• Aucun résultat trouvé

FIELD EMISSION OF ELECTRONS FROM A LIQUID ALLOY SURFACE

N/A
N/A
Protected

Academic year: 2021

Partager "FIELD EMISSION OF ELECTRONS FROM A LIQUID ALLOY SURFACE"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225959

https://hal.archives-ouvertes.fr/jpa-00225959

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FIELD EMISSION OF ELECTRONS FROM A LIQUID ALLOY SURFACE

K. Hata, S. Nishigaki, M. Watanabe, T. Noda, H. Tamura, H. Watanabe

To cite this version:

K. Hata, S. Nishigaki, M. Watanabe, T. Noda, H. Tamura, et al.. FIELD EMISSION OF ELEC- TRONS FROM A LIQUID ALLOY SURFACE. Journal de Physique Colloques, 1986, 47 (C7), pp.C7- 375-C7-380. �10.1051/jphyscol:1986764�. �jpa-00225959�

(2)

FIELD EMISSION OF ELECTRONS FROM A LIQUID ALLOY SURFACE

K. HATA, S. NISHIGAKI, M. WATANABE, T. NODA, H. TAMURA* and H . WATANABE*

Toyohashi University of Technology, Tempaku-cho, ~ o y o h a s h i 440, Japan

'central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan

Electrons were extracted £rom Ga-In-Sn alloy on a liquid metal ion source by reversing polarity of the high electric field. The emission current was kept stable to 2.5 B/hour in a vacuum of 1x10-' Torr by using a high-impedance stabilizer. The 1-V characteristics obey Fowler-Nordheim's law, indicating the field emission mechanism.

The size of effective emission area can be of the order of 10 A I . The angular current density and the brightness amounted to 20 to 40 uA/sr and ca. 1 0 ' O ~ / c m ~ sr, respectively. The energy spread of emitted electrons was comparable to that of solid-phase field emission.

1. Introduction

A liquid metal ion source (LMIS) has attract great attention in the fields of microfabricatlon, surface microanalysis, and so on because of its prominent feature, very high brightness with a small source size. Liquid metal supplied to the apex region of an emitter is known to form a sharp cone (cal1 d the Taylor cone) with the apex radius of the order of 50 to 500 AIT in a high electrostatic field.

Ions are emitted from such a restricted surface area, yielding a very high brightness (ca. 106 A/cmZ-sr). Thus the liquid metal ion source seems to be most suitable for producing submicron ion beamsz).

For electron beams, on the other hand, one usually employs a solid-metal field emitter as a bright electron source. The smallest possible radius of the emitter tip, however, is practically limited by individual tip etching techniques to Ca. 1000 1, resulted in the opti- cal source size of several ten A. Solid emitters sharper than this value are of less practical use because of their shortened lifetime.

Clampitt an6 ~efferies') reported that the electron emission took place very readily from the liquid cesium emitters in 1972. Swanson and schwind4) proposed an idea of extracting electrons from a liquid

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986764

(3)

C7-376 JOURNAL DE PHYSIQUE

m e t a l by r e v e r s i n g t h e p o l a r i t y o f a p p l i e d f i e l d . I f t h i s t e c h n i q u e became e s t a b l i s h e d , it would g i v e a n e x c e l l e n t s o u r c e s a t i s f y i n g t h e f o l l o w i n g r e q u i s i t e s :

a ) s m a l l s o u r c e s i z e , b ) h i g h b r i g h t n e s s ,

C ) l o n g l i f e t i m e , a n d d ) wide v a r i e t y of e m i t t e r m a t e r i a l . I n t h i s p a p e r we d e s c r i b e e x p e r i m e n t a l r e s u l t s o f s t a b l e e l e c t r o n e m i s s i o n from a l i q u i d a l l o y s u r f a c e . We o b t a i n e d an e v i d e n c e of t h e f a c t t h a t t h e c u r r e n t c o n s i s t e d r e a l l y o f e l e c t r o n s t u n n e l i n g t h r o u g h t h e s u r f a c e p o t e n t i a l b a r r i e r . The c u r r e n t s t a b i l i t y , t h e e f f e c t i v e s o u r c e s i z e a n d t h e b r i g h t n e s s were deduced.

