• Aucun résultat trouvé

WITH CONSTANT COEFFICIENTS.

N/A
N/A
Protected

Academic year: 2022

Partager "WITH CONSTANT COEFFICIENTS. "

Copied!
62
0
0

Texte intégral

(1)

WITH CONSTANT COEFFICIENTS.

BY L A R S G A R D I N G

of LUND.

Contents.

P a g e

I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

C h a p t e r I. P r o o f o f t h e o r e m I . . . . . . . . . . . . . . . . . . . 9

C h a p t e r 2. H y p e r b o l i c p o l y n o m i a l s . . . . . . . . . . . . . . . . . . . 1 4

R e d u c e d p o l y n o m i a l s . . . . . . . . . . . . . . . . . . . . . . . . 14

H y p e r b o l i c p o l y n o m i a l s . . . . . . . . . . . . . . . . . . . . . . . 16

T h r e e l e m m a s . . . . . . . . . . . . . . . . . . . . . . . . 2 6

T h e d u a l c o n e . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C h a p t e r 3. T h e R i e s z k e r n e l . . . . . . . . . . . . . . . . . . . . . . 9 9

A l e m m a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C o n s t r u c t i o n o f t h e k e r n e l . . . . . . . . . . . . . . . . . . . . . 31

T w o e x a m p l e s . . . . . . . . . . . . . . . . . . . . . . . . . 3 4

T h e R i e s z k e r n e l a n d t h e e l e m e n t a r y s o l u t i o n . . . . . . . . . . . . 3 5

C h a p t e r 4. T h e R i e s z o p e r a t o r . . . . . . . . . . . . . . . . . . . . . 37

D e f i n i t i o n o f t h e R i e s z o p e r a t o r . T w o t h e o r e m s . . . . . . . . . . . . 3 7

P r o o f o f t h e o r e m 4. I . . . 9 . . . . . . . . . . . . . . . . 39

P r o o f o f t h e o r e m 4 . 2 . . . . . . . . . . . . . . . . . . . . . . . 4 5

A l e m m a . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7

P r o o f o f t h e o r e m I I . . . . . . . . . . . . . . . . . . . . . . . 4 8

C h a p t e r 5. T h e p r o b l e m o f C a u c h y . G e n e r a l i z a t i o n s . . . . . . . . . . . . 4 9

T h e p r o b l e m o f C a u c h y . . . . . . . . . . . . . . . . . . . . 4 9

T h e s u r f a c e S . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0

T h e R i e s z o p e r a t o r . . . . . . . . . . . . . . . . . . . . . . 5 3

C h a p t e r 6. T h e d o m a i n o f d e p e n d e n c e . . . . . . . . . . . . . . . . . 5 4

I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4

S t r u c t u r e o f t h e d o m a i n s o f d e p e n d e n c e o f I a n d J . . . . . . . . . . 56

L a c u n a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0

B i b l i o g r a p h y . . . . . . . . . . . . . . . . . . 61

1 - 642127 A ~ m a t / ~ ' m a t ~ . 85

(2)

2 Lars G~lrding.

Introduction.

Let C(oo) be the class of complex functions f ( x ) of n real variables xl, . . . , xn which are defined and infinitely differentiabte for all x. L e t q (~)-~q (~1 . . . . , Cn) be a polynomial in $1 . . . . , r with complex coefficients and let A (q) be the class of all functions f in C(oo) which satisfy

q ( O l a x ) , f ( x ) = o

for all x.

Every polynomial q can be written in the form p + r where p is homogeneous and, if q is not a constant, the degree of p is greater than the degree of r. I f q is a constant we p u t t ---- q. We call the p o l y n o m i a l p thus defined the principal part of q.

Let $-~ (~1,-.., $,,)~ o be a real vector. We say t h a t q is hyperbolic with respect to ~ if p(~) ~ 0 and if there exists a real number to such t h a t

q(t$+i~7) ~ 0

when t > to and ~ is any real vector. I f q is hyperbolic with respect to ~, it is clearly hyperbolic with respect to any positive multiple of ~ and we will show t h a t it is hyperbolic also with respect to any negative multiple of ~. W e say t h a t (i) is a hyperbolic differential equation if q is hyperbolic with respect to at l e a s t one ~.

L e t

f l , f 2 , . . . , f i , . . ,

be a sequence of elements in C(oo). I f fk and every derivative of fk tends to zero with

I / k

u n i f o r m l y on every compact 1 set in the plane ( y , ~ ) = y l ~ l + . . , + Y , ~ = o or in the entire space we say t h a t f ~ tends to zero in the plane (y, ~)-= 0 or in the entire space and write

(a)

and

(b)

respectively.

o

f k --> O

I t is clear t h a t (b) implies (a) but the converse is not true. I n Chapter I the following theorem is proved 2

i A set S w h o s e e l e m e n t s a r e real v e c t o r s x = ( x l . . . Xn) is c a l l e d b o u n d e d if I x l = m a x k l Xk [ i s b o u n d e d w h e n x is i n S, a n d closed, if i t t o g e t h e r w i t h t h e e l e m e n t s of a s e q u e n c e x(k) a l s o c o n t a i n s e v e r y x s u c h t h a t l i m Ix(k) - - x I = o. I t is c o m p a c t if i t i s b o t h b o u n d e d a n d closed.

i T h e t h e o r e m s I a n d ] I I w e r e a n n o u n c e d in G.~RDI.NG [3], a n o u t l i n e of t h e c o n s t r u c t i o n of t h e R i e s z k e r n e l a n d t h e s o l u t i o n of C a u c h y ' s p r o b l e m i n G~.RDING [2]. See, h o w e v e r , t h e first f o o t n o t e t o C h a p t e r 5-

(3)

T h e o r e m I. Let f k E A (q), (k-~ I, 2 , . . . ) . I f there exists a point x such that (x, ~) ~ o and f i (X) tends to zero with I / k whenever fk tends stro~gly to zero in the plane (y, ~ ) = o, then q i s hyperbolic with respect to ~.

Put f(~, y ) = e (~,y-~) where .~ is a complex vector~such t h a t q(~)-~ o. T h e n f ( ~ , - ) is in A (q), it equals I at the p o i n t x, and the proof, whose origin was a r e m a r k by H a d a m a r d ([4] P- 4o), uses the fact t h a t if q is not hyperbolic with respect to ~, then we can always find a sequence of vectors ~(~) .. . . , ~(k), . . . such t h a t q(~(~))=o for all k and .f(~(k), . ) . § o (~).1

The main o b j e c t of the rest of the paper is the following t h e o r e m which is a strong converse of T h e o r e m I.

T h e o r e m II. Let f~ ~ A (q), (k = ~, 2 . . . . ) and let q be hyperbolic with respect to ~. Then i f f~ tends stro~gly to zero in the plane (y, ~ ) = 0 it tends strongly to zero in the entire space.

Combining t h e t w o t h e o r e m s we have the following concise theorem.

Theorem I I I . Let f ~ e A ( q ) , (k = i, 2 , . . . ) . Then a necessary and sufficient condition that (a) implies (b) is that q is hyperbolic with respect to ~.

The simplest not trivial h y p e r b o l i c equation is the wave equation in two variables which corresponds to the case n = 2 and q = r Then q is hyper- bolic with respect to $ = ( I , o ) . I n fact, p ( ~ ) = q ( ~ ) = i r ~ o a n d q ( t ~ + i ~ ) =

= ( t + i ( ~ + ~ ] z ) ) ( t + i ( V l - - ~ ] 2 ) ) ~ o w h e n t > o (or t < o ) . Also i f f E A ( q ) one has the e l e m e n t a r y f o r m u l a

~ r ~ - x 1

(2) f ( x ) = ~ (f(o, x2 + xl) + f(o, x~ -- Xl)) + 89 f f ' (o, t) d t

Z 2 - - X 1

where f ' ( x ) = Of(x)/Oxl. H e n c e if A (q)~fk and j~. t e n d s strongly to zero in the plane (x, ~ ) = xl ~ o, i.e. on the x2-axis, it follows t h a t

fi(x)

tends to zero for all x and, more generally, t h a t fk t e n d s strongly to zero in the entire space.

