• Aucun résultat trouvé

Downstream effects of aqueous effluents generated by the EXAm separation process

N/A
N/A
Protected

Academic year: 2021

Partager "Downstream effects of aqueous effluents generated by the EXAm separation process"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: cea-02500822

https://hal-cea.archives-ouvertes.fr/cea-02500822

Submitted on 12 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Downstream effects of aqueous effluents generated by

the EXAm separation process

N. Ouvrier, V. Vanel

To cite this version:

N. Ouvrier, V. Vanel. Downstream effects of aqueous effluents generated by the EXAm separation process. SACSESS 1st International Workshop, Apr 2015, Varsovie, Poland. �cea-02500822�

(2)

CEA Marcoule, Direction de l’énergie nucléaire Département radiochimie et procédés

Service modélisation et chimie des procédés de séparation

Downstream

effects of aqueous

effluents generated

by the EXAm

separation process

| PAGE 1

N. Ouvrier, V. Vanel

(noel.ouvrier@cea.fr)

SACSESS

1st International

Workshop

Warsaw, April 23rd 2015

(3)

Contents

 EXAm – non concentrated PUREX raffinate ([PF] ~ 10 g/L)

Objectives

EXAm flowsheet studied

Aqueous effluents management flowsheet

Simulation methodology and results

Conclusions

 EXAmCO –concentrated PUREX raffinate ([PF] ~ 36 g/L)

Main flowsheet changes

Trends on the impact of a concentrated PUREX raffinate Am

separation on aqueous effluents management

(4)

Objectives

determine whether the treatment of EXAm reagents meets output

specifications

| PAGE 3 CEA |

Aqueous phases from

the EXAm process

(acidic media)

Aqueous phases from

the solvent treatment

(acidic media)

Aqueous phases from

the AmO

2

production

(acidic media)

NH2OH

Vitrification

TOC < 550 mg/L

Nitric acid recycling

No specification (TOC)

Tritiated water

COD < 1 g/L

(60 tons a year)

Tank :

Radiolysis

/hydrolysis

(5)

EXAm flowsheet studied

Cm + FP (except Mo, Ru, La, Ce, Pr, Nd, Y, Zr, Fe) Am Am stripping Mo, Ru Citric / glycolic acid 0,5M pH 3 DMDOHEMA 0,6M + HDEHP 0,3M in TPH Am extraction Cm scrubbing NH2OH Feed solution HNO3> 5 M TEDGA 0.01 M HNO3> 5 M TEDGA 0.06 M Ln, Fe stripping Ln, Y, Zr, Fe TEDGA 0.2M Oxal. 0.5M HNO3 1M Mo stripping DTPA 0.01 M Malonic acid 0.3M pH 2.5 Solvent treatment

Feed solution (UOX3) Non concentrated PUREX

raffinate

(60 GWd/t, 5 years cooling) Σ An = 265 mg/L

(Am 175 mg/L) Σ FP = 11.2 g/L

(6)

Aqueous effluents management flowsheet

| PAGE 5 CEA | CEHA AmC TAR IAEC Recycled acid Tritiated water Ln stripping EXAm FP raffinate FPC concentrate Vitrification IAEC Recycling Sea release Plant gas treatment AmC distillate Mo stripping EXAm solvent treatment

Conversion AmO2 CEHA PFC Am precipitation filtrate SW distillate (Am) Am stripping CEHA FPPC FPC distillate FPPC Distillate

Other aqueous effluents (plant, laboratories)

(7)

Simulation methodology

Distribution to different flows : α (distillate/ concentrate separation

distribution)

Destruction :

TOC = Σ C atoms

Chemical molecule -> intermediate molecules -> CO2 + degradation product

(fewer or no C atoms) (thermolysis, denitration, radiolysis) k = destruction kinetics

Grouped destruction sometimes > elementary destruction FP flow : elementary destruction (may be pessismistic)

Am production concentration + co-precipitation + filtrate concentration : elementary and grouped destruction

Not studied : TEDGA (TODGA data used) + carboxilic acid (propionic acid, butyric acid, Fornet data used)

Example of malonic acid :

Phenomena

k

Degradation products

Thermolysis

0

-Thermolysis + denitration

7.5 h

-1

Formic / acetic / oxalic / CO

2

Radiolysis

TOC = 0.00036 kGy

-1

0.1M HNO

3

(8)