2 . E x p e r i m e n t a l

F i g . 1 i l l u s t r a t e s c o n s t r u c t i o n o f t h e LMIS we employed5! I t i s e q u i p p e d w i t h an up-and-down mechanism t o move t h e t u n g s t e n e m i t t e r t i p f r o m o u t s i d e o f vacuum, t h r o u g h a s l e e v e c o n t a i n i n g l i q u i d m e t a l , s o a s t o b e e a s i l y w e t t e d w i t h i t . The LMIS h a s a means o f e l e c t r o n bombardment h e a t i n g f o r

t h e t i p and t h e s l e e v e , b u t it was l e f t u n u s e d d u r i n g t h e e x p e r i m e n t o f e l e c t r o n e m i s s i o n . Dia- m e t e r s o f t h e e x t r a c t o r a p e r t u r e , t h e e m i t t e r w i r e a n d t h e s l e e v e h o l e were 1, 0 . 5 a n d 0 . 8 mm, r e s p e c t i v e l y . The ex- t r a c t o r was l o c a t e d 2 mm down £rom t h e e n d o f t h e s l e e v e and was g r o u n d e d a c r o s s a h i g h impedance r e s i s t o r R a s a n emis- s i o n c u r r e n t s t a b i l i z e r , whose r e s i s t a n c e v a l u e was v a r i a b l e £rom O t o 1 0 G R i n 100 M O s t e p s .

A s t h e l i q u i d m e t a l m a t e r i a l , we u s e d Ga-In- Sn a l l o y , which i s f l u i d a t t h e room t e m p e r a t u r e . I t f l o w s a l o n g t h e t u n g - s t e n t i p down t o i t s

a p e x . E l e c t r o n e m i s s i o n F i g . 1 C o n s t r u c t i o n of LMIS u s e d i s o b t a i n e d s i m p l y by i n t h i s e x p e r i m e n t .

r e v e r s i n g t h e p o l a r i t y S o u r c e m a t e r i a l :

of a c c e l e r a t i o n v o l t a g e Ga-In-Sn a l l o y w i t h i n c o m p a r i s o n w i t h t h e m e l t i n g p o i n t of 3 O C .

i o n e m i s s i o n mode.

3. R e s u l t s a n d D i s c u s s i o n 3 . 1 C u r r e n t S t a b i l i t y

E l e c t r o n s were e x t r a c t e d o u t when t h e a p p l i e d v o l t a g e t o t h e t i p i n c r e a s e d above a t h r e s h o l d . The c u r r e n t was k e p t s t a b l e w i t h t i m e e v e n i n a medium vacuum c o n d i t i o n of l x l 0 ' 7 ~ o r r , a s shown i n F i g . 2.

The s t a b i l i t y was b e t t e r t h a n 2 . 5 % / h o u r . The r o l e of high-impedance r e s i s t o r i n s t a b i l i z i n g t h e c u r r e n t was u n d e r s t o o d £rom t h e f a c t t h a t t h e c u r r e n t became t o f l u c t u a t e when we removed i t .

D e t a i l e d wave f o r m s of t h e c u r r e n t t r a c e d by an o s c i l l o s c o p e a r e shown i n F i g . 3. The r e p e t i t i o n o f a b r u p t i n c r e a s e and s l o w d e c a y i s o b s e r v e d and i t s f r e g u e n c y l o o k s t o b e d e t e r m i n e d by t h e c o n n e c t e d i m - p e d a n c e a n d t h e s t r a y c a p a c i t a n c e - . A s a c a u s e o f t h e o s c i l l a t i o n , Swanson e t a l p r o p o s e d t h e e x p l o s i o n o f T a y l o r c o n e , t a k i n g t h e r m a l p r o c e s s o f t h e l i q u i d t i p i n t o c o n s i d e r a t i o n . I n c o n t r a s t w i t h t h e i r

