• Aucun résultat trouvé

Krylov methods applied to reactive transport models

N/A
N/A
Protected

Academic year: 2021

Partager "Krylov methods applied to reactive transport models"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-01646268

https://hal.inria.fr/hal-01646268

Submitted on 23 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Krylov methods applied to reactive transport models

Jocelyne Erhel

To cite this version:

Jocelyne Erhel. Krylov methods applied to reactive transport models. SIAM Conference on Mathe-

matical and Computational Issues in the Geosciences, Sep 2017, Erlangen, Germany. �hal-01646268�

(2)

Reactive transport model Numerical schemes Numerical experiments

Krylov methods applied to reactive transport models

Jocelyne Erhel

Inria/IRMAR, RENNES

Joint work with C. de Dieuleveult, S. Sabit and Y. Crenner (Inria) F. Pacull, P.-M. Gibert and D. Tromeur-Dervout (university of Lyon)

SIAM conference on Geosciences Erlangen, September 2017

1 / 15

(3)

Reactive transport model Numerical schemes Numerical experiments

1

Reactive transport model

3

Numerical experiments

2 / 15

(4)

Reactive transport model Numerical schemes Numerical experiments

1

Reactive transport model

2

Numerical schemes

3

Numerical experiments

2 / 15

(5)

Numerical experiments

1

Reactive transport model

2

Numerical schemes

3

Numerical experiments

2 / 15

(6)

Reactive transport model Numerical schemes Numerical experiments

Groundwater contamination

Manage groundwater resources Prevent pollution

Store waste, store energy, capture CO

2

Use geothermal energy ...

3 / 15

(7)

Numerical experiments

Reactive transport model

Transport: Partial Differential Equations Single aqueous phase in porous medium Advection and dispersion

Linear transport operator

Chemistry: Algebraic Equations Thermodynamical equilibrium Aqueous, fixed and mineral reactions

N

c

mobile primary species and N

s

fixed primary species Secondary species function of primary species

Minerals at saturation

4 / 15

(8)

Reactive transport model Numerical schemes Numerical experiments

Space discretization

Discretization schemes

Mesh of computational domain with N

m

points (cells, nodes, ...) Eulerian discretization (Mixed Finite Element, Finite Volume, ...) Algebraic chemistry at each point

2D regular mesh

5 / 15

(9)

Numerical experiments

Semi-discrete reactive transport model

Mass conservation equations

 

 

dy /dt + f (c) = q,

−y + g

c

(c, s) = 0, g

s

(c, s) = 0, y (t = 0) = y

0

.

y : total analytical concentrations y ∈ R

Nc×Nm

c: mobile species c ∈ R

Nc×Nm

(ions, etc)

s: fixed species s ∈ R

Ns×Nm

(sorbed species, minerals, etc) f (c): discrete transport applied to mobile species

q: boundary conditions y

0

: initial conditions

g

c

(c, s): total mass of mobile species (involving secondary species) g

s

(c, s): total mass of fixed species (involving secondary species) and saturation thresholds of minerals

6 / 15

(10)

Reactive transport model Numerical schemes Numerical experiments

Time discretization and nonlinear solver

Implicit Euler

y + ∆t f (c) − y

n

= ∆t q,

−y + g

c

(c, s) = 0, g

s

(c, s) = 0.

Nonlinear equations at each time step

g

c

(c, s) + ∆t f (c) − y

n

− ∆t q = 0, g

s

(c, s) = 0.

Nonlinear solver: Newton’s method linearization of equations

Newton-LU: direct linear solver (LU)

Newton-GMRES: iterative Krylov solver (GMRES)

7 / 15

(11)

Numerical experiments

Newton’s method

Function F(c, s) at each point j , 1 ≤ j ≤ N

m

 

 

 

 

 

 

F

j

(c, s) =

g

c,j

(c, s) + ∆t f

j

(c) − y

jn

− ∆t q

j

g

s,j

(c, s)

, g

c,j

(c, s) = g

c

(c

j

, s

j

),

g

s,j

(c, s) = g

s

(c

j

, s

j

), f (c) = (L ⊗ I

Nm

)vec (C (c))

Jacobian matrix

 

 

J

F

(c, s) = J

g

(c, s) + ∆t

J

f

(c) 0

0 0

, J

g

(c, s) = diag(J

g

(c

j

, s

j

)),

J

f

= (L ⊗ I

Nm

)diag(dC

j

(c)/dc

j

)

Preconditioning M M = J

g

(c, s)

8 / 15

(12)

Reactive transport model Numerical schemes Numerical experiments

Numerical example: Andra qualification test

Injection of alcaline water Chemistry

H

2

O ↔ H

+

+ OH

SiO

2

(s) + 2H

2

O ↔ H

4

SiO

4

H

4

SiO

4

↔ H

3

SiO

4

+ H

+

NaOH ↔ Na

+

+ OH

Mugler, G. and Bernard-Michel, G. and Faucher, G. and Miguez, R. and Gaombalet, J. and Loth, L. and Chavant, C., Projet ALLIANCES: plan de qualification, CEA, ANDRA, EDF

9 / 15

(13)

Numerical experiments

Results of simulations: Andra test case

Computations done using GRT3D (Inria and ANDRA software)

J. Erhel, S. Sabit and C. de Dieuleveult, Solving Partial Differential Algebraic Equations and Reactive Transport Models , Computational Science, Engineering and Technology Series, 2013

10 / 15

(14)

Reactive transport model Numerical schemes Numerical experiments

Numerical experiment: MoMaS 2D easy test case

Flow conditions Velocity

J. Carrayrou, M. Kern and P. Knabner, Reactive transport benchmark of MoMaS, Computational Geosciences, 2010

11 / 15

(15)

Numerical experiments

Results of simulations: MoMaS 2D easy test case

Computations done using GRT3D (Inria and ANDRA software) with a mesh of 80 × 168 cells

J. Erhel and S. Sabit, Analysis of a global reactive transport model and results for the MoMaS benchmark, Mathematics and Computers in Simulation, 2017

12 / 15

(16)

Reactive transport model Numerical schemes Numerical experiments

Comparison of Newton-LU and Newton-GMRES

Newton-LU with UMFPACK and Newton-GMRES with PETSC Test case Mesh Solver CPU Time (minutes)

ANDRA 322 × 224 LU 94

GMRES 8

MOMAS 40 × 84 LU 189

GMRES 52

MOMAS 80 × 168 LU 3012

GMRES 621

F. Pacull, P.-M. Gibert, S. Sabit, J. Erhel and D. Tromeur-Dervout, Parallel Preconditioners for 3D Global Reactive Transport, Parallel CFD, Norway, 2014

13 / 15

(17)

Reactive transport model Numerical schemes Numerical experiments

Concluding remarks

Efficiency of the software GRT3D

global approach (implicit scheme and Newton’s method) adaptive time step and modified Newton iterations (convergence monitoring)

Newton-GMRES using the specific structure

Adaptive mesh refinement Kinetic reactions

14 / 15

(18)

Reactive transport model Numerical schemes Numerical experiments

Concluding remarks

Efficiency of the software GRT3D

global approach (implicit scheme and Newton’s method) adaptive time step and modified Newton iterations (convergence monitoring)

Newton-GMRES using the specific structure

Future work

Adaptive mesh refinement Kinetic reactions

14 / 15

(19)

Numerical experiments

Announcement

Computational Methods for Water Resources Saint-Malo, France, June 3-7, 2018

Website: http://cmwrconference.org/

15 / 15

Références

Documents relatifs

Based on the observation that earthquake insurance in California is unaffordable for most homeowners (California Department of Insurance database), this study

Unit´e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex Unit´e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP

The PMOD and IRMB composites differ during the time when VIRGO/SoHO data are avail- able (since 1996), because only the measurements of VIRGO’s DIARAD instruments are used for

Pour illustrer ce phénomène, nous avons réalisé un pas de chargement du calcul présenté au §5.1 de deux manières : d’abord on utilise la méthode de Newton avec un

From the point of view of constructible classes, our contributions are: efficient algorithms for enumer- ation (cor. 10.10 ), improving by a factor log N the theoretical

We determined the convergence order and the radius of the method (3) as well as proved the uniqueness ball of the solution of the nonlinear least squares problem (1).. The method (3)

In this work, the non-differentiability of the objective is ad- dressed by reformulating the image restoration problem as a nonnega- tively constrained quadratic program which is

Calprotectin (CP) is an abundant host-defense protein that contributes to the metal-withholding innate immune response by sequestering nutrient metal ions