• Aucun résultat trouvé

The flexural behaviour of ice from in situ cantilever beam tests

N/A
N/A
Protected

Academic year: 2021

Partager "The flexural behaviour of ice from in situ cantilever beam tests"

Copied!
23
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The flexural behaviour of ice from in situ cantilever beam tests

Frederking, R. M. W.; Hausler, F.-U.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=84e2fbd5-ffed-4eff-8431-9ff7fdb5e359 https://publications-cnrc.canada.ca/fra/voir/objet/?id=84e2fbd5-ffed-4eff-8431-9ff7fdb5e359

(2)

REPRINT FROM PROCEEDlPGS

IAHR INTERNATIONAL ASSOCIATION FOR HYDRAULIC RESEARCH

(3)

THE FLEXURAL BEHAVIOUR OF ICE FROM IN SITU CANTILEVER BEAM TESTS

R . F r e d e r k i n g

D i v i s i o n o f B u i l d i n g Research

N a t i o n a l Research Council of Canada Ottawa, O n t a r i o , Canada, KIA OR6 F

.

-U

.

Haus l e r

Hamburgische S c h i f f b a u - V e r s u c h s a n s t a l t GmbH Hamburg, Germany

SYNOPSIS

The c a n t i l e v e r beam t e s t h a s been u s e d v e r y e x t e n s i v e l y i n b o t h t h e f i e l d and l a b o r a t o r y t o i n v e s t i g a t e t h e f l e x u r a l s t r e n g t h and s t r a i n modulus of s e a i c e . Shortcomings i n t h e t e s t a r e g e n e r a l l y r e c o g n i z e d , hence t h e s e measurements a r e used o n l y a s i n d e x v a l u e s . One problem w i t h f l e x u r a l t e s t s i s t h a t some p r i o r knowledge about t h e m a t e r i a l p r o p e r t i e s i s

r e q u i r e d b e f o r e t h e y c a n b e a n a l y z e d .

The f i r s t p a r t of t h i s p a p e r c o n s i d e r s t h e e l a s t i c t h e o r y of a beam on an e l a s t i c f o u n d a t i o n . V a r i o u s f a c t o r s t h a t a f f e c t t h e i n t e r p r e t a t i o n of c a n t i l e v e r beam t e s t s a r e examined, i . e . , beam geometry, e l a s t i c founda- t i o n e f f e c t , and nonhomogeneity o f e l a s t i c modulus through beam t h i c k n e s s . The second p a r t of t h e p a p e r p r e s e n t s r e s u l t s from i n s i t u c a n t i l e v e r beam t e s t s i n I s f j o r d e n , S p i t s b e r g e n , conducted d u r i n g f u l l s c a l e t r i a l s w i t h t h e o f f s h o r e s u p p l y v e s s e l M . V . "Werdertor" by a German group o f i n v e s t i - g a t o r s under t h e management of t h e Hamburgische S c h i f f b a u - V e r s u c h s a n s t a l t

.

F i e l d t e s t s were c a r r i e d o u t on 0 . 4 m t h i c k s e a i c e w i t h beam l e n g t h s up t o 1 2 m . Load and beam d e f l e c t i o n s a t up t o t h r e e p o i n t s were measured v e r s u s t i m e . From t h e s e measurements s t r e n g t h and modulus i n d e x v a l u e s were determined and t h e b e h a v i o u r o f a l o n g c a n t i l e v e r beam on a founda-

t i o n was c o n f i r m e d . F r a n k e n s t e i n ' s approach o f r e l a t i n g s t r e n g t h and s t r a i n modulus t o t h e b r i n e volume o f s a l i n e i c e was found t o b e q u i t e a p p l i c a b l e .

(4)

THE FLEXURAL BEHAVIOUR OF ICE FROM IN SITU CANTILEVER BEAM TESTS

INTRODUCTION

The i n t e r a c t i o n mechanism between a f l o a t i n g i c e c o v e r and s t r u c t u r e i s

complex, i n v o l v i n g m u l t i a x i a l nonuniform s t r e s s s t a t e s , f r i c t i o n , buoyancy, d r a g and i n e r t i a l e f f e c t s . A n a l y t i c a l , model and f i e l d s t u d i e s have a l l been a p p l i e d t o o b t a i n s o l u t i o n s t o t h i s problem w i t h v a r y i n g d e g r e e s of

s u c c e s s . I n t h e c a s e o f h y d r a u l i c s t r u c t u r e s w i t h i n c l i n e d f a c e s t h e f l e x u r a l b e h a v i o u r of t h e i c e c o v e r i s an i m p o r t a n t f a c t o r i n e s t a b l i s h i n g i c e l o a d i n g s .

The i n s i t u c a n t i l e v e r beam t e s t h a s been used e x t e n s i v e l y i n b o t h f i e l d and l a b o r a t o r y ( F r a n k e n s t e i n , 1968; Tabata e t a l , 1975; Lavrov, 1969; Mzzttznen, 1975; Schwarz, 1975) t o i n v e s t i g a t e f l e x u r a l s t r e n g t h and

s t r a i n modulus o f f l o a t i n g i c e c o v e r s . I n s i t u t e s t i n g m a i n t a i n s t h e t e s t beam under t h e same c o n d i t i o n s a s t h o s e o f t h e i c e c o v e r , i . e . , b u o y a n t l y s u p p o r t e d b y t h e w a t e r and w i t h a t e m p e r a t u r e v a r i a t i o n t h r o u g h t h e

t h i c k n e s s of t h e i c e . F l e x u r e t e s t i n g , however, h a s t h e d i s a d v a n t a g e of b e i n g an i n d i r e c t t e s t , i . e . , b e f o r e t h e r e s u l t s c a n be i n t e r p r e t e d , a number o f assumptions must b e made c o n c e r n i n g t h e m a t e r i a l b e h a v i o u r . These assumptions i n c l u d e , (1) p l a n e s e c t i o n s remaining p l a n e , ( 2 )

d e f l e c t i o n s s m a l l compared w i t h t h i c k n e s s o f beam, and ( 3 ) l i n e a r e l a s t i c o r v i s c o e l a s t i c b e h a v i o u r . I n t h e c a s e of i c e i t i s known t h a t t h e l a s t assumption i s n o t always s a t i s f i e d . N e v e r t h e l e s s t h e f l e x u r a l t e s t i s a u s e f u l a n a l o g u e o f i c e b e h a v i o u r on a s l o p i n g s t r u c t u r e and i s a c c e p t e d a s an i n d e x t e s t (Schwarz and Weeks, 1977).