This proves T h e o r e m I [ in our special case. The p r o o f in the general case is similar. I n fact, if q is not c o n s t a n t and hyperbolic with respect to ~', it is possible to c o n s t r u c t a linear f u n c t i o n a l K ( f ) = K(~, x, f), in the case j u s t con- sidered given by the right side of (2), with the following properties.

1 T h e p r o o f r e s t s m a i n l y o n a l e m m a o n t h e r a t e of g r o w t h of c e r t a i n a l g e b r a i c f u n c t i o n s . T h i s l e m m a is p e r h a p s Of i n t e r e s t i n i t s e l f a n d i t p r o v e s a c o n j e c t u r e b y PETROWSKY ([9] foot- n o t e p. 24).

(4)

4 Lars G~rding.

I t is a projection of C ( ~ ) upon A(q), i.e, it is defined for all f in C(c~) and is itself an element of A (q), and it reproduces the elements of A (q)so that

f(x) -~ K (~, .% f )

for all x if f belongs to A (q). If fk tends strongly to zero in the plane (y, ~ ) = o then K(~, ',fk) tends strongly to zero in the entire space. Moreover, if the derivatives of order < m of f vanish in a certain compact part B(x) of the plane (y, ~ ) = o , then

K ( ~ , x , f )

vanishes, m being the degree of q. Finally, the deriva- tives of order < m of

f - - K ( ~ , . , f )

vanish on the plane ( y , ~ ) = o . A t least when q is homogeneous one can write K explicitly in a form similar to (2) as a sum of certain integrals over

B(x).

The functional K also gives the solution of the problem of Cauchy to which we give the following seemingly sophisticated, b u t in fact simple and convenient form. Given an element g~ C(oo), find an element u in

A(q)

such t h a t the derivatives of u - - g of order < m vanish on the plane (y, ~ ) = o. In fact, one solution is simply

u (x) = K (~, x, g)

and because the difference v of any two solutions is an element in A(q) whose derivatives of order < m vanish on the plane (y, ~)-~ o it follows from the pro- perties of K that v(x)----K(~, x, v)----o for all x and hence the solution is unique.

Conversely, assume t h a t for a given ~ # o and not constant q and an ar- bitrary g E C(oo) t h e problem of Cauchy has a unique solution

H(~,x, g)

w i t h the property that H ( ~ , x , gk) tends to zero with

I/k

for at least one x with (x, ~) # o whenever g~ -~ o (~). Then if A (q) contains every element of the sequence f l . . . . ,fk, . . . and fk -" o(~) we get that

fk(x) -~

H(~,

x,fk)

tends to zero with

I/k.

Hence the requirements of Theorem I are satisfied and it follows that q is hyper- bolic with respect to ~. I t then follows t h a t H(~, x, g) --- K(~, x, g) for all x and all g e C (oo).

The continuity property of H used above is a variant of Hadamard's classical condition t h a t the problem of Cauchy should be correctly set ([5] PP. 4 o - - 4 I ) . Another variant was given by Petrowsky [9] who, however, restricts the be- haviour of the function g at infinity in the plane (y, ~)----o. The consequence is that in his case there are other than hyperbolic equations, e.g. the heat equa- tion, for which one can find a suitable correctly set Cauchy problem.

Most equations (I) which so far have been classified as hyperbolic are hyper- bolic in our sense, in particular the equations considered by Herglotz [6] and

(5)

Petrowsky [8]. Slightly modified, Petrowsky's definition runs as follows. 1 A homo- geneous polynomial p of positive degree is called hyperbolic with respect to r if p ( 2 ) # o and the zeros of the equation p ( t ~ + y ) = o are all real and different if ~ is real and not proportional s 2. I f m is the degree of p it then follows t h a t

p ( t ~ + i ~ ) - ~ i ' ~ p ( - - i t ~ + ~ ) # o

when t > o (or t < o ) and ~ is real, so t h a t p is hyperbolic in our sense. More generally, one can show t h a t if p is a homogeneous polynomial of degree m > o which in the sense of Petrowsky is hyperbolic with respect to ~, and

r'

is any polynomial of degree less than m, then

q' : p + r'

is (in our sense) hyperbolic with respect to ~. I f p is hyperbolic merely in our sense, this need not be true. A r a t h e r trivial example is given by

q ' :

~ + ~2, a less trivial one by

q'= ~ ( ~ - - ~ ) + ~.

I n both cases the principal parts are hyperbolic with respect to (I, o), but the polynomials are not.

Hence the hyperbolic character of a polynomial is in general not determined by i~s principal part alone. I t is, however, true t h a t if a polynomial is hyperbolic with respec t to a vector ~, then also its principal part is.

We study in the first section of Chapter 2 the effect of a linear transforma- tion,

x ' : x~I,

where 1~ is the transpose of a real, square and not singular matrix M, upon (I). I t is transformed into

q ' ( O / O x ' ) J ' ( x ' ) = o,

where

f (x') =f(x; ~i -~) ~-f(x)

and q' (~') = q (~). We call the polynomial q reduced if there is no M such t h a t q' is a polynomial in ~ , . . . , ~ alone where l < n.

The fact t h a t a polynomial is n o t always reduced introduces some complications in the proof of Theorem II. L e t $2(q) be the linear manifold of all real vectors such t h a t

q(ty + y')=q(~?')

for all real t and ~'. Then q is reduced if and only if $2 (q) contains only the element ~ = o.

Later in Chapter 2 we collect some facts concerning not constant hyper- bolic polynomials. Let the polynomial q be hyperbolic with respect to ~. Then the same is true of its principal part p. L e t the common degree m of q and p

1 In t h e paper [8] Petrowsky considers only homogeneous equations w i t h constant coeffi cients, in [9] and [Io], however, he extends w h a t is s u b s t a n t i a l l y t h e definiiion given above t o very general s y s t e m s of differential equations which need n o t even be linear. For t h e m he solves t h e problem of Cauchy. - - The wellknown textbook Methoden der Math. Physik b y R. COURANT and D. HII.BERT (Berlin 1937) , has a terminology which differs from ours. There t h e equation (I) is called hyperbolic unless it is elliptic and i t is elliptic if t h e principal p a r t of q is a definite polynomial. An equation which is hyperbolic in the sense of Petrowsky is called t o t a l l y hyper- bolic (1.c. I I p . 373--374).

(6)

6 Lars G~rding.

be positive. Because ~ ( ~ ) ~ o , t h e degree of p ( t ~ + ~ ) with respect to t is m a n d we can write it in t h e form p (~) [ i ( t + u,.) where u,, -~ u~(~, ~) are certain

1

complex numbers. I t turns out t h a t if ~] is real t h e n also t h e n u m b e r s u~(~,~) are real. They need n o t all be different w h e n ~ is n o t p r o p o r t i o n a l to $, b u t if t h e y are, we have the case considered by Petrowsky. L e t

F(q, ~)

be the set of all real ~/ such t h a t min~ u~ (~, ~?)> o or briefly,

r ( q , = mi, , > o).

I t t u r n s o u t t h a t F(q, ~ ) =

F(p, ~)

is the i n t e r i o r of a convex cone c o n t a i n i n g ~:.

Also, if ~ ' e

F(q, ~)

t h e n q is hyperbolic with respect to b o t h ~' a n d - - ~ ' , a n d we have / ' ( q , ~ ' ) = F(q,~). W e also consider t h e dual cone

C-= C(q,~)

of

lz'= F(q, ~)

defined as t h e set of all real vectors x such t h a t ( x , ~ ) ~ o for all

~/e F, or briefly

C(q, ~) -~

(x;

(x, ~) >-- o, *] e F(q, ~')).