(4)

c u r r e n t i n

l x l ~ ~ ~ ~ o r r .

e x p e r i m e n t s , however, where upward c o n e formed a t o p a c a p i l l a r y g a v e a c u r r e n t o f c a . 0 . 5 mA above a t h r e s h o l d v o l t a g e a s h i g h a s 8 kV, o u r s d i d a c u r r e n t n o t h i g h e r t h a n s e v e r a l t e n JIA above a t h r e s h o l d of c a . 1 kV. T e m p e r a t u r e c a l c u l a t e d by Swanson e t a l shows no r i s e i n t h i s c u r r e n t r a n q e . Tamura, one o f

t h e c o a u t h o r s , h a s o b t a i n e d a SEM image w i t h a n e m i s s i o n c u r r e n k

5 p A i n a s e p a r a t e e x p e r i m e n t 1.

Through t h e s e f a c t s , DC e m i s s i o n may b e e x p e c t e d i n a low c u r r e n t r e g i o n .

F i g . 3 Measurement o f c u r r e n t wave f o r m . ( a ) : C i r c u i t . (b) t o ( d ) : O s c i l l o g r a m s o b t a i n e d w i t h R = 0 . 4 , 1 . 4 a n d 2.4 Ga, r e s p e c t i v e l y . S c a l e s : v e r t i c a l 2 0 mV/div.

a n d h o r i z o n t a l 1 0 m s / d i v .

(5)

C7-378 JOURNAL DE PHYSIQUE

3.2 1 - V C h a r a c t e r i s t i c s

The mean e m i s s i o n c u r r e n t 1, d e f i n e d a s t h e a r i t h m e t i c mean of p e a k - t o - p e a k a m p l i t u d e above z e r o i n t h e wave f o r m , i n c r e a s e d w i t h t h e a c c e l e r a t i o n v o l t a g e Vacc a p p l i e d t o k h e l i q u i d t i p above i t s t h r e s - h o l d Vth of Ca. 1 kV, a s shown i n F i g . 4 . M a j o r i t y o f e l e c t r o n s f l o w i n t o t h e e x t r a c t o r e l e c t r o d e a n d h e n c e r a i s e i t s p o t e n t i a l which i s t h e p r o d u c t o f t h e c u r r e n t 1 a n d t h e s t a b i l i z e r impedance R . The e f f e c t i v e e x t r a c t i o n v o l t a g e Veff i s e x p r e s s e d a s

Veff = Vacc - I . R . ( 1 )

The c u r r e n t i s r e p l o t t e d a g a i n s t t h e v o l t a g e Veff i n F i g . 5 a c c o r d i n g t o Fowler a n d Nordheim. I n t h e r e g i o n A where t h e c u r r e n t i s r e l a - t i v e l y low, m e a s u r e d v a l u e s w e l l f i t t h e s t r a i g h t l i n e w i t h t h e s l o p e m = - 0 . 2 3 a n d t h e i n t e r s e c t i o n w i t h t h e v e r t i c a l a x i s , q = - 1 0 . 6 5 . The l i n e a r r e l a t i o n s h x p between l o g ( 1 / v 2 ) and 1/V means t h a t e l e c t r o n s a r e e m i t t e d by t u n n e l i n g t h r o u g h t h e s u r f a c e p o t e n t i a l , t h a t i s , t h e normal f i e l d e m i s s i o n mechanism. From t h e s l o p e m w i t h t h e i n t e r - s e c t i o n q , we e s t i m a t e d t h e e f f e c t i v e s u r f a c e a r e a S o f t h e e m i s s i o n t o b e of t h e o r d e r of 1 0 A2 . The f i e l d s t r e n g t h a t t h e c o n e apex o f t h e l i q u i d m e t a l i s a p p r o x i m a t e d t o b e a b o u t 1.1 v/% a t t h e t h r e s h o l d v o l t a g e . T h i s v a l u e seems r a t h e r h i g h C O p a r e d t o t h a t i n t h e c a s e o f c o n v e n t i o n a l s o l i d f i e l d e m i t t e r s ( 4 1 V/!), f o r which f i e l d s t r e n g t h i n t h e v i c i n i t y of t h e c o n e a p e x i s a p p r o x i m a t e d by