(5)

F I G U R E 1

S C H E M A T I C O F B U O Y A N T L Y SUPPORTED I N S I T U C A N T I L E V E R B E A M

(6)

wb/w, i s p l o t t e d a s a f u n c t i o n o f nondimensional beam l e n g t h , XR, i n F i g u r e 3 . Provided beam l e n g t h X R i s l e s s t h a t 0 . 5 t h e r e i s l i t t l e d i f f e r e n c e i n t h e d e f l e c t i o n s . Both i n n a t u r e and i n t h e model t a n k a beam l e n g t h t o i c e t h i c k n e s s r a t i o of 10 c o r r e s p o n d s t o a nondimensional beam l e n g t h o f a b o u t 0 . 5 . T h e r e f o r e a s long a s beam l e n g t h i s no more t h a n 10 t i m e s t h e i c e t h i c k n e s s s i m p l e c a n t i l e v e r beam t h e o r y c a n b e

s a t i s f a c t o r i l y u s e d t o c a l c u l a t e t h e b u l k e l a s t i c modulus, Eb. For l o n g e r beams t h e e f f e c t o f i g n o r i n g buoyancy would r e s u l t i n t h e d e t e r m i n a t i o n o f a t o o l a r g e v a l u e o f s t r a i n modulus. T h e r e f o r e E q u a t i o n ( I ) , which

i n c l u d e s buoyancy e f f e c t s , must b e used t o s o l v e f o r Eb.

The bending moment d i s t r i b u t i o n a l o n g t h e l e n g t h o f t h e beam i s g i v e n by

Mb (XI

- -

- - -

1 cosh A(R-x) s i n Xx c o s h X R + c o s A(&-x) s i n h Xx c o s XR

PR XR ( 2)

cosh2 A R + c o s 2 AR

Nondimensional moment d i s t r i b u t i o n s f o r 4, 8 and 12 m long b u o y a n t l y s u p p o r t e d beams ( s o l i d 1 i n e s ) ' a n d s i m p l e c a n t i l e v e r beams (dashed l i n e s ) a r e p l o t t e d i n F i g u r e 4 . The nondimensional moment i s 1 a t t h e r o o t of a n unsupported c a n t i l e v e r beam. Buoyancy r e d u c e s t h e r o o t bending moment by o n l y a b o u t 3% f o r a 4 m long beam b u t f o r 8 and 1 2 m beams it l e a d s t o a s u b s t a n t i a l r e d u c t i o n i n t h e bending moment, a b o u t 35% and 75% r e s p e c - t i v e l y , a t t h e beam r o o t . A l s o n o t e t h a t f o r t h e 1 2 m beam t h e bending moment i s s u b s t a n t i a l l y c o n s t a n t w i t h i n 4 m o f t h e r o o t . I n n a t u r e one would e x p e c t a beam could f a i l anywhere i n t h i s s e c t i o n .

I t h a s b e e n shown by Schwarz and Kloppenburg (1976) t h a t f o r nondimen- s i o n a l beam l e n g t h s , XR, up t o

IT/^

t h e maximum moment o c c u r s a t t h e beam r o o t . For g r e a t e r beam l e n g t h s t h e p o s i t i o n of maximum moment moves away from t h e beam r o o t back towards t h e t i p . The a c t u a l p o s i t i o n of t h e maximum bending moment i s p l o t t e d i n F i g u r e 5 . For a nondimensional beam l e n g t h , XR, o f 2 t h e maximum moment p o s i t i o n has a l r e a d y moved t o t h e p o s i t i o n o f a s e m i - i n f i n i t e beam, i . e , , Axc = ~ / 4 . The maximum

nondimensional bending moment i s p l o t t e d v s nondimensional beam l e n g t h X R

i n F i g u r e 6 . For l e n g t h s g r e a t e r t h a n

IT/^

t h e dashed l i n e r e f e r s t o t h e bending moment a t t h e r o o t , i . e . , h e r e t h e maximum bending moment i s n o t a t t h e r o o t b u t a t some i n t e r m e d i a t e p o i n t a l o n g t h e beam.

Nonhomogeneous Beam on a n E l a s t i c Foundation

The f o r e g o i n g h a s assumed t h a t t h e i c e c o v e r i s homogeneous and i s o t r o p i c . T h i s i s i n f a c t n o t t h e c a s e . Normally a n i c e c o v e r i n n a t u r e has a

v a r i a t i o n o f t e m p e r a t u r e through t h e d e p t h and t h e r e f o r e i s nonhomogeneous i n t h e d i r e c t i o n normal t o t h e s u r f a c e . Kerr and Palmer (1972), however, have shown t h a t a nonhomogeneous beam c a n b e t r e a t e d a s a homogeneous beam p r o v i d e d a m o d i f i e d f l e x u r a l r i g i d i t y i s employed. The modified f l e x u r a l r i g i d i t y , D l , i s c a l c u l a t e d from t h e f o l l o w i n g e x p r e s s i o n

(7)

T h i s p a p e r d e a l s w i t h t h e t h e o r y o f homogeneous and nonhomogeneous e l a s t i c , beams on an e l a s t i c f o u n d a t i o n . T h i s i s followed by t h e r e s u l t s of i n s i t u s e a i c e c a n t i l e v e r beam t e s t s t h a t a r e a n a l y z e d u s i n g t h e appraoch out 1 ined

.