I t is convex and o r t h o g o n a l to Y2(q). I t s i n t e r i o r is n o t e m p t y if q is reduced, a n d the p a r t of C where (x, $')--~ b is closed a n d bounded if 8 ' e F.

The c e n t r a l question in the Chapters 3 a n d 4 is the effective d e t e r m i n a t i o n of t h e l i n e a r f u n c t i o n a l K(~, ~, f ) . W e use a m e t h o d of f r a c t i o n a l i n t e g r a t i o n developed by M. Riesz [ii] for the wave equation. Again, let t h e polynomial q be n o t c o n s t a n t a n d hyperbolic with respect to ~. L e t /'1 =

Fl(q, ~)

be t h e set of vectors ~' in / ' ~

F(q, ~)

for which there exists a to < I such t h a t q (t~' + i,/) ~ o when ~/ is real a n d t > to. I f ~ e F, t h e n a suitable positive multiple of ~ is i n / ' 1 . L e t ,] be real, let ~' be in F1, p u t ~ = ~' + i*] a n d define q(~)-~ as

e -all~

T h e n i t t u r n s o u t t h a t arg q a n d hence also q(~)-~ is if locally c o n t i n u o u s also singlevalued when ~ ' e / ' 1 a n d ~/ is real. D i f f e r e n t choices of a r g q at a p o i n t will affect q(~),~ only by a f a c t o r e - ~ " where k is a n integer. Assume for a m o m e n t t h a t q is reduced a n d t h a t ~ a > n. ~ T h e n q(~)-~ is the Fourier-Laplace transform" of a c o n t i n u o u s f u n c t i o n Q(a, x) which v a n i s h e s outside C, a n d we have the reciprocal f o r m u l a s

1 ~ m e a n s t h e real part o f a .

(7)

w h e r e t h e i n t e g r a l s are t a k e n over t h e whole space. W h e n q = ~ - - $~ . . . ~ , in w h i c h case (i) becomes t h e wave e q u a t i o n , t h e n q is h y p e r b o l i c with r e s p e c t to any 8 such t h a t q ( 8 ) > o . One finds t h a t F = ( ~ ; 8 1 ~ 1 > o , q ( * / ) > o ) , t h a t

C - ~ ( x ; x151 >-o, q(x)>-o)

a n d t h a t w i t h a suitable choice of a r g q,

Q x) = q r r ( . - ( , , - 2))

w h e n x E C a n d zero elsewhere. This, w i t h a c h a n g e d to l a , is t h e k e r n e l of M. Riesz.

R e t u r n i n g to the g e n e r a l case, we p r o c e e d as follows. L e t S : S(8) be t h e plane (y, 8 ) : o a n d T : T ( 8 ) t h e r e g i o n (y, 8 ) > o . W h e n h E C ( o o ) , x E T a n d

a ~ n we define t h e Riesz o p e r a t o r I ~ by t h e formula.

I ~ h (x) = f q (a, x - - y) h(y) d y .

T

All y such t h a t x - - y e C a n d y e T + S, i.e. such t h a t

( x - - y , 8)<--(x, 8),

con- s t i t u t e a c o m p a c t set

C(x),

a n d t h e i n t e g r a n d v a n i s h e s outside

C(x).

H e n c e t h e i n t e g r a l always exists. L e t

a = a , e C(~),

let

az(y)=

I w h e n

y e C ( x ) a n d

let a~ (y) = o when ] y ] = maxk ]yk ] is large e n o u g h . L e t 8' fi/'1 (q, 8), p u t ~ = 8' + i ~/and

H~ (~) = f h (y) az (y) e - (;, :t) d y.

.r

T h e n by v i r t u e of P a r s e v a l ' s t h e o r e m , a n o t h e r f o r m of

I~h(x)

is

;7~ - - n

loh(x)=(z ) f

W h e n q is n o t n e c e s s a r i l y r e d u c e d , we define

I ~h(x)

by this f o r m u l a . T h e n it

8'

is i n d e p e n d e n t of 8' a n d az as l o n g as e F 1 and a, equals one on

C(x);

a n d t h e f o r m u l a is valid as long as t h e i n t e g r a l is absolutely c o n v e r g e n t , i.e. w h e n a > o . I t is s h o w n in C h a p t e r 4 t h a t w h e n

x e T , I~h(x)

is an e n t i r e func- t i o n of a, t h a t f o r all values of a

t i n u o u s in T a n d a t the same t i m e

= F ' h ( x )

and t h a t

I - k h ( x ) = q ( O /

on

C(x)

t h e n

I ~ h ( x ) = 0

f o r all a.

are c o n t i n u o u s in T + S and those

all its d e r i v a t i v e s w i t h r e s p e c t to x are con- e n t i r e f u n c t i o n s of a, t h a t

q (0/0 x ) I ~§ h(x) -~

0x) kh(x) when k ~ o , 1 , 2 , . . . I f h vanishes F u r t h e r , all t h e d e r i v a t i v e s of

l h (x) ---- 11 h(x)

of o r d e r ~ m v a n i s h on S.

L e t I ~_ be t h e Riesz o p e r a t o r c o n s t r u c t e d as above b u t with 8 c h a n g e d to

-- 8. T h e n I ~ - h (x) is defined w h e n x e T - : T ( - - 8 ) a n d it vanishes if h vanishes on t h e c o m p a c t set C - (x) : (y;

x -- y E C(q,

- - _~) = - - C, (y, 8) >--- (x, 8)). I t t u r n s out t h a t all t h e d e r i v a t i v e s of

11__ h(x) -- I h (x)

v a n i s h w h e n x e S. W e p u t

Ih(x) : I [ h (x)

(8)

8 Lars GArding.

w h e n x E T - . T h e n

I h E C(oo)

a n d one can prove t h a t i f h k -~ O, t h e n also

Ihk ~ o.

Also, if all the derivatives of h (x) of order < m vanish when x E S, or briefly, if h (x) (m) o, (x E S), t h e n

(3)

h (x) -~ I q (O/Ox) h(x).

I n t e r m s of t h e operator / , the linear f u n c t i o n a l K(2, x , f ) is given by the f o r m u l a

K (2, x,.f) : f(x) -- I q (0 / 0 x)f(x).

t t follows f r o m (3) t h a t if f a n d g are in C(oo) and

f ( x ) - - g ( x ) ('')o, (xES),

the r i g h t s i d e of this f o r m u l a does n o t c h a n g e if we change f to g. P u t 1

m - - 1

P i f ( x ) = ~.j (a, 2)-': (x, 2)k f (k) (x --

(a,

~)-1 (x, 2) a)/k[

o

where a is a vector such t h a t (a, 2 ) # o a n d

f(k)(x)=(a, O/Ox)kf(x).

T h e n

P~fEC(oo) and f(x)--P~f(x)~m)o, (xES),

a n d consequently a n o t h e r f o r m of

K($, x , f )

is

K (2, x , f ) -= P~f(x) -- I q (O / O x) P~f(x).

Now P ~ f depends only on t h e values of f a n d its derivatives of order < m in t h e plane (y, 2) = o a n d it is easy to see t h a t if fk -+ o (2) t h e n P ~ f i ~ o. H e n c e if fk ~ o($) it follows t h a t K(~, ",fk)--> o. Moreover, if

f E A ( q )

t h e n

f ( x ) = K(2, x, f).

This proves Theorem I I w h e n q is n o t a constant. I f q is a constant, it is n o t zero so t h a t A (q) c o n t a i n s only t h e element f---- o a n d t h e t h e o r e m is trivially true.

I t is clear t h a t

K(2, x , f )

depends only on t h e values of f a n d its derivatives i n t h e pointset

B(x) -~

(y; x - - y E C1, (•, 2) = o), where Cx = + C according as x E T or x E T , , a n d B (x) = x when x E S. Moreover, B (x) is b o u n d e d a n d closed, i.e. compact, a n d

K ( ~ , x , f )

vanishes if t h e derivatives of f of o r d e r < m vanish on B (x).

