. Catal., 1963, 2, 189.

9. Al-Hyderi, Y.K., Saleh, J.K. and Natloob, M.H., J. Phys.Chem.,l985, 89, 3286.

10. Fowler, R.H. and Nordheim, L., Proc.Rey.Sec.A.London, 1928, 119, 173.

1 1 . Arthur, J.R. and Hansen, R.S., J. Chem.Phys., 1962, 36, 2062.

12. Klein, R., J. Chem. Phys., 1953, 21, 1177.

13. Apker, L., Taft, E. and Dickey, J., J. Phys-Rev., 1948, 73, 46.

14. Sears, G.W., Acta Met., 1955, 3, 361 .

15. Gemer, R., J. Chem. Phys., 1958, 28, 457.

16. Ganer, R., in IXlromus, R.K., ed. "Growth and Perfections in Crystals"

(Wiley, New York, 1958) p. 126.

17. Gmer, R., J. Chem. Phys., 1958, 28, 168.

18. Klein, R., J. Chem. Phys., 1959, 31, 1306.

19. Ehrlich, G., Hicknett, T.W. and Hudda, F.G., J. Chem.Phys. 1958, 28, 506.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to