THEORETICAL CONSIDERATIONS C a n t i l e v e r Beam on a n E l a s t i c Foundation

The t h e o r y o f beams on a n e l a s t i c f o u n d a t i o n has been t r e a t e d by Hetenyi (1946) and t h e p a r t i c u l a r c a s e o f c a n t i l e v e r i c e beams s u p p o r t e d e l a s t i - c a l l y by t h e buoyant a c t i o n of t h e water h a s been c o n s i d e r e d b y Schwarz and Kloppenburg (1976)

.

The c a s e o f a n i n s i t u c a n t i l e v e r i c e beam w i l l now b e t r e a t e d i n d e t a i l . The i c e i s assumed t o b e p e r f e c t l y e l a s t i c ,

i s o t r o p i c and homogeneous. The problem b e i n g c o n s i d e r e d is shown

s c h e m a t i c a l l y i n F i g u r e 1. The e q u a t i o n f o r t h e d e f l e c t i o n l i n e wb(x) is g i v e n by

B 2X s i n h X(R-x) c o s Xx cosh XR

-

s i n A(R-x) cosh Ax c o s X R

W ( x )

P

=

k

b (1)

cosh2 XR + cos2 X R

where P = load a p p l i e d t o f r e e end o f beam [kN]

B = Beam width [ml

k = pwg = subgrade r e a c t i o n (weight d e n s i t y o f water) [kN/m3] Ebh D = - 1 2 f l e x u r a l r i g i d i t y [ kN/ml Eb = b u l k s t r a i n modulus [kPa* ] h = i c e t h i c k n e s s

R

= beam l e n g t h T y p i c a l d e f l e c t i o n c u r v e s f o r v a r i o u s beam l e n g t h s a r e p l o t t e d i n F i g u r e 2, assuming E = 1.4 GPa, k = 10 k ~ / m ~ and h = 0.4 m. The s o l i d l i n e s r e p r e s e n t b u o y a n t l y s u p p o r t e d c a n t i l e v e r beams and t h e dashed l i n e s

r e p r e s e n t unsupported c a n t i l e v e r beams. For t h e 4 m long beam t h e buoyant e f f e c t i s n e g l i g i b l e , however, f o r t h e 8 and 12 m long beams, t h e buoyant e f f e c t l e a d s t o a s u b s t a n t i a l r e d u c t i o n i n t h e d e f l e c t i o n s . I t i s u s e f u l t o p l o t t h e r a t i o of t h e t i p d e f l e c t i o n of a buoyantly s u p p o r t e d c a n t i - l e v e r beam t o t h e t i p d e f l e c t i o n o f a simple c a n t i l e v e r beam. T h i s r a t i o ,

(8)

B E A M P O S I T I O N , rn 0 2 4 6 8 1 0 1 2 F I G U R E 2 D E F L E C T I O N L l N E S O F B U O Y A N T L Y S U P P O R T E D (-1 A N D U N S U P P O R T E D (---I B E A M S O F V A R I O U S L E N G T H S . 1 0 0 0.2 0.4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 l . . 8 2 . 0 N O N D I M E N S I O N A L B E A M L E N G T H , F I G U R E 3 R A T I 0 O F B U O Y A N T L Y S U P P O R T E D B E A M D E F L E C T I O N T O S I M P L E C A N T I L E V E R B E A M D E F L E C T I O N

(9)

n Z 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 0 z B E A M P O S I T I O N , m F I G U R E 4 N O N D I M E N S I O N A L B E N D I N G M O M E N T D l S T R l B U T I O N F O R B U O Y A N T L Y S U P P O R T E D (-) A N D U N S U P P O R T E D (---I B E A M S OF V A R I O U S L E N G T H S ,

I

N O N D I M E N S I O N A L B E A M L E N G T H , F I G U R E 5 P O S I T I O N O F M A X I M U M B E N D I N G M O M E N T , X c , A S A F U N C T I O N O F L E N G T H O F B U O Y A N T L Y S U P P O R T E D B E A M

(10)

which when s o l v e d h a s t h e form

where D i s t h e f l e x u r a l r i g i d i t y o f a homogeneous beam w i t h a c o n s t a n t s t r a i n modulus. Before t h e r i g i d i t y f a c t o r , K, c a n b e e v a l u a t e d , however, t h e p o s i t i o n of t h e n e u t r a l a x i s , zo, ( s e e F i g u r e 1) must be e s t a b l i s h e d . The c o n d i t i o n t h a t t h e r e b e n o r e s u l t a n t f o r c e i n t h e x - d i r e c t i o n on a n y p l a n e x = c o n s t a n t y i e l d s t h e e x p r e s s i o n

from which t h e p o s i t i o n o f t h e n e u t r a l a x i s c a n be c a l c u l a t e d . A t t h i s s t a g e i t i s u s e f u l t o e v a l u a t e K f o r some t y p i c a l s t r a i n modulus d i s t r i b u - t i o n s , E ( z ) . Kerr and Palmer (1972) have proposed a g e n e r a l e x p r e s s i o n of t h e form

where n and

a

a r e a r b i t r a r y c o n s t a n t s s e l e c t e d t o g i v e a n approximation of

t h e s t r a i n modulus d i s t r i b u t i o n and Et i s t h e s t r a i n modulus on t h e t o p s u r f a c e of t h e i c e c o v e r . Applying Weeks and A s s u r l s (1967) r e l a t i o n between b r i n e volume and s t r a i n modulus t o f i r s t y e a r s e a i c e t h e

parameters

a

and n i n Equation (6) would b e approximately 0.4 and 4

r e s p e c t i v e l y . The r i g i d i t y r e d u c t i o n f a c t o r , K, i s p l o t t e d i n F i g u r e 7 f o r a range o f v a l u e s o f

a

and n .

