• Aucun résultat trouvé

EFFECT OF PREADSORBED NICKEL ATOMS UPON THE POTASSIUM MOBILITY ON THE W(112) PLANE

N/A
N/A
Protected

Academic year: 2021

Partager "EFFECT OF PREADSORBED NICKEL ATOMS UPON THE POTASSIUM MOBILITY ON THE W(112) PLANE"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00229914

https://hal.archives-ouvertes.fr/jpa-00229914

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EFFECT OF PREADSORBED NICKEL ATOMS UPON THE POTASSIUM MOBILITY ON THE

W(112) PLANE

Ch. Kleint, R. Blaszczyszyn

To cite this version:

Ch. Kleint, R. Blaszczyszyn. EFFECT OF PREADSORBED NICKEL ATOMS UPON THE POTAS-

SIUM MOBILITY ON THE W(112) PLANE. Journal de Physique Colloques, 1989, 50 (C8), pp.C8-

91-C8-96. �10.1051/jphyscol:1989816�. �jpa-00229914�

(2)

COLLOQUE DE PHYSIQUE

Colloque C8, supplkment au n o

11,

Tome 50, novembre 1989

EFFECT OF PREADSORBED NICKEL ATOMS UPON THE POTASSIUM MOBILITY ON THE W(112) PLANE

CH. KLEINT and R. BLASZCZYSZYN'

Fektion Physik, Karl-Marx-Universitst Leipzig, DDR-7010 Leipzig, D.R.G.

Institute of Experimental Physics, University of Wroclaw, ul.

Cybulskiego 36, PL 50-205 Wroclaw, Poland

Ghstract - Spectral denrity functions Wff) of the field emisrion f l i eke? noi re (FEFN; of a potassium submanol dyer 10.*=C. 4) adsorbed on a nickel p r e c u v e r e d W ( 1 1 2 ! plane were investigated? A n analysis in terms of the Timm and Van der Ziel model was used to determine the K surface diffusion coefficient D. I t s dependence on the N i coverage is

presented for a t i p temperature of 383 K. With increasins coveraqe D

-9 -9 2 - 1

rises from about 1.6:<?0 to 9 x 1 0 rm 5 where the Ni concentration carrespends tc the work Qunction maximum of the W ! 1 1 2 : N i system, and then E derreases. The results are consistent with ~ r e v i o u s FEFN cross-cnrrelation ~ ~ a s u r e m e n t s +or the same coadsot-ption system. Q smoothing efiect caused by the Ni atoms is responritfe for the increair cf the diffusion ruefficient.

SLkali ~ v e t a l adsorption on solids never ceased to be of interest over decades and also alkali coadsorption with molecules is an object of current suriace rrsearch /i/. While molecular coadsorption is of practical importance because of the electronic aiparticie interactiun / 2 i tke main e + f e c t of the coadsorbed nickel is studied here in relati~n to the potassium mobility. The

W < 112INi-M system was alt-eady investigated by crass-correlation uf the field

gmi 551 on i 1 - ; i f i ? r : noire (FEFN) d.3' from two probed areas of t h e ! 1 1 Z f plane / 4 / . The crcs~.-.cort7eXatior; - f icnctio~s (CCFs! were measctred for eqtial K s ~ r b monolayer-, f0,=G. 4! depasi ted onto different preadsorbed Ni doses. The

3 ..

results wil? be discuzsed bglow in detail but we want to stress here their consequences: They clearly show the inilueoce o f a continunurly changed sitriace structure on the K mobility. In the present pzper we apply a ccmparison a+ experimental with th~aretical sgectral density functions of the same system which allows u s to determine the surface diffusion coefflrient directly.