FP PreConcentration (FPPC) + FP concentration (FPC)

| PAGE 7 CEA | FPPC distillate HNO3 1,2 M formic ac. 0,0005 M EXAm FP raffinate acétic ac. 0,0423 M

Feed citric ac. 0,012 M Ln stripping HNO3 2,2 M CF = 5,6 4 175 l/h

oxalic ac. 0,044 M

Mo stripping citric ac. 0,092 M FPPC concentrate

RCOOH 0,0031M HNO3 6,9 M

EXAm solvent treatment formic ac. 0,0005 M oxalic ac. 0,011 M

acétic ac. 0,0018 M citric ac. 0,461 M

Other aq. effluents TEDGA 0,027 M IAEC concentrate RCOOH 0,0095M

Plant and laboratories 5 065 l/h HNO3 6,4 M acétic ac. 0,0470 M formic ac. 0,0138 M glycolic ac. 0,23 M acétic ac. 0,0466 M TEDGA 0,075 M

citric ac. 0,341 M 900 l/h 200 l/h Water 450 l/h FPC concentrate Formol HNO3 3,9 M 10,8 M formic ac. 0,0300 M 280 l/h acétic ac. 0,1426 M citric ac. 0,074 M 1 477 l/h FP concentrate FP storage ≥ 1y HNO3 2 M HNO3 2 M formic ac. 0,05 M formic ac. 6,1E-10 M acetic ac. 0,18 M acetic ac. 2,0E-6 M oxalic ac.0,0008 M oxalic ac. 2,0E-11 M citric ac. 2,959 M citric ac. 1,3E-7 M glycolic ac. 1,38 M glycolic ac. 4,5E-19 M

RCOOH 0,011M RCOOH 5,1E-10 M TOC 251,7 g/L TOC 0,059 mg/L 90 l/h 90 l/h IAEC Vitrification IAEC IAEC FPC

TOC < 550 mg/L

(4.5 months)

FP precipitate ?

TEDGA ≈ 33% TOC

(9)

AmC distillate Tritated water

formic ac. 0,24 M HNO3 0,02 M

acetic ac. 0,28 M formic ac. 0,009 M

217 l/h acetic ac. 0,042 M

citric ac. 0,002 M

PFC distillate TOC 1,3 g/L COD 2,6 g/L

HNO3 1,28 M 9 760 l/h formic ac. 0,09 M acetic ac. 0,108 M 19 l/h IAEC vapors FPPC distillate HNO3 0,9 M

HNO3 1,2 M formic ac. 0,009 M

formic ac. 0,0005 M acetic ac. 0,042 M

acetic ac. 0,042 M citric ac. 0,009 M

citric ac. 0,012 M 10 483 l/h 4 175 l/h FPC distillate HNO3 3,9 M formic ac. 0,03 M acetic ac. 0,143 M

citric ac. 0,074 M Feed 1 477 l/h HNO3 1,0 M

formic ac. 0,01 M Plant gas acetic ac. 0,042 M treatment citric ac. 0,01 M

10 679 l/h IAEC concentrate

HNO3 6,4 M Acid

formic ac. 0,014 M HNO3 12 M acetic ac. 0,047 M formic ac. 0,013 M

citric ac. 0,34 M acetic ac. 0,035 M 200 l/h citric ac. 0,09 M TOC 7,4 g/L 764 l/h

TAR

CEMA

IA Effluents Concentration (IAEC)

+ Tritiated Acid recycling (TAR)

Acceptable ?

Treatment ?

Treatment

Higher flow

(10)

Conclusions (non concentrated PUREX raffinate)

Nothing prohibitive but :

[TOC]vitrification < 550 mg/L due to radiolysis.

[TOC]recycled acidhigher than current values (no specificiation). A treatment may

become necessary in case of TOC limitations.

[TOC]sea release higher than current regulatory requirements. A treatment should

be studied. Higher capacity tank will be necessary.

Assumptions to be refined : effect of grouped destructions ? Destruction of

TEDGA? Destruction of carboxilic acid?

| PAGE 9 CEA |

(11)

EXAm on a concentrated PUREX raffinate

(CF = 3.5, [FP] ~ 36 g/L)

Main changes :

HDEHP from 0.3M to 0.45 M.