The e q u a t i o n s f o r t h e d e f l e c t i o n l i n e , wn, and bending moment, Mn of a nonhomogeneous beam a r e given, i n terms o f t h o s e f o r a homogeneous beam, by

and

The d e f l e c t i o n s and moments a r e s e e n t o be d i r e c t l y p r o p o r t i o n a l t o t h o s e

of a homogeneous beam. Because K i s always l e s s t h a n 1, t a k i n g t h e f o u r t h

r o o t o f i t b r i n g s i t c l o s e r t o 1 and t h u s a t t e n u a t e s t h e e f f e c t s of t h e

nonhomogeneity o f t h e beam. The p r e c e d i n g example of f i r s t y e a r sea i c e

y i e l d s a K o f 0.75 and

~4

of 0.93. I t must a l s o b e k e p t i n mind t h a t because t h e s t r a i n modulus v a r i e s through t h e i c e t h i c k n e s s , t h e s t r e s s

(11)

N O N D I M E N S I O N A L B E A M L E N G T H , XL F I G U R E 6 M A X I M U M B E N D I N G M O M E N T A S A F U N C T I O N O F B E A M L E N G T H F I G U R E 7 R I G l D I T Y R E D U C T I O N F A C T O R , K. O F A N O N H O M O G E N E O U S B E A M A S A F U N C T I O N O F S T R A I N - M O D U L U S D I S T R I B U T I O N P A R A M E T E R S , Q A N D n

(12)

d i s t r i b u t i o n w i l l n o t b e l i n e a r . I t i s p o s s i b l e , depending upon t h e n a t u r e of E ( z ) , f o r t h e maximum s t r e s s t o b e a t a l o c a t i o n o t h e r t h a n t h e extreme f i b r e s o f t h e beam.

The g e n e r a l t r e a t m e n t of a nonhomogeneous p l a t e by Kerr and Palmer (1972) was a c t u a l l y preceded by F r a n k e n s t e i n (1970) who p r e s e n t e d a t e c h n i q u e f o r a n a l y z i n g t h e s t r e n g t h o f i n s i t u c a n t i l e v e r beams w i t h b r i n e volume

v a r i a t i o n t h r o u g h t h e t h i c k n e s s o f t h e beam. He u s e d t h e b r i n e r e l a t i o n s f o r s t r e n g t h and e l a s t i c i t y developed by Weeks and Assur (1967).

where v i s t h e b r i n e volume and

a,

and Eo a r e c o r r e s p o n d i n g v a l u e s f o r f r e s h w a t e r i c e , i . e . , v = 0 . B r i n e volume i s a f u n c t i o n of s a l i n i t y and t e m p e r a t u r e . The f o l l o w i n g apprc .imate e x p r e s s i o n

where S i s s a l i n i t y i n u n i t s of p a r t s p e r thousand (mass) and 8 i s temper- a t u r e i n d e g r e e s C e l s i u s , was developed by F r a n k e n s t e i n and Garner (1967). T h i s e q u a t i o n i s v a l i d f o r t h e r a n g e -O.S°C > 8 > -23°C. Temperature and s a l i n i t y a r e measured a t d i s c r e t e p o i n t s through a n i c e c o v e r and hence t h e b r i n e volume a n d s t r a i n modulus p r o f i l e c a n b e approximated b y a f u n c t i o n l i k e t h a t o f Equation (6) o r r e p r e s e n t e d n u m e r i c a l l y .

Assuming p l a n e s e c t i o n s remain p l a n e , t h e s t r e s s p r o f i l e through t h e beam i s g i v e n by

where r i s t h e r a d i u s o f c u r v a t r , L d , and z = 0 i s t h e n e u t r a l a x i s o f t h e beam. The p o s i t i o n o f t h e neuty- t a x i s o f a beam f o r which t h e b r i n e volume p r o f i l e i s known i s deterlnined by s u b s t i t u t i n g Equation (10) i n t o Equation (5) and s o l v i n g f o r zo. The bending moment on a c r o s s - s e c t i o n of t h e beam, i n t e r m s o f t h e s t r e s s developed on it i s g i v e n b y

Knowing t h e a p p l i e d moment Mb f - 2 - n Equation (2) and s u b s t i t u t i n g E q u a t i o n s

(13)

s t r e n g t h i s f i n a l l y c a l c u l a t e d by s u b s t i t u t i n g t h e v a l u e s of E o / r and Equation (10) i n t o Equation (12), i . e . ,

where v and z 1 a r e a t t h e p o i n t of f a i l u r e ( z ' =

-zo

o r h - z o ) . Once

a

i s

known, t h e n

a.

can be c a l c u l a t e d from Equation ( 9 ) . Frankenstein f u r t h e r

suggested t h a t i f t h e v a l u e s of

a.

were v e r y s i m i l a r f o r v a r i o u s beam t e s t s then a r e l a t i v e l y simple b r i n e volume d e t e r m i n a t i o n i n t h e f i e l d and i t s a p p l i c a t i o n t o Equation (9) could y i e l d a c c e p t a b l e f l e x u r a l s t r e n g t h v a l u e s without going t o t h e e f f o r t of l a r g e - s c a l e i n s i t u c a n t i l e v e r beam t e s t s .