I n C h a p t e r 5 we consider the

problem

of C a u c h y w h e n a suitable surface plays t h e part of the plane S---S(~), b u t only for the case t h a t q is homo- geneous a n d reduced. 2

1 p ~ f i s t h e b e g i n n i n g of a Taylor series for f w i t h respect t o t h e variable (x, ~).

s In GARDING [2] t h e results of t h i s c h a p t e r were announced for arbitrary hyperbolic and reduced q, n o t necessarily homogeneous. See t h e first footnote to Chapter 5. The third footnote to t h e same chapter contains a correction to G),~DINO [4],

(9)

In Chapter 6, finally, we give some remarks concerning the d o m a i n of de- pendence of the o p e r a t o r I a n d t h e operator J defined by J f ( x ) - ~ f ( x ) - -

- - I q ( O / O x ) f ( x ) . I t summarizes t h e i m p o r t a n t progress in the t h e o r y of phe- n o m e n a connected with H u y g e n s ' principle t h a t h a s been m a d e recently in a paper by P e t r o w s k y [8] a n d also in a paper by t h e a u t h o r [ 4 ] . - I want to t h a n k here C. Hyltdn-Cavallius, who proved L e m m a 2.2, a n d H . Jacobinski f o r a critical reading of parts of t h e m a n u s c r i p t .

C h a p t e r x.

P r o o f o f T h e o r e m I.

L e t q be an a r b i t r a r y p o l y n o m i a l in n variables w i t h complex coefficients, let ~ = (~1 . . . . , ~ n ) # 0 be a n a r b i t r a r y real vector a n d define A (q) as in the in- troduction. W h a t is m e a n t by f k -~ 0 a n d 9r ~ 0(~) when f k , (k = I, 2 , . . . ) , is a sequence of elements .in C(oo) is explained in the i n t r o d u c t i o n . I t is assumed t h a t t h e r e is a real point x ---- (Xl, 9 9 x,~) such t h a t (x, ~) ---- Xl ~1 + ' " + xn ~,, # 0 a n d f ~ ( x ) - + 0 w i t h I / k whenever A ( q ) ~ f k ~ 0(~) a n d we have to show t h a t in this case q is hyperbolic with respect to ~. I t is shown in L e m m a 2.2 in the next c h a p t e r t h a t if q is hyperbolic w i t h respect to ~ it is also hyperbolic w i t h respect to - - ~ . H e n c e c h a n g i n g if necessary ~ to - - ~ we m a y suppose w i t h o u t loss of generality t h a t (x, ~ ) > o.

L e t ~ be a complex vector and t a complex n u m b e r (if any) such t h a t

q(tt

Then A (q) c o n t a i n s t h e f u n c t i o n

f (t, ~, y) : e ('-x,t~+~).

I t is clear t h a ~ f ( t , ~ , x ) = I a n d when ( y , ~ ) - ~ o one has

(2) f ( t , ~, y) = e -t(~'~) e Iv-x,~-)

Clearly o u r a s s u m p t i o n implies t h a t we c a n n o t find a sequence t (k), ~(~') satisfying (I) such t h a t f ( t (~), $(k), .)_> o(~). L e t us first assume t h a t there exists a vector -~ ~' such t h a t (I) is satisfied for all t. L e t D f be a fixed derivative of f with respect to y a n d B a c o m p a c t set in the plane (y, ~) = o. T h e n if t is real, per- f o r m i n g t h e differentiation and p u t t i n g (y, ~)---~ o a f t e r w a r d s we get as in (2)

D f t -~ D r ( t , ~', V) = 0 (t M) e -t (x, ~), ( M >-- o),

(10)

10 Lars G&rding.

u n i f o r m l y in B. L e t t i n g t ~ co it follows t h a t j ~ - § 0(2). H e n c e t h e r e can be no v e c t o r s s u c h t h a t (I) is satisfied f o r all t.

L e t s be a c o m p l e x n u m b e r a n d p u t ~ = s t ' w i t h a r b i t r a r y b u t fixed ~'.

T h e n t h e p o l y n o m i a l q(z, a) = q (r ~ + a~') in t h e i n d e t e r m i n a t e s ~ a n d a is n o t zero f o r a n y c o m p l e x value s of a. 1 L e t t h e d e g r e e of q ( v , a ) w i t h r e s p e c t to b o t h i n d e t e r m i n a t e s a n d t h e i n d e t e r m i n a t e v be m' a n d m r e s p e c t i v e l y . W e a r e g o i n g to s h o w t h a t m ~ m'. W r i t e q(z, a) a c c o r d i n g to d e s c e n d i n g p o w e r s of ~,

= + . .

I f q~(a) is n o t a c o n s t a n t t h e n m ' > m a n d t h e r e exists a c o m p l e x n u m b e r so s u c h t h a t q ~ I s 0 ) ~ - o . I n a c e r t a i n n e i g h b o r h o o d of s = s o, e v e r y zero t = t (s) of q ( t , s ) - ~ o is of t h e f o r m t(s) = o or

(3) t(s) = a ( s - - so) ~ (I + o(I)),

w h e r e a r o, b is r a t i o n a l a n d o(I) -~ o as s -~ so. N o t all t(s) are b o u n d e d w h e n s -~ So, b e c a u s e t h e n q (t', So) = lim q,~ (s) II (t' - - t(s)) = o f o r e v e r y c o m p l e x n u m b e r t'.

8 ~ 8 o

H e n c e we m a y a s s u m e t h a t b < o in (3). W e also c h o o s e a r g ( s - - s o ) so t h a t a ( s - - s o ) b is r e a l a n d positive. T h e n ~ t ( s ) = la] I s - - s 0 ] b ( I + o(I)) a n d i t is e a s y to see t h a t

D f ~ = D f ( t ( s ) , s$', y) = O(]s --s01 -M) e -(~, ~)~t('s), ( M > o),

u n i f o r m l y in B so t h a t f, ~ o(2) as s--, so. N e x t a s s u m e t h a t qm is a c o n s t a n t b u t t h a t r n ' > m, in w h i c h case m is n e c e s s a r i l y positive. I n a c e r t a i n neigh- b o r h o o d of s = c o , e v e r y zero t = t ( s ) of q ( t , s ) = o is of t h e f o r m t ( s ) = o or

(4) t (,~) = a s b ( I + o (I)),

w h e r e a # o , b is r a t i o n a l a n d o ( I ) - + o as s - ~ o o . N o t e v e r y b is --< I b e c a u s e o t h e r w i s e q(t's, s) = q,~ II (t's -- t(s)) = O(s '~) f o r e v e r y c o m p l e x n u m b e r t' w h i c h c o n t r a d i c t s t h e a s s u m p t i o n m ' > m. L e t b > I in (4) a n d choose a r t s so t h a t a s b is r e a l a n d p o s i t i v e a n d c o n s e q u e n t l y ~Rt(s)-= lal Is lb(I + o(I)). T h e n one g e t s

Df~ =- D f ( t (s), s r y) ~- 0 (1 s I M,) e M, I, I e-(~, ~) ~t (.~), (3/i, M2 > o), u n i f o r m l y in B so t h a t f~ --, o (~:) as s -~ co.

N o w l e t p be t h e p r i n c i p a l p a r t of q, so t h a t q = p + r w h e r e p is h o m o -

T o s a y t h a t q(v, s) i s z e r o m e a n s b e c a u s e v i s a n i n d e t e r m i n a t e , t h a t i t i s i d e n t i c a l l y z e r o , c o n s i d e r e d a s a p o l y n o m i a l i n z .