HEDTA added (complexing reagent for Pd) Flow rates adapted to feed solution

2 flowsheets simulated (with and without TEDGA) with same target

performances (2 models but modelling assumptions are not detailed here)

TEDGA : Am extraction – Cm scrubbing (40%) + Ln stripping (60%). Models for flowsheet without TEDGA less terminated

Same feed solution flow rate (50 mL/h)

Higher number of stages compared to flowsheet with TEDGA (162 stages instead of 72)

(12)

EXAm on a concentrated PUREX raffinate

(CF = 3.5, [FP] ~ 36 g/L)

| PAGE 11 CEA |

Flow (M/h)

EXAm

(with TEDGA)

EXAmCO

(with TEDGA)

EXAmCO

(without TEDGA)

TEDGA

134.5

152.3

0.0

HEDTA

0 (*)

28.2

48.8

DTPA

2.23

10.0

31.2

NaOH

464.0

804.4

1163.0

HNO3

8723

4761

10966

Citric acid

464.0

132.3

249.9

Malonic acid

66.9

97.0

308.7

Oxalic acid

222.5

235.2

3528

(13)

EXAm on a concentrated PUREX raffinate

(CF = 3.5, [FP] ~ 36 g/L)

EXAm

(with TEDGA)

EXAmCO

(with TEDGA)

EXAmCO

(without TEDGA)

Vitrification

(FP)

Flow rate (L/h)

90

90

90

TOC (mg/L)

0.059

0.063

0.008

Recycled acid

(12M)

Flow rate (L/h)

764

516

1209

TOC (mg/L)

7.4

5

4.5

Sea release

(tritiated water)

Flow rate (L/h)

9760

4337

13488

COD (g/L)

2.6

7.0

2.9

Annual COD

(t/year)

121.8

145.7

187.8

(14)

Trends on the impact of a concentrated PUREX

raffinate Am separation on aq. Effluents management

| PAGE 13 CEA |

Vitrification (TOC)

Meet specification in every case (lower without TEDGA). No significant impact of concentration.

Acid recycling (TOC)

Same order of magnitude, lower with EXACO. A treatment may become

necessary in case of TOC limitations (same conclusion as a non concentrated PUREX raffinate).

BUT flow rates are significantly different. Removing TEDGA lose the benefit to concentrate feed solution.

Sea release (COD)

Treatment remains a challenge in every case. EXACO with TEDGA closest to annual COD but more concentrated

COD(EXACO with TEDGA) > COD(EXACO without TEDGA) ~ COD(EXAm). Removing TEDGA lose the benefit to concentrate feed solution.

Removing TEDGA lose the benefit to concentrate feed solution for acid

recycling ans sea release. Necessary to find another complexing reagent for

Ln stripping.

Meeting COD specifications will be the main challenge for aqueous effluents

management

(15)

Direction de l’énergie nucléaire

Département de radiochimie des procédés

Service de modélisation et chimie des procédés de séparation

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Marcoule| BP17171| 30207 Bagnols-sur-Cèze Cedex France |T. +33 (0)4 66 79 62 75 |F. +33 (0)4 66 79 63 39

Etablissement public à caractère industriel et commercial |RCS Paris B 775 685 019 | PAGE 14

Références

Documents relatifs

This study reviews techniques for recovering aerosol particle size distributions from time-resolved laser- induced incandescence data in the context of solving a

The geometric parameters affecting the discharge rate, namely the vessel beam, the depth of the water collected on deck, and the width of the opening were studied using CFD

He stopped going to school because he didn’t want to work hard.. He didn’t want to study and wanted to play with his

4 In an attempt to reduce carbon dioxide emissions, the United Nations created the Kyoto protocol in 1997.. Representation from 141 countries signed the agreement and they

complete the conversation with the past simple of the verbs in brackets :2pts1. we share all our

Au cours de ce chapitre, nous avons propos´e un mod`ele analytique pour d´ecrire le champ de vitesse dans une rue parall`ele `a la direction du vent.. L’int´erieur de la rue

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

4.3.1 Structure de bandes et analyse en termes de symétrie Comme ultime illustration, on examine le système décrit en figure 4.6 , qui, une nouvelle fois, consiste en une