T h i s approach of Frankenstein w i l l be used i n analyzing t h e r e s u l t s f o r

f l e x u r a l s t r e n g t h of a s e r i e s of c a n t i l e v e r beam t e s t s c a r r i e d out i n t h e f i e l d . Also buoyancy e f f e c t s w i l l be considered i n c a l c u l a t i n g s t r a i n modulus.

EXPERIMENTAL RESULTS F i e l d T e s t s i n S ~ i t s b e r e e n

I n A p r i l 1977 a program of i n s i t u c a n t i l e v e r beam t e s t s was c a r r i e d o u t i n I s f jorden, Spitsbergen, a s p a r t of t h e A r c t i c icebreaking t r i a l s of t h e

o f f s h o r e supply v e s s e l M.V. "Werdertor". The t o t a l icebreaking program

was c a r r i e d out by t h e German Companies, Hamburgische Schiffbau- V e r s u c h s a n s t a l t (management), V e r e i n i g t e Tanklager-Gesellschaft,

Germanischer Lloyd and J a s t r a m ( s e e Schwarz and Hoffman, 1978). Maximum information on t h e f l e x u r a l behaviour of t h e i c e was d e s i r e d s o a

comprehensive beam t e s t program was planned. Continuous r e c o r d s of load and d e f l e c t i o n s were i n d i c a t e d a s well a s d e t a i l e d temperature and

s a l i n i t y p r o f i l e s of t h e i c e c o v e r .

Following s e l e c t i o n of a t e s t s i t e deemed t o have i c e t y p i c a l of t h a t through which a s e r i e s o f icebreaking t r i a l s would be run, a small camp was s e t up on t h e i c e . A t e n t was p i t c h e d t o provide s h e l t e r f o r t h e r e c o r d i n g and s i g n a l c o n d i t i o n i n g i n s t r u m e n t a t i o n and personnel.

E l e c t r i c a l power f o r t h e instruments came from a p o r t a b l e g e n e r a t o r . The camp was maintained f o r s e v e r a l days while a s e r i e s of beam t e s t s and i c e c o r e samplings were c a r r i e d out i n t h e v i c i n i t y .

Beam p r e p a r a t i o n was a i d e d by t h e f a c t t h a t i c e t h i c k n e s s was i n t h e range of 0.4 m t o 0 . 5 m . A c h a i n saw, p i v o t i n g about a h o r i z o n t a l a x i s , and mounted on a l i g h t s l e d g r e a t l y f a c i l i t a t e d t h e sawing of t h e beams. For s i m p l i c i t y , f o r c e was a p p l i e d manually from a sled-mounted f o r c e -

m u l t i p l y i n g l e v e r system. A load c e l l l o c a t e d a t t h e p o i n t of f o r c e a p p l i c a t i o n t o t h e beam produced a continuous analogue r e c o r d of f o r c e v s time. A t t h r e e p o i n t s along t h e beam ( t i p , midpoint and n e a r t h e r o o t ) displacement t r a n s d u c e r s measured v e r t i c a l d e f l e c t i o n of t h e beam

r e l a t i v e t o t h e a d j a c e n t i c e cover. These d e f l e c t i o n measurements yielded an experimental approximation of t h e d e f l e c t i o n l i n e . The t e s t s e t - u p i s i l l u s t r a t e d i n Figure 8 . Snow was l e f t on t h e i c e s u r f a c e t o minimize d i s t u r b a n c e t o t h e h y d r o s t a t i c e q u i l i b r i u m and temperature p r o f i l e of t h e i c e c o v e r .

(14)

I C E 'O V E R r B E A M R E A D Y F O R T E S T D I S P L A C E M E N T TRANSDUCERS TESTED B E A M X

X

F O R C E A P P L I C A T I O N P O I N T A N D L O A D C E L L - L E D W I T H LEVER A R M F I G U R E 8 S C H E M A T I C O F SET-UP F O R I N S l T U C A N T I L E V E R B E A M T E S T S

(15)

The t e s t procedure was a s f o l l o w s :

a ) The i c e c o v e r was c u t completely through a l o n g a l i n e XX ( s e e .

F i g u r e 8) approximately 10 m long. T h i s i s o l a t e d t h e beam t o be t e s t e d and t h e anchor p o i n t s of t h e displacement t r a n s d u c e r s from t h e i n f l u e n c e of t h e r e a c t i o n l o a d s developed b y t h e l e v e r arm while a p p l y i n g l o a d t o t h e beam t i p .

b) P e r p e n d i c u l a r c u t s , AA, BB, e t c . , were made t o i s o l a t e s u c c e s s i v e beams f o r t e s t i n g .

c ) The l o a d i n g s l e d was anchored t o t h e i c e c o v e r s o t h a t a down- wards a c t i n g f o r c e could b e a p p l i e d t o t h e t i p of t h e beam.

d) An i n c r e a s i n g f o r c e was a p p l i e d t o t h e beam t i p b y d e f l e c t i n g i t downwards u n t i l f a i l u r e o c c u r r e d .

e ) The beam dimensions were t h e n measured.

f ) An i c e c o r e was r e c o v e r e d a t t h e beam r o o t , t h e t e m p e r a t u r e p r o f i l e measured and samples t a k e n f o r s a l i n i t y d e t e r m i n a t i o n . A s a n example t h e f o r c e and d e f l e c t i o n r e c o r d s , beam dimensions and corresponding t e m p e r a t u r e and s a l i n i t y p r o f i l e f o r Beam T e s t No. 5 a r e shown i n F i g u r e 9 . I t can b e s e e n t h a t f o r c e a p p l i c a t i o n r a t e was n o t s t e a d y and t h a t i n i t i a l l y t h e beam d e f l e c t i o n s lagged behind t h e f o r c e .