I 1 - EXPERIMENTAL

The construction of the

FE

tube and the experimental conditions were the same as described in r e f . /4/. The emission current of the probed region with a diameter of aSaut 100

8

was seiected by a probe-hole in the screen and

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989816

(3)

d e t e c t e d b y a F a r a d a Y c o l l e c t o r . T h e f r e q u e n c y a n a l y s i s n i t h o a c c o m p o n e n t of t h e c o l l e c t o r c u r r e n t w c s p e r f a r m e d b y a n " E r h t i e i t a n a l y s a t o r 01012"

l f l e s s e l e k t r n n i k D r e - % d e n ) . The d i r e c t p t - o l e - h o l e c u r r e n t o f a b o u t 1 3 nfi w a s k e p t c c n s t a n t . T h e FEFN s p e c t r a w e r e d e t e r m i n e d f o r a c o n s t a n t p o t a s s i u m c o v e r a g e o f 4 . 4 a d s o r b e d o n t h e t h e r m a l l y c l e a n e d W i l l Z ) p l a n e w i t h

K

p r e a d s o r b e d N i l a y e r s . T h e l a t t e r w e r e d e p o s i t e d f r o m a s m a l l N i b a r s p o t w e l d e d o n t o t w o c r o s s e d W l o o p s .

111

-

RESULTS

F i g s . 1 a n d 2 s h o w t h e FEFN s p e c t r a l d e n s i t y f u n c t i o n s o b t a i n e d f o r c o a d s o r p t i n n i a y e r s K-Ni o n t h e W I 1 12) p l a n e f a r v a r i o u s N i d e p o s i t i o n t i m e s t N i f m i n ) a t a t i p t e m p e r a t u r e o f 393 K ( d o t s ) . T h e s o l i d l i n e s c o r r e s p o n d t o t h e t h e o r e t i c a l s p e c t r a l d e n s i t y f u n c t i o n f a r u n b o u n d e d d i f f u . s i o n a c c o r d i n g t o t h e T i m m a n d Van der Z i e l m o d ~ l J5/ a n d t a k e n Fram t h e p a p e r o f G e s l e y a n d Sk*anson /6/. T h e r e l e v a n t Q u n c t i o n a n d t h e f i t t i n g p r o c e d u r e w i l l b e d i s c u s s e d b e l ow.

-

F o r a n e x p l a n a t i o n o f t h e m o d e l u s e d f o r d a t a e v a l u a t i o n w e a l s o p r e s e n t a s p e c t r a l d e n s i t y f u n c t i o n M(f 3 o f t h e W ( 1 1 2 ) K s y s t e m a t r o o m t e m p s r a t u r e w i t h o u t n i c k e l d e p o s i t i o n . D t h e r c o n d i t i o n b e i n g e q u a l t h e m e a s u r e d v a l u e s { d o t s f are h e r e c o m p a r e d a n d f i t t e d t o t h e k h e o r e t i c a f G e s l e y - S w a n s o n s p e c t r a l d e n s i t y f u n c t i o n 4 a r I - d i m e n S i o n a 1 d i f f u s i o n /A/.

F i n a l l y f i g . 4 i n d i c a t e s t h e t y ~ i c a l d e p e n d e n c e o f b o t h t h e W(I1P) w o r k f u n c t i a n @ t 1 2 a n d v o l t a g e a t c o n s t a n t d c c o l l e c t o r c u r r e n t o n t h e i n v e s t i g a t e d n i c k e l d e p u s i t i o n . T h i s d e p o s i t i o n d e p e n d e n c e o f t h e v o l t a g e i s u s e d f a r t h e n i c k e l s o u r c e c a l i b r a t i o n . @112 is o b t a i n e d b y m e a s u r i n g t h e F a w i e r - N o r b h e i m c h a r a c t e r i s k i c.

I V

-

EVkLUkTION AND DISCUSSION

T h e o r i g i n of t h e f 1 i c k : e r n o i s e i n t h e c o a d s a r p t i o n s y s t e m W!1121K-Ni i s d i s c u s s e d e l s e w h e r e / 4 / . B r i e f l y , t h e m o b i l i t y o f %: a d a t o m s a n t h e W(112;

c r y s t a l p l a n e i s e x p e c t e d t o b e much h i g h e r t h a n t h a t o f N i a d a t o m s a n d t h e f l i c k e r n o i s e f r o m t h e Ni a d l a y e r i n t h e u s e d t e m p e r a t u r e r a n g e c a n b e n e g l e c t e d r e l a t i v e t o t h e p o t a s s i u m n o i s e . T h i s s t a t e m e n t r e s u i t s f r o m a c o m p a r i s o n u f t h e r e s p e c t i v e e x p e r i m e n t a l c o n d i t i o n = f o r d i f f u s i o n a n d d e s o r p t i o n o f N i a n d K a t o m s o n t u n g s t e n , t h e p a r a m e t e r s u f t k : s s e p r o c e s s e s a n d a l s o w o r k f u n c t i o n c h a n g e s u p o n a d s o r p t i o n o f t h e s e s p e c i e s o n t h e W I 1 12j p l a n e /4/.

F i g . i a n d 2 s h o w , t h a t t h e s p e c t r a W ( f 1 d e p e n d o n t h e Ni c o v e r a g e a t c o n s t a n t p o t a s r i u m c a v e r a g e a n d t e m p r r a t ~ i r e . T h e e x p e r i m e n t a l r e r u i t s are c o m p a r e d w i t h t h e t h e o r e t i c a l s p e c t r a ? d e n s i t y f u a c t i o n S!u 1 d e r i v e d f u r a c i r c u l a r

D F

p r o b e h o l e b y G e s i e y a n d Swa-nsan I b i i n t h e f r a m e w o r k o f t h e Timm a n d Van der Z i e l model / 5 / . I t is a s s u m e d t h e r e i n t h s t t h e f l u ~ t u a t i o n i n t h e n u m b e r a+

t h e a d p a r t i c l e s o n t h e s m a l l p r o b e d area i r c a u s e d by t w o - d i m e n r i u n a l s u r f a c e d i f + u s i o n af t h e a d s o r b a t e . C o n s e q s e n t l y , t h e a d s o r b a t e f i u c t u a t i o n i n d u c e s a FE c u r r e n t f i u c t u a t i o n . R c c o r d i n q t o r e $ = . i 5 / a n d /6/ t h e c a r r e s p u n d i n g s p e c t r a l d e n s i t y f u n c t i o n f l u 3 i s g i v e n b y

p

w n e r e u = 2 n i r 2 / D i 5 t h e d i m e n s l o n f e s s n o r m a l l z e d f r e q ~ ~ e n c y . i ( u ) i s a n

P P

e x p r e c s i a n c o m p o s e d a f K e l v i n f u n c t i o n s (cf. G e s l e y a n d S w a n s o n /bi, Eq. 483, r t h e r a d i u s o f t h e p r a t e d a r e a i g SO

8

i n t h i s e x p e r i m e n t ) ,

D

t h e s u r f a c e d l { - f u s i o n c o e Q f i c i e n t a n d CFN t h e F o w j e r - N o r d n e i m term.

F i g . 1 a n d 2 s h o w t h a t W ! i > c a n n o t b e d e s c r z b ~ d b y t h e Timm a n d Van d e r Z i e l model i n a w i d e f r e q u e n c y b a n d . T h e p r e s e n t s p e c t r a c o n f i r m a n e a r f i e r e x p e r i m e n t a l r e s u l t /7/ w h e r e n o s l o p e E = 3i2 a s t h e h i g h - f r e q u e n c y a s y m p t o t e o f Eq. < I f c o u l d b e f o u n d f o r p o t a s s i u m o n t h e W ! 1 1 2 > p l a n e . k l s n t h e l o w - f r e q u e n c y p a r t o f t h e s p e c t r a resists t h s f i t b y t h e s i m p l e f u n c t i o n s

(4)

Fig.? 10-2$,

. . . .

I

. . .

I

. . . .

I

\ I

lo2 ld

FREQUENCY f lo1

IHzl

Fig. 2

F i g s . 1 a n d 2. E x p e r i m e n & a l s p e c t r a l d e n s i t y f u n c t i o n s W ( f 1 o f a c o n s t a n t p o t a s s i u a s u b m o n e l a y e r iOk: = 0.4) a d s o r b e d o n t h e n i c k e l p r e c o v e r e d W ( 1 1 Z f p l a n e , d e t e r m i n e d a t a t i p t e m p e r a t u r e o f 393 K ! d o t s ) . T h e n i c k e l d o s e s 't4i a r e g i \ - e p i n m i n u t e s . T h e c u . r v e s a r e d i s p l a c e d i n t h e v e r t i c a l d i r e c t i o n f o r e a s e o f v i e w i n g w h i c h is e x p r e s s e d i n t h e ' f a c t o r ' a . T h e s o l i d l i n e s r e p r e s e n t t k e o r e t i n z a l s p e c t r a l d e n s i t y f u n c t i o n s S(u ) / & / f i t t e d t o t h e e x p e r i m e n t a l

v a l u e s . P

(5)

1 0 2 ~ 1 1 a

I

10' lo2 lo3 10' [HZ]

FREQUENCY f

F i g . 3. S p e c t r a l d e n s i t y f u n c t i o n o f a p o t a s s i u m s u b m o n o l a y e r ( 0 K = 0 . 4 )

-

.

. d e p o s i t e d o n t h e %(I121 a n d m e a s u r e d a t room t e m p e r a t u r e I d o t s ) . T h e d a s h e d l i n e r e p r e s e n t s t h e t h e o r e t i c a l s p e c t r a l d e n s i t y f u n c t i o n S o r t h e 1 -

d i m e n s i o n a l d i f f u s i o n madel a t t a i n e d h y G e s l e y a n d Swanson i b f .

d e r i v e d f r o m Eq. I . D i f f e r e n t p r o c e s s e s h a v e t o b~ t a k e n i n t o a c c o u n t i n t h e c a s e o f t h e c o ~ p l e x s p e c t r a , e s p e c i a l l y $ o r n o n - i s u t r o p i c p l a n e s o f t h e b c c

1 2 1 2 ) s t r u c t u r e c o v e r e d w i t h t h e s t r o n g l y i n t e r a c t i n g K a d s o r b a t e .

..-

s h e Z s w € ? t . . i ~ g 0 i t h e t i p t e m p e r a k i t r e t o room t e m p e r a t i t r e e s s e n t i a z l y c h a n g e s t h e s h a ~ e o i t h e Wff 1 's ( F i g . 3 ) w h i c h is i n a g r e e m e n t w i t h t h e t h e o r e t i c a l f u n c t i o n S c u

>

f o r a 1 - d i m e n s i o n a t d i f f u s i o n modef f c f . / b / , F i y . : j . A t t h i s

P

t e m p e r a t u r e d i i f u s i o n a l o n g t h e C 1 1 1 1 d i r e c t i o n o u t w e i g h s t h e p r u c e s s i n t h e p e r p e n d i c u l a r d i r e c t i o n ,

Assuming t h a t s u r f a c e d i i f u s i o n p l a y s t h e d o m i n a n t r o l e I n t h e adsarbate i n d u c e d n o i s e a 2 t i e a p p l i e d t e m p e r a t u r e , t h e s u r f a c e d i f f u s i o n c o e f f i c i e n t 9 c a n b e d e t e r m i n e d b y f i t t i n g t h e t h e o r e t i c a l

-

S < u P j t o t h e e x p e r i m e n t a l Wff! 's. Then D = 2 n i r L , w h e r e f c o r r e s p o n d s t o t h e n o r m a l i z e d i r e q u e n c y

P P

u =I, f is marked b y a n a r r o w i n F i g s . 2 - 3. F i g . 5 p r e s e n t s t h e o b t a i n e d

P P

N i c o v e r a g e d e p e n d e n c e o f t h e p o t a s s i u m d i i f u s i o n coefficient. I t r e v e a l s a p r o n o u n c e d maximum a t t = 2.7 min by a d r a s t i c c h a n g e o f D. The

Ni

r o m p a r i s , o n w i t h t h e a c c o m p a n y i n g work i u n r t i a n c h a n g e CFig.4) s h o w s t h a t t h e n i c k e l c o v e r a g e d e ~ e n d e n c e o f D r e i f e c t s a s i m i l a r d e p e n d e n c e o f t h e work f u n c t i o n

er

L & A

The r e s u l t i s c o n s i s t e n t w i t h p r e v i o u s c r a s s - c o r r e l a t i o n m e a s u r e m e n t s o f t h e f i e l d e m i s s i o n f l i c k e r n a i s e f o r t h e s a m e s y s t e m

( / a / ,

F i g s . L a n d 7;. T h e c r o s s - c o r r e i a t i o n f u n c t i o n s (CCFs? a + t h e W - I 1 121 p l a n e were a l s o m e a s u r e d f o r a c o n s t a n t p o t a s s i u m s u b m o n o l a y e r iQbr = 0 . 4 ) d e p o s i t e d o n t o d i f f e r e n t p i e a d s o r b e d n i c k e l d o s e s . I n g e n e r a l , t h e ZCF's show a d i s t i n c t maximum w i t h i n c r e a s i n g d e l a y t i m e T f o r t h e E l l l f a n d C 1 1 0 7 c r y s t a l l o g r a p h i c d i r e c t i o n s .

(6)

F i g . 4 V o l t a g e f o r c o n s t a c t c o l l e c t o r i z u r r e a t of P h e N C 1 1 2 i p i a n e < i l l Z = 3 cp,) a n d w o r k f u n c t i o n v e r s u s W! 112) n i c k e l c o v e r a g e ( f r u m a s i m i i a r e x p e r i m e n t ) . T h e sai i G I i n e s r e p r e s e n t 5th o r d e r E a u s s i a n p o l ynomi a2

+

i i-5.

F i g . 5. D i f f u r i c n c o e f f i c i e n t B a n d f r e q a e n c y 6 v e r s u s d e p o s i t i o n t i m e o f P

n i c k e l t N i . D w a s cairuiated f r o = t h e r e l a t i a n D = ~ n + r ? u _ / h / w h e r e i P , w h i c h

P F

c o r r e s ~ o n d s t o u _ = i , i s t a k e n f r o m F i g s . 1 a n d 2. The s o P i d l i n e s r

r e p r e s e n t 7 t h o r d e r G a u s s i a n p o l y n o m i a l f i t s .

(7)

The delay time r corresponding to the maximum of the CCF, reaches a deep max

minimum at a nickel coverage

e

indicating the work function maximum of the m

W(I12)Ni system. The dependence of the activation energy of the crass-correlation process, determined from the Arrhenius

-

like temperature dependence of the delays T

mas exhibits also a minimum at the nickel coverage Om. Such a behaviour of T

mas and Q with the nickel coverage has been interpreted in detail in ref. /4/ by the increase of adatom mobility in the potassium submonolayer as a result of the smoothing effect by the nickel adatoms on the (112) plane /B/. At higher Ni coverages a roughening effect occurs which is also present in the Ni - K coadsorption layers nn the W(110) plane /9/.The cross-correlation picture of the Ni adsorbate influence on the potassium mability is supported by the presented spectral density function measurements.

Work sponsored by the Polish Ministry of Education within the Central Project of Basic Research CPBP O1. OE. A.

REFERENCES

50th WE-Herasus-Seminar: Physical and Chemical Aspects o i Alkali Metal Adsorption. Bad Honnef, Febr. 19E9.

H. P. Eonzel, Surface Sci. Rep. 8 (19881 43.

Ch. Kleint, Surface Sci. 200 ilSSBj 472.

R. Blaszczyszyn and Ch. Kleint, &ppl. Phys. A 45 f i 9 3 E i 145.

G. W. Timm and Van der Ziel, Physica 32 f 1966) 1333.

M. A. Gesley and L. W. Swanson, Phys. Rev.

B

32 (1985) 7703.

Ch. Kleint,

H.

Meclewski and R. Btaszciyszyn, Physica 68 (19733 382.

J. Kolaczkiewicz and E. Bauer, Surface Sci. 144 (1984) 495.

R. Blaszczyszyn,J. Physique 47 i1986) C7-151.

Références

Documents relatifs

Nous nous intéressons dans cette étude, pour mieux comprendre les phénomènes qui peuvent se manifester dans le multiconstituant WC-W-Ni (matrice d’outil de forage),

A small concentration of giant moments, centered (as shown by Chouteau) on groups of 3 or more Ni neighbour atoms, perturbs the ideal behaviour of the matrix.. Intro- ducing dco/dp

We develop a theory of diffraction of rough surfaces and use it to show conclusively that the surface has finite height fluctuations below the transition that become

Compared to the Ms predicted by Ahlers' equations modified with the positive coefficient for Ni taken from Pops, the deviation still exists despite the fact that

In this paper the K-state in Ni-.Fe-Xo alloy has been investigated by Mossbauer effect to yield informations about local distribution of atoms in the alloy.. Material

The mean square fluctuations for successive slit positions were measured and the corresponding values of the diffusion coefficient were calculated by using theoretical

The results of recent investigations of the effect of high pressures on grain boundary diffusion and grain boundary migration in Aluminium are compared. The activation

The chemical affinity between Fe and Ni, provided by the Fe powder and thebinder respectively, derived on the formation of the (Fe, Ni) solid solution and FeNi3