F = V / 5 r , ( 2 )

where V a n d r a r e a p p l i e d v o l t a g e a n d r a d i u s o f c u r v a t u r e a t t h e a p e x , r e s p e c t i v e l y . Using F 4 x 10' V/cm t y p i c a l l y and V = 1 kV, Our d e d u c t i o n g i v e s r = 500 A. S i n c e t h e d i s c r e p a n c y c a n h a r d l y b e e x - p l a i n e d a t p r e s e n t , a u t h o r s i n t e n d t o o b s e r v e t h e a c t u a l s h a p e o f t h e c o n e a p e x i n o p e r a t i o n .

0 i i i j i s 6 i 8 ! VJe

Applied voltage (kV)

F i g . 4 T o t a l e m i s s i o n c u r r e n t v s . a p p l i e d v o l t a g e f o r v a r i o u s s t a b i l i z e r R ' s .

F i g . 5 Fowler-Nordheim p l o t a t R = 200 Ma.

(6)

3.4 B r i g h t n e s s

I n o r d e r t o g e t t h e ' a n g u l a r c u r r e n t d e n s i t y dI/dCL, we p r o b e d a c u r r e n t t o w a r d a r e s t r i c t e d s o l i d a n g l e b y u s i n g a n a p e r t u r e w i t h t h e h a l f a n g l e of 2 . 3 mrad. The r a t i o of t h e p r o b e c u r r e n t t o t h e t o t a l o n e was n e a r l y c o n s t a n t , a s shown i n F i g . 7. T h i s means t h a t t h e m i c r o g e o m e t r y i n t h e v i c i n i t y of t h e c o n e a p e x i n c l u d i n g t h e e m i s s i o n a r e a d o e s n o t c h a n g e e s s e n c i a l l y a t t h e c u r r e n t up t o s e v e r a l t e n PA.

The a n g u l a r c u r r e n t d e n s i t y was d e d u c e d £rom F i g . 7 t o b e Ca. 1 ) i A / s r a t t h e t o t a l c u r r e n t o f 1 8 PA, b u t it f a i r l y v a r i e d by t i l t i n g t h e t i p a s s e m b l y a g a i n s t t h e a p e r t u r e . T h i s i m p l i e s inhomogeneous a n g u l a r d i s t r i b u t i o n o f t h e d e n s i t y . The maximum d ~ / d A v a l u e s o f a r o b t a i n e d i s 20 t o 40 p A / s r . B r i g h t n e s s B i s d e f i n e d a s t h e r a t i o ( d I / d A ! / S , where S i s t h e e m i s s i o n a r e a , b e c a u s e it i s t o o s m a l l t o i m a g i n e t h e o p t i c a l s o u r c e s i z e s e p a r a t e l y . We t h e n o b t a i n B o f Ca. 10" ~/cm'.sr, e n e r g y a n a l y z e r ' ) was s e t

up on t h e beam a x i s . - m

D i f f e r e n t i a t i n g c u r r e n t * - c

t h r o u g h t h e f i l t e r w i t h 3

r e t a r d i n g f i e l d , e n e r g y JZJ L

d i s t r i b u t i o n o f e m i t t e d - m e l e c t r o n s was o b t a i n e d

a s shown i n F i g . 6. The ??.

f u l l w i d t h a t h a l f maxi- Ü mumwas 0 . 4 6 e V a t I = 1 7 PA. As t h e a n a l y z e r

-

'

- - - -

F i g . 7 P r o b e c u r r e n t v s . t o t a l c u r r e n t f o r a p e r t u r e w i t h 2.3 mrad h a l f a n g l e . r e s o l u t i o n i s e s t i m a t e d -1.0 -0.8 -0.6 -0.4 -02 00 0.2 0.4 0.6 0.8 1.0

t o b e c a . 0 . 4 e V , t h e

e n e r g y s p r e a d of e l e c - RETARDING VOLTAGE ( V 1

t r o n s i s A E A 0 . 3 eV.

T h i s v a l u e i s c o m p a r a b l e F i g . 6 Energy s p e c t r u m of e m i t t e d t o o r s l i g h t l y l a r g e r e l e c t r o n s . H o r i z o n t a l s c a l e t h a n t h a t f o r t h e s o l i d - i s r e l a t i v e t o i n c i d e n c e p h a s e f i e l d e m i s s i o n . e n e r g y of 1.26 keV.

Very h i g h i n t e n s i t y o f e l e c t r o n s i n t h e p r e s e n t

f i e l d e m i s s i o n may c a u s e a d d i t i o n a l e n e r g y s p r e a d e i t h e r b y Coulomb r e p u l s i o n i n t h e beam o r by a t e m p e r a t u r e r i s e n e a r t h e c o n e a p e x .

30

- a : -

C 20

C .

2 .

L .

3

U .

w 'O-

n .

a O

- *

-

: .

O ~ . " " " " ' " 10 X) 30 40 50

Total current (gA)

(7)

C7-380 JOURNAL DE PHYSIQUE

much higher than that of an ordinary solid field emitter. With r obtained from eq.(2), on the other hand, B is defined as (dI/dQ)/So with So = 7t.r; and ro = d m , where Ea, A E and ro are acceleration voltage, energy spread and optical source radius, respectively. Even with Ea of 10 kV typically used in conventional SEM, B gives the same value as above.

4. Conclusion

Under development is a liquid metal electron source with very small emission area and very high brightness. It endures a long term operation even in a conventional vacuum. This is fairly important in view of practical application. Some problems such as oscillation in the current wave form still remain unsettled. These may also depend on properties of source material employed as the liquid-phase emitter.

Acknowledgements

The authors are grateful to the late Dr. T. Okutani for his invaluable guidance. They also wish to thank Prof. N. Yukawa for supplying the liquid alloy material. This work was supported by the joint research project of Toyohashi University of Technology and Hitachi, Ltd.

Reference

1) A. Wagner, T. Venkatesan, P. M. Petroff and D. Barr:

J. Vac. Sci. Technol., 19, 1186 (1981).

2) T. Ohnishi, T. Okutani, K. Hata, H. Ohiwa, S. Hosaka and T. Noda:

J. Vac. Sci. Technol., B4(1), 143 (1986).

3) R. Clampitt and D. K. Jefferies:

Journees d'etudes (Toulouse, juin 1972) p.145.

4) L. W. Swanson and G. A. Schwind: J. Appl. Phys.,e, 5655 (1978).

5) T. Noda, Y. Sugiura, T. Okutani, H. Tamura and H. Watanabe:

Int. J. Mass Spectrometry and Ion Processes (1986) in press.

6) Private communication.

7) J. A. Simpson and L. Marton: Rev. Sci. Instrum., Z r 802 (1961).

Références

Documents relatifs

Liquid metal ion sources (MIS) of high melting nonmetals may be achieved by selection of a low melting eutectic alloy and a suitable substrate material.. The choice of the

Auger analysis of the molten droplet surface at temperatures near the alloy melting point revealed large surface concentrations of C (and often N). It was frequently possible

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

A gold LMIS has been used in the charged droplet emission mode with a single lens focusing column operating at 20 kV beam voltage to achieve a deposit size at the target of 2.3

Fig.1 TOF mass spectrum of the source obtained at I=lOpA. cause their presence was obscurred by the much higher count rates of pr2+ and Pr+. Also, the Pr2+ peak is only part of

tail and doubly charged B" ions were hardly observed because of their large evaporation field. Lower energy ion tails are likely explained by charge transfer collision

The mass spectrum of Pd-Ni-As-B LMI source shows that the ion flux ratio (B/As)ion is smaller than the ratio expected from the atom flux ratio (B/As)atom. A probable reason

ANGULAR RESOLVED ENERGY ANALYSIS OF 69Ga+ IONS FROM A GALLIUM LIQUID METAL ION