S t r a i n Modulus R e s u l t s

Force and c o r r e s p o n d i n g d e f l e c t i o n s a t up t o t h r e e p o i n t s a l o n g t h e l e n g t h of t h e beam were used i n c a l c u l a t i n g t h e b u l k s t r a i n modulus, Eb. A

computer program employing a n i t e r a t i v e t e c h n i q u e s o l v e d f o r t h e v a l u e of Eb which would b e s t f i t Equation (1) t o t h e measured d e f l e c t i o n s . The r e s u l t s of t h e c a l c u l a t e d modulus v a l u e s p l u s beam dimensions a r e p r e s e n t e d i n Table 1. The s t r a i n modulus r e s u l t s a r e a c t u a l l y i n i t i a l t a n g e n t moduli. The 4 m long beams had a n a v e r a g e b u l k s t r a i n modulus, Eb, o f 2 GPa. For purposes o f comp2 - ;on moduli v a l u e s assuming simple c a n t i l e v e r beam behaviour, Esb, (bw., ~ c y e f f e c t of t h e w a t e r ignored) a r e a l s o p r e s e n t e d . Although i n a few c,-ss t h e simple beam modulus v a l u e s were s m a l l e r , on a v e r a g e t h e y were ab~:s.t 10% g r e a t e r , a s would b e e x p e c t e d . The modulus r e s u l t s f o r t h e 8 and 12 rri beams a r e v e r y q u e s t i o n a b l e . The maximum v a l u e f o r s t r a i n modulus determined from dynamic measurements on s m a l l specimen i s 10 GPa (Langleben and Pounder, 1963), t h e r e f o r e it i s r e a s o n a b l e t o conclude t h a t t h e r e was some experimental e r r o r i n t h e measurements. I t i s p o s s i b l e t h a t t h e d e f l e c t i o n measurements were i n e r r o r due t o t h e l i n e a r v a r i a b l e d i f f e r e n t i a l t r a n s f o r m e r s n o t responding f u l l y t o d e f l e c t i o n s a s a r e s u l t of e i t h e r f r i c t i o n a l o r i n e r t i a l e f f e c t s o r b o t h .

F l e x u r a l S t r e n e t h

F l e x u r a 1 s t r e n g t h s were c a l c u l a t e d u s i n g F r a n k e n s t e i n

'

s (19 70) technique, which h a s a l r e a d y been d e s c r i b e d i n t h i s p a p e r . The e x p e r i m e n t a l l y determined b r i n e volume p r o f i l e of each beam y i e l d s t h e p o s i t i o n of t h e n e u t r a l a x i s , zo, and s u b s e q u e n t l y t h e s t r e s s d i s t r i b u t i o n through t h e

(16)

T I M E , s D E F L E C T I O N - A N D F O R C E - T I M E C U R V E S

1

1 4.04m BEAM DIMENSIONS 50 T E M P E R A T U R E A N D S A L I N I T Y P R O F I L E F I G U R E 9 R E S U L T S O F B E A M T E S T N O . 5

(17)

beam. The f a i l u r e moment o f t h e beam i s e s t a b l i s h e d from t h e f o r c e a t f a i l u r e and a l s o t h e buoyant e f f e c t o f t h e w a t e r and t h e s t r a i n modulus of t h e beam. S i n c e i n a l l c a s e s f o r c e was a p p l i e d downwards a t t h e t i p of t h e beam, t h e f l e x u r a l s t r e n g t h ,

a,

i s c a l c u l a t e d b y s u b s t i t u t i n g i n t o Equation (14) t h e c o n d i t i o n s a t t h e t o p f i b r e s of t h e beam. These r e s u l t s ; t h e v a l u e of

a,

c a l c u l a t e d from Equation ( 9 ) ; and t h e v a l u e of s t r e n g t h , osb, c a l c u l a t e d u s i n g simple c a n t i l e v e r beam t h e o r y a r e p r e s e n t e d i n Table 1 . The average v a l u e of f l e x u r a l s t r e n g t h ,

a,

from a l l t e s t s was

0.39 MPa. The average v a l u e o f ,

a,,

from a l l t h e 4 m-long beams, t e s t s was 0.70 MPa. T h i s i s i n r e a s o n a b l e agreement with F r a n k e n s t e i n ' s (1970) v a l u e of

a0

= 0.76 MPa found f o r beams having v e r y s i m i l a r dimensions t o t h o s e t e s t e d h e r e .

I n F i g u r e 10 f l e x u r a l s t r e n g t h c a l c u l a t e d from b r i n e volume measurements (Equation (9) w i t h

a,

= 0.70 MPa) a r e p l o t t e d v s f l e x u r a l s t r e n g t h

determined from bending moment a t f a i l u r e (Equations (13) and ( 1 4 ) ) . The average s t r e n g t h c a l c u l a t e d from b r i n e volume i s 0.32 MPa. With t h e e x c e p t i o n of a few h i g h f l e x u r a l s t r e n g t h s determined from long beam f a i l u r e moment measurements, t h e r e i s g e n e r a l l y a good one-to-one

correspondence between t h e two approaches t o f l e x u r a l s t r e n g t h determina- t i o n . Confirmation, however, i s needed f o r g r e a t e r i c e t h i c k n e s s e s and a t o t h e r t i m e s of t h e y e a r .