(11)

g e n e o u s and t h e d e g r e e of p is g r e a t e r t h a n t h e d e g r e e of r, or if q is a con- s t a n t , r = o: Because q is n o t i d e n t i c a l l y zero, p is n o t i d e n t i c a l l y zero. H e n c e we can choose $' so t h a t p(~') ~ o. I f p(~) = o t h e n f o r q(3~ + a~') one would h a v e m ' > m which is impossible. H e n c e p ( ~ ) ~ o, a n d m is t h e c o m m o n d e g r e e of p a n d q. I f m = o t h e n q ( t ~ + i ~ ) = p ( ~ ) ~ o . C o n s i d e r t h e case r e > o , let

~7 be real and c o n s i d e r t h e zeros t = t ( i ~ ) of t h e e q u a t i o n q(t~ + i ~ ) = o . L e t

~t(i~l) a t t a i n its m a x i m u m t ' ( 8 ) i n t h e d o m a i n max~]vk } ~ s w h e n ~ = ~ ( s ) a n d t ( i ~ ) = t(s). By v i r t u e of t h e l e m m a p r o v e d n e x t in this c h a p t e r , f o r sufficiently l a r g e s one has t ' ( s ) = o or

(5) t'(s) = + 0(,))

w h e r e a is real a n d n o t zero, b is r a t i o n a l and 0 ( I ) - + o as s - ~ co. I t is clear t h a t t ( s ) = O(s v) f o r some b ' > o , (actually b ' - ~ I). I f t ' ( s ) w e r e n o t b o u n d e d f r o m a b o v e w h e n s -> c~, one would h a v e a > o and b > o in (5) a n d t h e n

Df~ : D f ( t (s), V (s), y) = 0 (s ~r) e -(x, ~)t' (~), ( M > o), u n i f o r m l y in B so t h a t f~-~ o (8) as s - + co.

I f t ' ( s ) ~ t o one has q ( t ~ + i ~ ? ) ~ o when t > t 0 a n d ~ is real. T h i s r e d u c e s t h e p r o o f of T h e o r e m I to t h e p r o o f of t h e f o l l o w i n g lemma.

L e m m a . L e t q(T, e l , . . . , a~) be a complex polynomial in the i~determi, ates 3, al . . . a, such that when sl . . . 8, are real, the degree with respect to 3 of the polynomial q ( T ) = q(3, s~ . . . . , s~) is positive a~d independe~t of s ~ , . . . , sn. ~ L e t M(s) be the maximum of the real parts of the zeros of the equation7 q (3) = o when maxl~ Isk ] ~ s. Then for sufficiently large s, either 51 (s) = o or

+

where a is real and not zero, b is ratio,el a~d o(I) -~ o as s-+ c>o.

P r o o f . L e t ~ r = M ~ ( S l , . . . , s~) be the m a x i m u m of t h e real p a r t s of t h e zeros of the e q u a t i o n q ( 3 ) - ~ o. I t is clearly a c o n t i n u o u s f u n c t i o n of s ~ , . . . , s , . L e t I S l , . . . , s ~ I be t h e g r e a t e s t of t h e n u m b e r s I S l [ , . . . , Is,,I. L e t M ~ =

= ]Ie(s~ . . . s~, s) be t h e m a x i m u m of M~ w h e n s~, . .., se are fixed a n d se+~ . . . . , s~

vary so t h a t Is~+~ . . . . , s,,] ~ s. I t is also a c o n t i n u o u s f u n c t i o n of s ~ , . . . , s~, s.

This is a l m o s t evident, b u t we give h e r e a f o r m a l proof. P u t M~. ~ Me (s~,..., s~, s')

1 I f w e w r i t e q i n t h e f o r m X' qk (el . . . . ' an) vk w h e r e qm (61 . . . . , am) i s n o t ( i d e n t i c a l l y ) z e r o

0

t h i s m e a n s t h a t m > o a n d t h a t q m ( S l . . . . , sn) i s n e v e r z e r o .

(12)

12 Lars G~rding.

a n d s u p p o s e t h a t I S l - - S ' l , . . . , & - - s ' k , s - - s ' [ <--J. Choose s1:+~ . . . . , sn s u c h t h a t M n -~ M n ( s l . . . . , Sn) = M k a n d p u t sj = csj, (j > k), w h e r e c ~- I w h e n s' --~ s a n d c : s ' / s w h e n s ' < s . T h e n [ s - - s ~ , . . . , s n - - s ~ [ - - ~ l t ~ , ( I - - c ) sl ~ [ ( ~ , s - s ' l ~ a n d also [ s ~ . + l , . . . , s~,[ ~ c s ~--s'. H e n c e by t h e definition of M~. we g e t M ~ - - ~ M ; ~ = !

= i n (81,' . . . , S~)' so t h a t ~T/i --> ~/~ - I1]/, - M g l . N o w w h e n It - - t l , . . . , tn--t,,' I -~

a n d ]tl . . . . , t~, t~, . . . , t~] is less t h a n s o m e c o n s t a n t g r e a t e r t h a n Is1, . . . , s n , sl . . . . , snl t h e n by u n i f o r m c o n t i n u i t y , ] M n ( t i , . . . , in) - - . ~ l n ( t ' , . . . , t')] ~-- S(~) w h e r e e(6) -~ o as ~ -~ o. H e n c e Ms ~ M k - - e ( J ~ a n d by s y m m e t r y , M k ~ - - M ' k - - e ( 5 ) so t h a t I M k - - ~ / ; I -< e (6).

L e t C -~ C [ u 1 . . . . , ud be t h e r i n g of all r e a l p o l y n o m i a l s in t h e i n d e t e r m i n a t e s u l , . . . , u t . A n d e m e n t q E C is called a p r o p e r f a c t o r of p E C if p ~ q q ' w h e r e q' E C a n d q a n d q ' are n o t r e a l n u m b e r s . A n d e m e n t p is called p r i m i t i v e w i t h r e s p e c t to ul if it c o n t a i n s no p r o p e r f a c t o r i n d e p e n d e n t of Ul.

L e t Ak be t h e class of all real p o l y n o m i a l s / 0 = - - P ( v , al . . . . , a~, a ) ~ o 1 s a t i s f y i n g

(6) P (Mk, Sl . . . . , Sk, S) = 0

f o r all r e a l sl . . . . , sk, s s u c h t h a t s ~ o a n d h a v i n g no p r o p e r f a c t o r w i t h t h e s a m e p r o p e r t y . I t t h e n f o l l o w s t r i v i a l l y t h a t P h a s no p r o p e r m u l t i p l e f a c t o r s b u t also t h a t it is p r i m i t i v e with r e s p e c t to T. I n f a c t , l e t P = P 1 P 2 w h e r e /)2 is p r i m i t i v e a n d Px is i n d e p e n d e n t of T. T h e f o r m u l a (6) s h o w s t h a t P 2 ( M k , sl . . . . , & , s ) : o a t e v e r y p o i n t w h e r e /01(sl . . . . ,sk, s ) ~ o . B u t t h e s e p o i n t s a r e d e n s e in t h e r e g i o n s---o a n d M , is c o n t i n u o u s t h e r e so t h a t (6) f o l l o w s f o r P2 a n d c o n s e q u e n t l y /)1 is a c o n s t a n t so t h a t P is p r i m i t i v e .

T h a t An h a s a t l e a s t one e l e m e n t c a n be seen as follows. T h e r e is c e r t a i n l y a r e a l p o l y n o m i a l Q' (T, a l , . . . , an) ~ o w h i c h v a n i s h e s w h e n aj = sj, ( j = I, . . . , n), a n d T ~ 89 (tj + t~), (j, k = i, . . . , m), w h e r e ti, 9 9 tm a r e t h e m > o zeros of t h e e q u a t i o n q(T, Sl, 9 9 s,) ~ o. C o n s e q u e n t l y it h a s a t l e a s t o n e f a c t o r Q in An.

A s s u m e n o w t h a t k > o a n d t h a t P E A k . W e a r e g o i n g to c o n s t r u c t a n e l e m e n t P ' E A k - 1 . I f P ~ = O P / O a k : o , t h e n /0 is i n d e p e n d e n t of ak, SO t h a t b e c a u s e Mk is c o n t i n u o u s i t is i n d e p e n d e n t of sk f o r s u c h sl . . . sk, s t h a t P ( T , sl . . . . , sk, s) ~ o. B u t t h e s e a r e d e n s e in t h e r e g i o n w h e r e Mk is defined so t h a t b e c a u s e Mk is c o n t i n u o u s it is i n d e p e n d e n t of sk f o r all values of t h e o t h e r a r g u m e n t s . H e n c e P ' = P E Ak-~. A s s u m e t h a t /ok ~ o a n d let

1 F r o m n o w o n i n t h i s c h a p t e r , s m a l l G r e e k l e t t e r s i n d i c a t e i n d e t e r m i n a t e s . T h a t _ P = o t h e n m e a n s t h a t a l l t h e c o e f f i c i e n t s o f t> v a n i s h .

(13)

M k - 1 : M k ( 8 1 , . . . , 8 k - l , Jk, 8)

f o r fixed s l , . . . , sk-1 a n d s. I f

Iss

we h a v e one of t h e equalities (7) P ( M k - 1 , sl, . . . , Sk-1, +_ S, s) = O.

Assume n e x t t h a t Is~[ ~ s. L e t t h e values of Ot)/OT a n d Pk be cl a n d c~ rr speetively when T----M~-I, a l : S l , . . . , a k : S ~ a n d a : s . I f n o t c l = c 2 - ~ o , t h e plane c u r v e whose p o i n t s are (sk, Mk), (]S~ I < S), has a t a n g e n t at t h e p o i n t (s~, Mk-1) a n d because Mk--~ M k - i it follows f r o m e l e m e n t a r y c o n s i d e r a t i o n s t h a t this t a n g e n t m u s t be parallell to t h e sk-axis a n d t h i s a g a i n implies t h a t c2----o.

H e n c e we g e t

s 81 . . . . , 8 k - 1 , 8k, 8) -~- 0 p

(S)

P k (Mk-l, 81 . . . . , 8k--1, 81, 8) ~- O, a n d t h e s e e q u a t i o n s are also t r u e if cl = c2-= o.

C o n s i d e r t h e discriminaDt /~ of P w i t h r e s p e c t to ak. I t b e l o n g s to C = C[T, a l , . . . , ak-1, a] a n d we w a n t to p r o v e t h a t it does n o t vanish. P u t C1 = C [T, al, ., ak, a], let C' be t h e q u o t i e n t field o f C a n d let C' [ak] be t h e r i n g of all real p o l y n o m i a l s in ak with coefficients in C'. I t is clear t h a t an e l e m e n t in C' [a~.] whose d e r i v a t i v e with r e s p e c t to ak vanishes is i n d e p e n d e n t of ak. H e n c e because /~ d e p e n d s on ak, it follows I t h a t if B = o t h e n P is of t h e f o r m P 2 P 2 w h e r e /)1 a n d /)2 are in C' [ak] a n d /)1 d e p e n d s on ak. B u t t h e n 2 we can also w r i t e P as P [ P ~ where P1 ---~ Pl/)1 a n d t)2 : P 2 P~ are in C1 a n d Pl a n d P2 are suitable e l e m e n t s of C'. H e n c e P has t h e p r o p e r m u l t i p l e f a c t o r 151 so t h a t P ~ Ak a g a i n s t t h e a s s u m p t i o n . C o n s e q u e n t l y R ~ o.

I t follows f r o m (8) t h a t

(9) /~ (Mk-1, 81, . . . , 8k-1, 8) = O .

M o r e o v e r , / ) + ~ P (T, al, 9 9 _+ a, g) ~ o because o t h e r w i s e JP has t h e f a c t o r ak T a which implies t h a t P is n o t p r i m i t i v e w i t h r e s p e c t to v a g a i n s t the a s s u m p t i o n t h a t P E A k . H e n c e if / ' I = P + P - R we h a v e P x ~ O a n d by v i r t u e of (7) a n d (9)

P I ( M k - 1 , .el, . . . , 8k-1, 8)-= 0

w h e n s ~ o. H e n c e P has a t least one f a c t o r P ' in Ak-1. S t a r t i n g f r o m Q in A , we can t h u s c o n s t r u c t a n e l e m e n t Qn-IEAn-1 and, c o n t i n u i n g , finally a n

1 VAN DER W A E R D E N [ I 2 ] I p. 93"

2 1.C.p. 75--77.

(14)

14 Lars G~rding.

e l e m e n t G in Ao, Because

M ( s ) ~ Mo(s)we

g e t

G(M(s),

8 ) : o, (s ~ o). N o w in a n e i g h b o r h o o d N of s = o % every s o l u t i o n t of G ( t , s ) - ~ - o is e q u a l t o o n e o f a finite n u m b e r of different c o n v e r g e n t series of c e r t a i n real f r a c t i o n a l d e s c e n d i n g powers of s, one of which m a y vanish i d e n t i c a l l y while t h e o t h e r s have t h e f o r m

(1o) a s b + . . . . a s b ( I + o(I)),

w h e r e a ~ o, b is r a t i o n a l and s b is t h e h i g h e s t p o w e r of s t h a t occurs in t h e series, so t h a t o(I)--> o as s - ~ co. All t h e s e series assume d i f f e r e n t values in a suitable N a n d because

M(s)

is c o n t i n u o u s it is i d e n t i c a l with one of t h e m t h e r e a n d we assume t h a t it is (Io). T h e n a is real because it is t h e limit of

M(s)s -b

as s-+ 0% a n d this proves t h e lemma, w h i c h of course also is t r u e if we by

M(s)

m e a n t h e m i n i m u m of the real p a r t s of the zeros of q ( T ) ~ o in t h e r e g i o n maxk l skl -< 8.

C h a p t e r 2.

H y p e r b o l i c P o l y n o m i a l s .

R e d u c e d p o l y n o m i a l s . L e t q ( ~ ) ~ q ( ~ l , . . . , C~) be a p o l y n o m i a l in ~1 . . . . , ~n w i t h complex coefficients a n d consider t h e d i f f e r e n t i a l e q u a t i o n

(I) q (0/0 x)f(x) =

o,

w h e r e

f ( x ) : f ( x l , . . . , x,)

is a c o m p l e x a n d infinitely differentiable f u n c t i o n of n r e a l variables x l , . . . , x , . W r i t e x----(Xx . . . . , x~) a n d c o n s i d e r a real l i n e a r t r a n s f o r m a t i o n

X' ~ X ]~V

w h e r e _~r is t h e transpose of a r e a l q u a d r a t i c n o n - s i n g u l a r m a t r i x M. ] t t h e n follows t h a t

O/Ox-=(O/Ox')_~[

so t h a t (I) becomes

(2) q (o/o~' M) f(x' 5t-~) = o.

L e t us p u t

q'($')=q(~'M)

a n d

f ' ( x ' ) = f ( x ' ] ~ - l ) .

I t is clear f r o m (2) t h a t

f ~ - f '

is a l i n e a r one-to-one m a p p i n g of t h e solutions of (I) u p o n t h e solutions of

(3)

q' (O/Ox') f ' (x') = o.

Because t h e a r g u m e n t

O/Ox

of q in (1) a n d t h e a r g u m e n t x of f t r a n s f o r m d i f f e r e n t l y a n d we h a v e to c o n s i d e r a r g u m e n t s of q which like x are vectors w i t h n u m e r i c a l c o m p o n e n t s , it is c o n v e n i e n t to do as follows. C o n s i d e r t w o v e c t o r spaces E a n d E* w h e r e E consists of all vectors w i t h n real c o m p o n e n t s a n d

(15)

E* consists of all vectors w i t h n complex components. W e denote t h e elements of E by L a t i n letters x, y , . . . a n d t h o s e of E* by Greek letters ~, ~, ~ , . . . I f E* is subjected to t h e linear t r a n s f o r m a t i o n ~-~ ~ ' M , the elements of E should be t r a n s f o r m e d according to the f o r m u l a x - ~ x ' ~ - l . I n such a way the scalar p r o d u c t

( x , = x : + . - . +

r e m a i n s i n v a r i a n t if we s u b s t i t u t e x' f o r x and $' f o r ~. W h e n it is a complex or real vector, the a r g u m e n t of q should always be t h o u g h t of as a n element of E*, while the a r g u m e n t of a solution of (I) o u g h t to be considered an element of E. W e have tacitly stuck t o this convention in the preceding chapter.

A suitable choice of M m a y m a k e (3) easier to h a n d l e t h a n (I). L e t l be the least of all integers l' for which there exists a m a t r i x M" such t h a t q(~'M') is a polynomial in ~ { , . . . , $'t, only w h e n ~ { , . . . , ~n are considered as indeter- minaLes. I f M is a m a t r i x corresponding to l it is clear t h a t x'z+l . . . . , xn p e n t e r into (3) only as parameters. A polynomial for which l ---- n will be called reduced.

L e t q be a n a r b i t r a r y polynomial in n variables with complex coefficients.

The following concept is useful.

Definition. L e t ~9(q) be the set of all real vectors ~' in E* such t h a t q (7 + t = q (7)

for all real n u m b e r s t and real vectors ~ in E*.

L e m m a 2.1. The set ~ (ql is linear over the real numbers. A polynomial q is reduced , f and only ~:f ~ ( q ) - ~ o . I f the

independent and 0 (t+:) . . . . , 0 (') constitute a

= q (~i 0 (1) + "'" + ~n 0 (~)) is reduced.

real vectors 0(1), . . . , ()(") are linearly basis of Q(q) then

q'(~'~,..., ~;)-~

Proof. I f ~/' a n d ~/" are in f2 (q) t h e n

q(~? + t'~ I' + t"~?")----q(~ + t'~l')=q(~l)

for all real ~/ a n d real t' a n d t". H e n c e ~Q(q) is linear. Assume t h a t q is n o t reduced a n d let /,(1), . . . , #(,) be the columns of such a m a t r i x M t h a t q ( ~ ' M ) =

_ _ ' ( 1 ) '

- - q ( ~ l / , + "'" + ~n/, (~)) is i n d e p e n d e n t of ~n. T h e n q(~ + t / , ( n ) ) = q ( ~ ) f o r all re~l ~ a n d t. H e n c e ~(q) contains t h e e l e m e n t /,(n)~ o. Conversely, suppose t h a t o # y'GS2(q) a n d let

/,(1),.,., p(n--1)

a n d /,(n)__ 7' be a basis for all real vectors ~]. T h e n

q (~{ #(z) + ... + ~;, #(,)) _ q (~ #(:) + .,. + 5 - : #(n-l))

(16)

16 Lars Gtirding.

for all real ~ , . . . , $~. B u t t h e n the same equality holds for i n d e t e r m i n a t e $~, . . . , ~,~

a n d consequently q is n o t reduced. As to the last assertion of the lemma, the same a r g u m e n t shows t h a t q ( ~ 0/1) + ... + ~ 0(~1) is a p o l y n o m i a l in ~ , . . . , ~ alone, say q' (~, . . . , $~). I f q' were n o t reduced, t h e n one could find real n u m b e r s 71,-.., T~

n o t all zero such t h a t

q'(vl + t v l , . . . , 7, + t T ; ) = q ( w , . - . , W)

for all real t a n d T 1 , . . . , 7 ~ - B u t t h e n q ( 7 ) : q ( v + tT") for all real t a n d T i f T" = T~ t~l) + "" + T~O(~). H e n c e o ~ V" E t? (q) a n d 0 (l+l), . . . , O(') is no~ a basis of Q(q) against assumption.

H y p e r b o l i c p o l y n o m i a l s . L e t E consist of all real elements in E*, i.e. of all vectors with n real components. L e t q be a . p o l y n o m i a l in n variables w i t h complex coefficients, let it be hyperbolic 1 w i t h respect to ~ E E a n d let t h e degree m of q be positive. I f p is the principal p a r t of q a n d T e E , t h e n because p(~) # o, t h e degree of q(t~ + i T ) = p ( ~ ) t ~ + ... w i t h respect to t is m. Hence

there are complex n u m b e r s v~ (~, iT) , (v ---- I, . . . , m), such t h a t

~n

(4) q (t + i 7) = p 1-[ (t + v, i T))

1

f o r a n y complex t, L e t ~ t be the real and ~ t t h e i m a g i n a r y p a r t of t. Because q is hyperbolic w i t h respect to ~ we g e t

q(t~ + i v ) : q ( ~ t ~ +

i(3t~ +T)) ~

o

if ~ t > to. Now q(t ~ + iT) vanishes when t = -- v, (~, iv). H e n c e m a x , -- ~ v, (~, i T) --~ to

so t h a t

(5) min,. ~ v , (~, iv) --~ - - to

for all real T. Conversely, if p (~) # o a n d (5) is satisfied, it follows from (4) t h a t q(t~ + i T ) # o w h e n ~ t > to so t h a t q is hyperbolic w i t h respect to ~.

I t follows directly f r o m the definition t h a t if q is hyperbolic w i t h respect to ~, i~ is also hyperbolic w i t h respect to a n y positive m u l t i p l e o f ~. The same conclusion is, however, also t r u e for the negative multiples of ~. I n order to prove this it is sufficient to prove t h e following lemma.

L e m m a 2.9.. I f a polynomial q is hyperbolic with respect to ~, it is also hyp~'- bolic with respect to --~.

1 See the definition given in the beginning of the introduction.

(17)

P r o o f 3 I f q is a c o n s t a n t it is n o t zero, a n d i t follows t h a t q is h y p e r b o l i c with r e s p e c t to all real vectors, in p a r t i c u l a r - - ~ . I f q is n o t a c o n s t a n t we c a n use (4). T h e sum /~ = ~ v l ( ~ , i ~ ] ) + .-. + ~ v ~ ( ~ , iv) is a p o l y n o m i a l in

~ , . . . , Un of d e g r e e ~ I a n d by v i r t u e of (5) b o u n d e d f r o m below a n d h e n c e it m u s t be c o n s t a n t . B u t t h e n w i t h r , - ~

,~v,(~,i~)

we g e t

r , = R - - r~ . . . r , _ ~ - - r,+~ r~ ~ R -F ( m - - I) t o

f o r all ~. B u t t h e n it follows f r o m (4) t h a t

q(-- t~+i~) ~ o

w h e n t > R + ( m - - I ) to.

Also p ( - - ~ ) ~ ( - - 1)~p(~) ~ o. H e n c e t h e l e m m a is proved.

T h e d e g r e e of

p(t~ + 7 ) : P ( ~ ) W + " "

w i t h r e s p e c t to t is m. H e n c e t h e r e are m c o m p l e x n u m b e r s u,($, ~), (v = I . . . . , m), such t h a t f o r a n y c o m p l e x t,

(6)

p(t~ + ~)=p(~) f i (t + u,C~,V))

a n d in p a r t i c u l a r w h e n t-~--o,

(7) p (7) = p ] I

1

T h e f o l l o w i n g i d e n t i t i e s in w h i c h a ~ o is a c o m p l e x n u m b e r , ~' a v e c t o r in E*

such t h a t p ($') ~ o, U an a r b i t r a r y e l e m e n t in E* a n d a suitable l a b e l l i n g of t h e n u m b e r s u,(~, U) is u n d e r s t o o d are i m m e d i a t e c o n s e q u e n c e s of (6) a n d t h e homo- g e n e i t y of p,

u, (~, ~) = I, u, (~, a 7) = a u, (~, U),

(8)

u , ( a ~ , u ) : a - Z u , ( ~ , ~ ) , u,(~,$ + a T ) = ~ + au,($,~),

I t is clear t h a t (6), (7) a n d (8) are valid when p is a n y h o m o g e n e o u s poly- nomi~l of d e g r e e m aud p ( $ ) ~ o.

Lemma

2.3. A necessary and sufficient condition that a homogeneous polynomial p of positive degree is hyperbolic with respect to ~ is that p (~)~ o and that the

numbers u, (~, 7) defined by

(6)

are all real when ~ is real.

P r o o f . L e t p be h y p e r b o l i c with r e s p e c t to ~. A p p l y i n g (8) we get if a a n d

~/ are real

I o w e t h e p r o o f t o C. I - I Y L T ~ N - C A V A L L I U S . 2 - 642127 Acts mathematiea. 85

(18)

18 Lars Ghrding.

By virtue of (5), tile left side is bounded from below for all v a n d real a . B u t this clearly implies t h a t ~ u , (~, ~/)---o for all v.

Conversely, if 19 (~) ~ o a n d t h e numbers u, ($, ~7) are real when ~/is, a p p l y i n g (8) we get

p(t~ + i~)=p(~)ii(t

+ i u , ( ~ , r ~ o

1

w h e n t > o (or t < o), so t h a t p is hyperbolic with respect to ~.

R e m a r k . M u l t i p l y i n g both sides of (7) by p(~)-I we g e t p (~)-~/9 (~) = I [ u,

(~, ~).

1

H e r e the r i g h t side is real so t h a t p ( ~ ) - l p ( r l ) is a real p o l y n o m i a l in r/.

Our n e x t 1emma is classical.

L e m m a 2.4. L e t

a n d

t m + a I t m-1 -{- " ' " -~- a,, : fi (t -- t,)

1

m

t m + bl tin-1 + . . + b , ~ = l I ( t - - s ~ )

1

be two p o l y n o m i a l s w i t h complex coeffieients. T h e n there e x i s t ; a labelling o f the n u m b e r s s x . . . sm such that m a x , It, - - s, I tends to zero w h e n ax, 9 9 am are f i x e d a n d m a x ,

la,--b,I

tends to zero.

Ostrowski x proved the more precise result t h a t if

e(a, b ) = 4 m m a x , ( I , I a, li/", Ib, I 1/')

(Y,

[a~ - - btz]2) 1.2~n ,

/z

t h e n there exists a labelling of the n u m b e r s s x , . . . , sm such t h a t max, It, - s,I -<

e(a, b).

L e m m a 2.5. I f a p o l y n o m i a l q is hyperbolic w i t h res/geet to ~, then also its p r i n c i p a l p a r t is.

Proof. I f q is a constant, t h e n /9 = q a n d the lemma is trivial. H e n c e assume t h a t t h e degree m of q is positive, let (6), (7) a n d (8) refer to t h e prin-

I [7] 1 'j. 2 0 9 - - 2 1 2 .

(19)

cipal p a r t p of q, let 7 a n d s ~ o be real a n d p u t q~(t) = s - ' n p ( ~ ) -~ q ( s t ~ + i s n ) . T h e n as s ~ co, qx(t) = t '~ + ... c o n s i d e r e d as a p o l y n o m i a l in t t e n d s t o p ~ (t) =

= p ( ~ ) - l p ( t ~ + i ~ ) . N o w by v i r t u e of (4) a n d ( 6 ) t h e zeros of q x ( t ) = o a n d pl(t) = o are t -~ - - s -1 v, (~, i s 7) a n d t = - - u, (~, i7) r e s p e c t i v e l y , (v = I . . . . , m).

H e n c e t h e p r e c e d i n g l e m m a c o m b i n e d w i t h (8) shows ~hat m i n , s - X ~ v ~ ( ~ , i s T ) -+ m i n , ~ t ' u , ( ~ , 7)

as s - + c o . H e r e by v i r t u e of (5), the l i m i t of the l e f t side is > o so t h a t min~ ~ i u , ( ~ , 7 ) > - - o . H e n c e c h a n g i n g z/ to - - ~ a n d u s i n g (8) we g e t

o --< min ~ t u ~ (~ e, - - 7 ) = min~ - - ~ i u ~ ( ~ , 7) ~--- - - m a x , ~ i u , ( ~ , 7),

so t h a t m a x , ' ~ i u , ( 8 , 7)--<o. H e n c e all t h e n u m b e r s u , ( ~ , n ) are real w h e n ~/ is.

H e n c e L e m m a 2.3 shows tha6 ~o is h y p e r b o l i c with r e s p e c t to ~.

T h e converse of this l e m m a is n o t true. I n f a c t , p = ~ is h y p e r b o l i c w i t h respee~ to ~ = (I,O) b u t p u t t i n g q = C~ + ~ we have

q (t, + i n ) = (t + i7 ) + = (t + i n l + V )(t + i7 - Vi-7 ) so t h a t

w h i c h is n o t b o u n d e d f r o m below. A less t r i v i a l e x a m p l e is given by

Now t h e r e is one i m p o r t a n t case when t h e converse of o u r l a s t l e m m a is t r u e , ~ n a m e l y w h e n q is n o t d e g e n e r a t e . L e t (6) r e f e r to t h e p r i n c i p a l p a r t p of q. W e say t h a t q is n o t d e g e n e r a t e if u , ( ~ , 7 ) # u v ( ~ , n ) w h e n v # / z a n d 7 is real a n d n o t p r o p o r t i o n a l to ~. To prove o u r assertion write q ( s ) = q ( s ~ + i~), p ( s ) = p ( s ~ + i7) a n d r ( s ) = r ( s ~ + i7) w h e r e r - ~ q - - p a n d resolve qi0 -x i n t o

p a r t i a l f r a c t i o n s as follows

~-~ r ( - - i u , ) ,

(9) q ( 8 ) p ( 8 ) - l m I + ,'(8)~9(.~) -1 = t + ~=l~V~..-i: ~ ) [ 8 + i,,~) -1

w h e r e p ' ( s ) = d p / d s and u, = u,(~, 7) a n d w h e r e we have used (8). L e t E~ be a l i n e a r subspace of t h e space E of all v e c t o r s with n r e a l c o m p o n e n t s such t h a t E~ does n o t c o n t a i n ~ a n d ~ a n d E~ t o g e t h e r s p a n E. By a s s u m p t i o n , rain, ]p'(--iu,,)]---min, [ P ( ~ ) [ I I I - - u , + ut, [ has a positive m i n i m u m M1 w h e n

tt=l

Références

Documents relatifs

49 Ausgehend von dieser Rechtsprechung des EuGH und dem Grundsatz der „parallelen Auslegung von Abkommen und EG-Vertrag“ 50 spricht Vieles dafür, auch bei

Umso wichtiger ist es, dass auch auf diesen prozessualen Zwischenschritt ausreichende Sorgfalt aufgewendet und eine nachvollziehbare Entscheidbegründung geliefert wird. Selbst wenn

Während die meisten bisherigen Arbeiten das Dirichletproblem betreffen (s. die in [3] genannte Literatur), betrachten wir hier die gemischte Randwertauf- gabe und

die Eigenschaften I. 335 oder KELLOG: Foundations of Potential Theory.. Wegen Eigenschaft III.. Eine solche Barriere ist z. Wir bilden jetzt eine Punktmenge Ai), die

verschwinden, aber für den Punkt P alle = 0 sind, dort nicht. für alle stetigen Funktionen f lösbar

Es ist zu erwarten, dass man die Abhiin- gigkeit schi~rfer beschreiben kann, sobald man ~0(s) schiirferen Bedingungen nn- terwirft.. Ich werde im folgenden

(Iber die Anwendung der Variationsrechnung. ~, womit der Beweis unserer Behauptung erbracht ist. Der bewiesene Satz l~sst sich als das transzendente Analogon zu

Dem sogenannten Riemannschen Problem der Theorie der linearen Differen- tialgleichungen (eine lineare Differentialgleiehung yore Fuehsschen Typus zu be- stimmen, deren