The p o s i t i o n o f f a i l u r e was always a t t h e r o o t of t h e beam, w i t h t h e e x c e p t i o n of t h e 1 2 m long beam where two f a i l u r e p l a n e s o c c u r r e d 4.75 m

from t h e r o o t and a t t h e r o o t t o o . T h i s i s n o t a t a l l unexpected when t h e t y p i c a l moment d i s t r i b u t i o n f o r long beams, a s shown i n Figure 4, i s

c o n s i d e r e d . Table 1 shows t h e t i m e t o f a i l u r e , t f . The a v e r a g e loading r a t e f o r t h e whole t e s t s e r i e s was about 0 . 5 MPa s - l . A t t h i s s t r e s s r a t e

f o r s i m i l a r s i z e d c a n t i l e v e r beams M a a t t h e n (1975) found t h a t no

c o r r e c t i o n was r e q u i r e d f o r dynamic e f f e c t s of e i t h e r t h e i c e o r w a t e r , consequently no such c o r r e c t i o n s were made t o t h e d a t a p r e s e n t e d h e r e .

CONCLUSIONS

A p p l i c a t i o n o f e l a s t i c i t y t h e o r y t o b o t h homogeneous and nonhomogeneous c a n t i l e v e r beams i n d i c a t e d t h a t t h e i n f l u e n c e o f a n e l a s t i c foundation c a n have a s u b s t a n t i a l e f f e c t on t h e d e f l e c t i o n s and bending moments when t h e beam l e n g t h i s more t h a n 1 0 t i m e s i t s d e p t h .

The r e s u l t s o f a s e r i e s of c a n t i l e v e r beam t e s t s have been a n a l y z e d t o o b t a i n index v a l u e s o f f l e x u r a l s t r e n g t h and s t r a i n modulus, t h e r e b y c h a r a c t e r i z i n g t h e mechanical b e h a v i o u r of s e a i c e s u b j e c t e d t o f l e x u r a l

l o a d i n g . An a v e r a g e s t r a i n modulus of 2.0 GPa and f l e x u r a l s t r e n g t h of 0.32 MPa were o b t a i n e d . L i t t l e i n f l u e n c e o f buoyancy was noted, provided t h e r a t i o o f beam l e n g t h t o i c e t h i c k n e s s was l e s s t h a n 10. The l i m i t e d r e s u l t s p r e s e n t e d i n t h i s paper s u g g e s t t h a t t h e c l a s s i c a l e l a s t i c t h e o r y of a beam o n , a n e l a s t i c f o u n d a t i o n c a n b e a p p l i e d t o t h e c a s e o f i n s i t u c a n t i l e v e r beams. F u r t h e r e v a l u a t i o n s of t h e d a t a , however, s u g g e s t t h a t p l a s t i c deformation i s beginning t o occur a t t h e r o o t of t h e beams.

F r a n k e n s t e i n ' s (1970) approach of i n c l u d i n g t h e i n f l u e n c e of b r i n e volume v a r i a t i o n (nonhomogeneity) through t h e t h i c k n e s s o f t h e beam h a s been

, found a s a t i s f a c t o r y approach t o t h e a n a l y s i s of t h e f l e x u r a l s t r e n g t h of

(18)

C I I 1

I

I I

-

*

3:

(

@.

-

.

.

-

A V E R A G E S T R E N G T H

-

-

-

-

I

I

I

I

1

F L E X U R A L S T R E N G T H F R O M F A I L U R E M O M E N T M E A S U R E M E N T S , M P a F I G U R E 10 F L E X U R A L S T R E N G T H O F S E A I C E F R O M B R I N E V O L U M E M E A S U R E M E N T S V S F A I L U R E M O M E N T M E A S U R E M E N T S

(19)

ACKNOWLEDGEMENTS

The a u t h o r s o f t h i s p a p e r e x p r e s s a p p r e c i a t i o n t o t h e i r employers, t h e N a t i o n a l Research Council o f Canada, t h e I n s t i t u t ftr S c h i f f b a u , Hamburg, and t h e Deutsche Forschungsgemeinschaft f o r a u t h o r i z i n g t h e i r p a r t i c i p a - t i o n i n t h e f i e l d measurement program. The f i n a n c i a l a s s i s t a n c e o f t h e German M i n i s t r y o f S c i e n c e and Technology (BMFT) t h r o u g h C o n t r a c t No. MTK0055, which made t h e f i e l d program p o s s i b l e , i s g r a t e f u l l y

acknowledged. F i n a l l y , t h e c o n t r i b u t i o n s o f P r o f . Franz Nusser, D i e t e r Lemke and Rudolf Reymer, t o t h e s u c c e s s f u l conrpletion of t h e f i e l d t e s t s i s most g r a t e f u l l y acknowledged.

T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n of Building Research,

N a t i o n a l Research Council o f Canada, and i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r o f t h e D i v i s i o n .

REFERENCES

F r a n k e n s t e i n , G . E . 1968. S t r e n g t h o f i c e s h e e t s . N a t i o n a l Research

C o u n c i l o f Canada, A s s o c i a t e Committee on G e o t e c h n i c a l Research, T e c h n i c a l

Memorandum No. 92,

p .

79

-

8 7 .

F r a n k e n s t e i n , G.E. 1970. The f l e x u r a l s t r e n g t h o f s e a i c e a s d e t e r m i n e d from s a l i n i t y and t e m p e r a t u r e p r o f i l e s . N a t i o n a l Research Council of Canada, A s s o c i a t e Committee on G e o t e c h n i c a l Research, T e c h n i c a l Memorandum

NO. 98, p . 66 - 73.

F r a n k e n s t e i n , G . E . , and Garner, R . 1967. E q u a t i o n s f o r d e t e r m i n i n g t h e b r i n e volume o f s e a i c e from - 0 . 5 t o - 2 2 . g 0 c . J o u r n a l of G l a c i o l o g y ,

Vol. 6, NO. 48, p . 943

-

44.

Hetgnyi, M . 1946. Beams on e l a s t i c f o u n d a t i o n . Ann Arbor, The U n i v e r s i t y of Michigan P r e s s , 255 p .

Kerr, A . D . , a n d Palmer, W.T. 1972. The d e f o r m a t i o n s a n d s t r e s s e s i n f l o a t i n g i c e p l a t e s . Acta Mechanica, Vol. 15, p . 57 - 72.

Langleben, M.P., a n d Pounder, E . R . 1963. E l a s t i c p a r a m e t e r s o f s e a i c e . I n I c e and Snow-Processes, P r o p e r t i e s and A p p l i c a t i o n s (W.E. Kingery, Ed.), E m b r i d g e , Mass., MIT P r e s s , p. 69 - 78.

Lavrov, V . V . 1969. Deformation and s t r e n g t h o f i c e . Gidrometeorolog-

i c h e s k o e I s d a t e l ' s t v o , Leningrad, NSF-Translation (TT 70 501 30)

.

MZZttZnen, M. 1975. On t h e f l e x u r a l s t r e n g t h o f b r a c k i s h w a t e r i c e by i n s i t u t e s t s . Proceedings, T h i r d I n t e r n a t i o n a l Conference on P o r t and Ocean E n g i n e e r i n g under A r c t i c C o n d i t i o n s , F a i r b a n k s , p. 349

-

359.

Schwarz, J . '1975. On t h e f l e x u r a l s t r e n g t h and e l a s t i c i t y of s a l i n e i c e . Proceedings, T h i r d I n t e r n a t i o n a l Symposium on I c e Problems,

(G . E

.

F r a n k e n s t e i n , E d . ) , Hanover, -New Hampshire, p . 373 - 386.

Schwarz, J

.

,

and Hof fmann, L

.

1978. I c e b r e a k i n g t r i a l s around S p i t z b e r g e n , 4 t h IAHR Symposium on I c e Problems, ~ u l e z .

(20)

Schwarz, J . , and Kloppenburg, M . 1976. Untersuchung iiber das

W i d e r s t a n d s v e r h g l t n i s zwischen Model1 und GruBausfuhrung e i s b r e c h e n d e r S c h i f f e - S c h l u B b e r i c h t . Hamburgische Schiffbau-Versuchsanstalt, B e r i c h t No. E82/76.

Schwarz, J . , and Weeks, W.F. 1977. Engineering p r o p e r t i e s of s e a i c e . J o u r n a l o f Glaciology, Vol. 19, No. 81, p . 499 - 531.

Tabata, T., e t a l . 1975. I c e s t u d y i n t h e Gulf of Bothnia. 1 1 . Measurements o f f l e x u r a l s t r e n g t h . Low Temperature S c i e n c e , S e r . A, NO. 33, p. 199

-

206.

Weeks, W . , and Assur, A . 1967. The mechanical p r o p e r t i e s of s e a i c e . U .S

.

Army Materie 1 Command, Cold Reg i o n s Research and Engineering Laboratory, Hanover, New Hampshire, 80 p .

TABLE 1

RESULTS OF IN SITU CANTILEVER BEAM TEST, ISFJORDEN, SPITSBERGEN, APRIL, 1977

Beam Beam

I c e S t r a i n Modulus F l e x u r a l S t r e n g t h Length Width Thickness

h Eb sb 0 OO 0

Beam

R

B sb t f

(21)
(22)

THE FLEXURAL BEHAVIOUR OF ICE FROM IN SITU CANTILEVER BEILnI

TESTS

R

Frederking

Division of Buildinq Research

National Research Council of

Canada

Ottawa, Ontario

Canada, KIA OX6

Hamburgische Schiffbau-

Versuchsanstalt GmbH

Hamburg, Germany

Question from: K Karal, Norway

1

1) Vhat is the reason for using so large

ratios?

2)

Any effects of

on the results?

Answer: The larqe l/3 ratios were used to verify the theory

of a cantilever beam on elastic f.~undation

as well as to

achieve the situation of havina our beam break at some ~ o i n t

other than at the rest, therebv eliminat4ng any stress con-

centrations which might occur there.

The 1/B ratio was not in fact investigatec. basically we were

looking at beam length effects

- A .

relatior* to ic( thickness.

Question from: Pauli Jwppanen, F!.nland

Ffi.ich are the influences of ~lastic

and viscoelastic effects

on the flexural strengtk-

in your ,tests

and what was the basis

to neqlect these effects? Which were the loading speeds you

used?

Answer: Our meazurements suggested that there was some pl~stic

behaviour in ouz beams, however J u r deflection measurements

were n o r sufficientlv precise to allow a quankitative con-

siderat~an

of ~ t ,

Also nlastic and viscoelastic effects shcvld

(23)

than flexural

.

Our loading speeds were not nrecisely controlled, but

in

general our loading time to failure was of the order of one

second or less.

Question from: T Carstens Norway

Was your S ~ i t s b e r g e n

tes.t site in a fjord or offshore?

Références

Documents relatifs

Endophytic PAH degraders in general were correlated with endophytic heterotrophic communities, endophytic hexadecane degrader communities, soil moisture, and TPH concentration

TABLE A 3 ― Hourly pairs of in-service conditions for wind driven-rain (WDR) and driving rain wind pressure (DRWP) for Minneapolis, MN. The likelihood is an estimate of the

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

While the non-dimensional energy allows the consideration of the combined effect of power and scanning velocity on the grooving process, it does not account for

The 134 participants that used computer simulation tools for daylighting design were asked to specify which exact tools they were using.. A total of 42 different daylight

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

On a per wafer basis for a base case comparing spin-on and CVD organosilicon low-k dielectric films, chemical consumption was 350% higher for the spin-on deposition

— We establish an isoperimetric inequality in an integral form and deduce a strong Brunn-Minkowski inequality in the Arakelov geometry setting.. (MSC2010 classification: