• Aucun résultat trouvé

3 Useful results

N/A
N/A
Protected

Academic year: 2022

Partager "3 Useful results"

Copied!
22
0
0

Texte intégral

(1)

Fondamentales et Informatique JMMAFI, ISSN 2411-7188, Vol.3, 2016, pp 40-61,

www.madarevues.gov.mg

Moderate Deviations Principle for stochastic system with fixed delay in strong topology

S.H. RANDRIAMANIRISOA1, T.J. RABEHERIMANANA2

1 Facult´e des Sciences , D´epartement de Math´ematiques et Informatique, B.P 906, Ankatso, 101, Antananarivo, Madagascar

2 Facult´e des Sciences , D´epartement de Math´ematiques et Informatique, B.P 906, Ankatso, 101, Antananarivo, Madagascar

1hasinasran@gmail.com, 2rabeherimanana.toussaint@gmx.fr

R´esum´e : Dans cet article, nous ´etudions un principe de d´eviations mod´er´ees v´erifi´e par les syst`emes stochastiques avec m´emoire. Il s’agit d’un syst`eme d´ecrit par l’´equation diff´erentielle stochastique avec m´emoire suivante :

dXtε =b(t, Xtε, Xt−τε )dt+√

εσ(t, Xtε, Xt−τε )dWt t∈(0,∞)

Xtε =ψ(t) t∈[−τ,0]

o`uW est un mouvement brownien standardd−dimensionnel, b et σ v´erifient les conditions lipschitziennes et sont `a croissance lin´eaire ; ψ est une fonction continue donn´ee d´efinie sur [−τ,0].L’´etude se fait avec la topologie h¨olderienne.

On pr´esente ici l’´etude des processusYε := (Ytε = Xtε−Xt0

√ε )t∈[−τ,m]etZε := (Ztε = Xtε−Xt0

√εh(ε) )t∈[−τ,m]

dans le cadre du Th´eoreme de la limite centrale et du Principe de d´eviation mod´er´ee respecti- vement. On utilisera la propri´et´e de l’´equivalence exponentielle et l’in´egalit´e de transportation de Talagrand `a cette fin.

Mots-cl´es : principe de d´eviations mod´er´ees , syst`emes stochastiques, retard, in´egalit´e de transportation de Talagrand, ´equivalence exponentielle, norme h¨olderienne.

Abstract : In this paper, we develop a moderate deviations principle for stochastic system with memory driven by small multiplicative white noise. The system is described by :

dXtε =b(t, Xtε, Xt−τε )dt+√

εσ(t, Xtε, Xt−τε )dWt t∈(0,∞)

Xtε =ψ(t) t∈[−τ,0]

(2)

where W is a d−dimensional brownian motion, b and σ are Lipschitzian and have a linear growth ;ψ is a given continuous function on [−τ,0]. One work in H¨older topology.

One focus on the study of Yε := (Ytε = Xtε−Xt0

√ε )t∈[−τ,m] and Zε := (Ztε = Xtε−Xt0

√εh(ε) )t∈[−τ,m]

in order to get a central limit theorem and a moderate deviation principle respectively. For the proof, we will use a theorem of exponential equivalence and Talagrand’s transportation inequality.

Keywords : moderate deviations principle, stochastic system, delay, Talagrand’s transpor- tation inequality, exponential equivalence, h¨olderian norm.

Introduction

LetWt:= (Wt1, Wt2, ..., Wtl) denote a standard l-dimensional Brownian motion on a complete filtered probability space (Ω,F,(Ft)t≥0, P) with W0 = 0 and Wt takes values in Rd , Ω = C0([0, m],Rl) equipped with the usual topology of uniform convergence defined by the norm

kfk= sup

0≤t≤m

|f(t)|.

Let b : R+ ×Rd×Rd −→ Rd and σ : R+×Rd ×Rd −→ Rd⊗Rl be Borel measurable functions with linear growth.

Let τ >0 be a fixed delay, and ψ be a given continuous function on [−τ,0].

Consider the stochastic delay differential equation (sdde) dXt =b(t, Xt, Xt−τ)dt t∈(0,∞)

Xt =ψ(t) t∈[−τ,0] (1)

and the perturbed stochastic delay differential equation associated dXtε =b(t, Xtε, Xt−τε )dt+√

εσ(t, Xtε, Xt−τε )dWt t∈(0,∞)

Xtε =ψ(t) t∈[−τ,0] (2)

We study deviation ofXεfrom the deterministic solutionX, that is the asymptotic behavior of the trajectory of

Zε(t) := 1

√εh(ε)(Xtε−Xt)

where h(ε) is some deviation scale which strongly influences the asymptotic behavior ofZε. If one puth(ε) = 1

√ε, one get large deviations (LD) estimates. T. Zhang and S. E.A Mohammed in [12] give the Large Deviations principle (LDP) for the family of{µε;ε >0}law of{Xε;ε >0}

(3)

in uniform topology. In our recent works in S. H. Randriamanirisoa and T.J. Rabeherimanana [8], we provide an extension of the LDP to H¨older space if we consider the case Z ≡ 0 and Y ≡0.

In the classical work, Friedlin-Wentzell [5] studied the Large deviations for small noise, limit of stochastic reaction-diffusion equations.

If one consider h(ε)≡1, we are in the case of the Central Limit Theorem(CLT).

Set Yε(t) := 1

√ε(Xε−X). One shall show that Yε converge as ε↓ 0 to a random field. Then, we will study Moderate Deviations (MD), that is when deviation scale satisfies h(ε)−→+∞, and √

εh(ε)−→0 as ε↓0.

In this paper, we establish its moderate deviation principle (MDP) in the context of H¨ooder norm. For this end, we will use Talagrand’s transportation inequality on path space established in Djellout and al. [4] and measure concentration see in Bobkov and G¨otze [1], Djellout and al.

[4], and Villani [9].

The paper is organized as follow : in the first section, we give basic settings and some useful general results. We find the main results in section 2. In section 3 we will provide some useful results. The last section is devoted to prove the results.

1 Basic Settings

Let us consider (2). Wt is defined on some well filtered probability space (Ω,F,(Ft)t≥0, P).

We always assume :

(H1) : σ, b are locally Lipschitzian.

That means, there exists some constants Lb and Lσ such that for all x1, x2, y1, y2 ∈Rd and t∈[0,∞)

kσ(., x1, y1)−σ(., x2, y2)kRdRl ≤Lσ(|x1−x2|+|y1−y2|) (3) kb(., x1, y1)−b(., x2, y2)kRd ≤Lb(|x1−x2|+|y1−y2|) (4) (H2) : σ(., x, y), b(., x, y) are uniformly continuous in x, y ∈ Rd on[0,∞),

that means :

lims→t sup

x,y∈Rd

|σ(s, x, y)−σ(t, x, y)|= 0.

lims→t sup

x,y∈Rd

|b(s, x, y)−b(t, x, y)|= 0.

(H3) : b is C1 .

(H4) : There existsC > 0 such that

max{tr(σσ∗(t, x, y)),hx, b(t, x, y)i,hy, b(t, x, y)i} ≤C(1 +|x|2+|y|2)

(4)

where hx, yi=x.y is the inner product with hx, xi=|x|2 and (H5) : There exist a constant K such that

sup{|b(t, x, y) +σ(t, x, y)|} ≤K(1 +|x|+|y|) (5) (2) has a unique non-explosive solution denoted by Xε = (Xtε)t∈[−τ,m] under the conditions (H1), (H2). LetH denote the Cameron-Martin space associated with the Brownian motionW.

H={h(t) = Z t

0

h(s)ds˙ : ˙h∈L2([0, T]), h is absolutely continuous}

When ε goes to 0, we get : limε→0P( sup

t∈[−τ,∞)

|Xtε−Xt0|> R) = 0, ∀ R >0

where X0 is the solution of the non-perturbed dynamical system (1). Letµε the law of Xε, µε converges tightly to the degenerated measureδX0.

Let Cψ([−τ, m],Rd) be the Banach space of continuous functions f : [−τ, m]→ Rd, with f(t) =ψ(t) for t∈[−τ,0] ; equipped with the sup-norm

kfk:= sup

t∈[0,m]

|f(t)|.

Let Cψ([0, m],Rd) be the Banach space of continuous functions g : [0, m]→Rd, with g(0) = 0.

For a precise asymptotic estimate of deviations ofXε from the dynamical systemX0, T. Zhang and S.E.A Mohammed in [12] claim that the law of {Xtε, ε > 0} satisfies a LDP in uniform topology onCψ([−τ, m],Rd) with the good rate function given by

ILDP(f) =



 inf{1

2 Rm

0 |g(s)|˙ 2ds; g ∈Cψ([0, m],Rl),

g absolutely continuous, F(g) =f} +∞ otherwise

(6) with F is solution to

F(h)(t) =Rt

0b(s, F(h)(s), F(h)(s−τ))ds+Rt

0σ(s, F(h)(s), F(h)(s−τ))dh(s) t ∈(0,+∞)

F(h)(t) =ψ(t) t∈[−τ,0]

(7) Otherwise, ILDP = +∞.

The subject of this paper is the problem of MDP for {Xtε}t∈[−τ,m] in H¨older norm.

Let α > 0 and denote by C0α([−τ, m],Rd) the set of α− H¨older norm continuous functions i.e of continuous functions f : [−τ, m]−→Rd such that f(t) = 0, fort ∈[−τ,0] , and

kfkα = sup

t

|f(t)|+ sup

|s−t|≤1,s6=t

|f(t)−f(s)|

|t−s|α <∞

(5)

The normk.kα is called theα−H¨older norm. It is well known that the trajectories of X areα−

H¨older continuous for α∈[0,1 2[.

LetCψα([−τ, m],Rd) denote the set ofα−H¨older norm continuous functions i.e of continuous functions f : [−τ, m]−→Rd such that f(t) =ψ(t), if t∈[−τ,0] and

kfkα = sup

t

|f(t)|+ sup

|s−t|≤1,s6=t

|f(t)−f(s)|

|t−s|α <∞.

Define the h¨olderian modulus of continuity off by ωα(f, δ) = sup

0<|t−s|≤δ;s,t,∈[0,m]

|f(t)−f(s)|

|t−s|α

Cψα,0([−τ, m],Rd) denote a closed subspace of Cψα([−τ, m],Rd) defined by Cψα,0([−τ, m],Rd) = {f inCψα([−τ, m],Rd); limδ→0ωα(f, δ) = 0}is separable.

Set

Yε:= (Ytε)t∈[−τ,∞) := (Xtε−Xt0

√ε ) (8)

and

Zε:= (Ztε)t∈[−τ,∞) with Ztε:= Ytε

h(ε) (9)

Here, we shall study the asymptotic behaviour of : Zε where h(ε)−→+∞ and √

εh(ε)−→0, as ε−→0 (10)

Through this paper, we always assume that h(ε) satisfies (10).

2 Main result

In addition to (H1)−(H5), one assume that b is differentiable with respect to the second and last variable. And ∂b

∂x,∂b

∂y are also uniformly Lipschitz. More precisely, There exists some constants Lxb and Lyb such that :

|∂b

∂x(t, u, y)− ∂b

∂x(t, v, y)| ≤Lxb|u−v| (11)

|∂b

∂y(t, x, r)− ∂b

∂y(t, x, s)| ≤Lyb|r−s| (12)

∀t∈R+, u, v, x, y, r, s∈Rd.

Combined with the uniform Lipschitz continuity of b, one obtain that :

|∂b

∂x(t, u, y)| ≤Lb

(6)

|∂b

∂y(t, x, r)| ≤Lb

∀t∈R+, u, x, y, r∈Rd.

The purpose of this paper is to prove results concerning CLT and MDP which are satisfied byYtε and Ztε respectively in H¨older space.

First, let us recall a LDP for Xε in H¨older norm. This result is an adapted version of the result found in our previous work [8] .

Theorem 1 (LDP) : Let µε be the law of Xε solution of (1) on Cψ([−τ, m];Rd) , equipped with the norm k.kα. The family {µε, ε >0} satisfies a LDP with the following rate function

(f) = lim

a→0 inf

ρ∈Bα(f,a)

I(ρ)˜

where I(ρ) = inf{˜ 1 2

Z m 0

|h(s)|˙ 2ds;h∈ H:F(h, r, u)≡ρ}

with F is solution to the differential delayed equation :

F(h)(t) = F(h)(0) +Rt

0 b(s, F(h)(s)), F(h)(s−τ))ds +Rt

0 σ(s, F(h)(s), F(h)(s−τ)) ˙h(s)ds t ∈[0,∞)

F(h)(t) = ψ(t) t∈[−τ,0]

That is ,

i) For any closed subset C ⊂Cψα,0([−τ, m];Rd) lim sup

ε→0

εlogµε(C)≤ −inf

f∈C

(f).

ii) For any open subset G⊂Cψα,0([−τ, m];Rd) lim sup

ε→0

εlogµε(G)≤ −inf

f∈G

(f).

where I˜ is a good rate function with respect to the topology ofCψα,0([−τ, m];Rd),0≤α < 1 2. Proof :The proof is a particular case of the main result in our paper [8] withY ≡0 andZ ≡0.

Next result is about the CLT.

Theorem 2(Central Limit Theorem) : Assume (H1)−(H5). Let suppose ∂b

∂x , ∂b

∂y and σ verify all assumptions before. Then, ∀α∈ [0,14), r ≥1, the random field Yε converge in Lr to a random field Y ≡Y0 as ε→0 on Cψα([0, m],Rd) determined by :

dYt = [∂b

∂x(t, Xt, Xt−τ)Yt+ ∂b

∂y(t, Xt, Xt−τ)Yt−τ]dt+σ(t, Xt, Xt−τ)dWt t∈(0,∞)

Yt = 0 t∈[−τ,0]

(13)

(7)

where ∂b

∂x = ( ∂b

∂xi)1≤i≤d and ∂b

∂y = ( ∂b

∂yj)1≤j≤d. By theorem 4 in the next section and in view of √

εh(ε) → 0, h(ε) → ∞, as ε tends to 0.

One see thatZε obeys LDP on Cψα([0, m],Rd) with speed h2(ε), and the rate function IM DP(f) = inf{1

2 Z m

0

|h(t)|˙ 2dt, h ∈ H, G(h) =f} (14) where Gis solution to the following deterministic equation :





dG(h)(t) = ∂b

∂x(t, F(h)(t), F(h)(t−τ))G(h)(t)dt+ ∂b

∂y(t, F(h)(t), F(h)(t−τ))G(h)(t−τ)dt +σ(t, F(h)(t), F(h)(t−τ)) ˙h(t)dt t∈(0,∞)

G(h)(t) = 0 t∈[−τ,0]

where F is solution to (7). Hence, formally one get the following result.

Theorem 3(MDP) :Assume (H1)−(H5) . Let suppose σ is continuous, b, ∂xb, ∂yb and σ satisfy assumptions above.

Then, for all α∈[0,14) , Zε obeys a LDP on Cψα([0, m],Rd) with speed h2(ε) with rate function IM DP defined by (14).

3 Useful results

Let us recall some useful results.

Theorem 4( found in [3]) : If an LDP with a good rate function I(.) holds for the probability measure{µε, ε >0}which are exponentially equivalent to {˜µε, ε >0}, then the same LDP holds for µ˜ε.

Lemma 5 : Assume (5).

Then, for any p≥2, there exist C such that :

E|Xε(t)|p ≤C(1 + sup|ψ(t)|p)

Proof : One use a similar argument adapted as in Walsh [10], Theorem 3.2.

Proposition 6 : Assume (5) and ψ bounded.

Then, for all p≥2, there exist C(p, K, ∂xb, ∂yb, T, ψ) such that :

E(|Xε−X|T)p ≤εp2C(p, K, ∂xb, ∂yb, T, ψ)−→0 as ε →0

Proof : One use a similar argument adapted as in Wang and Zhang [11], Proposition 3.2.

We will use Talagrand’s transportation inequality.

Let

Wp(µ, ν) := inf(

Z Z

d(x, y)pdπ(x, y))1p 1≤p≤+∞

(8)

Lp−Wasserstein distance between µ, ν two probability measures on E.

µ satisfies Talagrand’sT2−transportation inequality T2(CT) on (E, d) if

∀ν :W2(ν, µ)2 ≤2CTH(ν|µ)

where H(ν|µ) is Kullback-Leibler information or relative entropy ofν with respect toµ.

H(ν|µ) =

R log dν

dµdν ν << µ

+∞ otherwise

Consider E = L2([0, T]; Rd) = {φ : [0, T] −→ Rd measurable ; kφk22 = RT

0 |φ(t)|2dt < +∞}

equipped with the distance d21, φ2) := kφ1−φ2k2. Let µε the law ofXε = (Xtε)t∈[0,T] a pro- bability measure on E .

Lemma 7 : Assume that σ, b are locally lipschitz functions, σ bounded such that : 1

2(|(σ(s, x, y)−σ(s, u, v))(σ(s, x, y)−σ(s, u, v))|+hx−u, b(s, x, y)−b(s, u, v)i +hy−v, b(s, x, y)−b(s, u, v)i)≤L(|x−u|2+|y−v|2)

Then, for all ε ∈ [0,1] , µε the law of Xε := (Xtε)t∈[0,T] satisfies on (L2([0, T];Rd);d2) T2−Talagrand’s inequality T2(εCT), where

CT := kσk2(exp((δ+ 2L)T)−1) δ(δ+ 2L)

δ >0 is taken arbitrary, and

kσk = sup

(t,x,y)∈R+×Rd×Rd,v∈Rd,kvk=1

kσ(t, x, y)vk

≤r

sup

u∈R+×Rd×Rd

tr(σσ(u))

≤√ M

Proof : One use a similar argument as in Ma, Wang and Wu [7] lemma 4.2.

Lemma 8 : Assume that σ, b are locally Lipschitzian, and σ bounded such that : 1

2(|(σ(s, x, y)−σ(s, u, v))(σ(s, x, y)−σ(s, u, v))|+hx−u, b(s, x, y)−b(s, u, v)i +hy−v, b(s, x, y)−b(s, u, v)i)≤L(|x−u|2+|y−v|2)

(9)

Then ∀ε∈(0,1], r >0 P((

Z T 0

|Ytε|2dt)12 −E( Z T

0

|Ytε|2dt)12 ≥r)≤exp{− r2 2CT} where CT = kσk2(e(δ+2L)T −1)

δ(δ+ 2L)

Proof : One use a similar adapted argument as in Ma, Wang and Wu [7] Lemma 4.3.

Set Φ(ϕ) = kϕ−X0

√ε k. Φ is a lipschitz function on (Lp([0, m];Rd);d2) with the lipschitz constant 1

√ε. Since kYεk = Φ(Xε), this inequality follow from lemma 7 by Bobkov-G¨otze’s criterion [1], Theorem 3.1.

4 Proofs

First of all, one suppose that b andσ are bounded . We will prove both theorems (CLT and MDP).

4.1 Proof of Theorem 2

One has to prove that

limε→0E(kYε−Y0kα) = 0.

Yε(t) = 1

√ε(Xε(t)−X0(t))

= 1

√ε Z t

0

{b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )}ds+ Z t

0

σ(s, Xsε, Xs−τε )dWs

and

Y0(t) = Z t

0

[∂b

∂x(s, Xs0, Xs−τ0 )Y0(s) + ∂b

∂y(s, Xs0, Xs−τ0 )Y0(s−τ)ds+ Z t

0

σ(s, Xs0, Xs−τ0 )dWs Yε(t)−Y0(t) =

Z t 0

[σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 )]dWs +

Z t 0

[b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )

√ε

− {∂b

∂x(s, Xs0, Xs−τ0 )Ys0(s) + ∂b

∂y(s, Xs0, Xs−τ0 )Ys−τ0 (s)}]ds

=Aε1(t) +Aε2(t) +Aε3(t) (15)

(10)

where Aε1(t) =

Z t 0

[σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 )]dWs Aε2(t) =

Z t 0

[b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )

√ε − {∂b

∂x(s, Xs0, Xs−τ0 )Ysε(s) + ∂b

∂y(s, Xs0, Xs−τ0 )Ys−τ0 (s))}]ds Aε3(t) =

Z t 0

[∂b

∂x(s, Xs0, Xs−τ0 )(Yε(s)−Y0(s)) + ∂b

∂y(s, Xs0, Xs−τ0 )(Yε(s−τ)−Y0(s−τ))ds First, we shall estimate Aε1(t)Aε2(t), Aε3(t).

E|Aε1(t)|p ≤ Z t

0

LσE(|Xε(t)−X0(t)|p).

Thanks to proposition 6, we have for p > 2

E(|Xε(t)−X0(t)|p) ≤εp2C(p, K, Lσ, Lb)

E|Aε1(t)|p ≤εp2C(p, K, Lσ, Lb). (16) Using Taylor formula, there exist a random field θε(t) (0,1)d−valued such that :

b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )

√ε =∂b

∂x(s, Xs0ε(s)(Xsε−Xs0), Xs−τ0 )Ysε(s) + ∂b

∂y(s, Xs0, Xs−τ0ε(s)(Xs−τε −Xs−τ0 ))Ys−τε (s) Since ∂b

∂x and ∂b

∂y are uniformly continuous, we have :

|∂b

∂x(s, Xs0ε(s)(Xsε−Xs0, Xs−τ0 )− ∂b

∂x(s, Xs0, Xs−τ0 )|

≤Lxb(|Xs0ε(s)(Xsε−Xs0)−Xs0|+|Xs−τ0ε(s)(Xs−τε −Xs−τ0 )−Xs−τ0 |)

≤Lxb(|θε(s)(Xsε−Xs0)|+|θε(s)(Xs−τε −Xs−τ0 )|)

≤Lxb(|Xsε−Xs0|+|Xs−τε −Xs−τ0 |) Then,

|Aε2(t)| ≤ Z t

0

|(Xsε−Xs0)Ysε|ds ≤√ εC

Z t 0

|Ysε|2ds Thus, we get for p > 2

E(|Aε2(t)|)2 ≤εp2C (17)

|Aε3(t)| ≤ Z t

0

[L3|Ysε−Ys0|+L4|Ys−τε −Ys−τ0 |]ds (18)

(11)

Using Gronwall’s inequality, we get

E(|Ysε−Ys0|p +|Ys−τε −Ys−τ0 |p)≤εp2C(p, K, L1) For p >2, t∈[0, T] by Burkholder-Gandy-Devis’s inequality, we get

E|Aε1(t)−Aε1(s)|p ≤CpE( Z t

s

[σ(u, Xuε, Xu−τε )−σ(u, Xu0, Xu−τ0 )]2du)p2

≤C(p, Lb)E( Z t

s

|Xsε−Xs0|2du)p2

Thanks to proposition 6, one has

E|Aε1(t)−Aε1(s)|p ≤C(p, K, Lσ, Lbp2|t−s|p−22 (19)

|Aε2(t)−Aε2(s)|p ≤(

Z t s

|b(u, Xuε, Xu−τε )−b(u, Xu0, Xu−τ0 )

√ε

− {∂b

∂x(u, Xu0, Xu−τ0 )Yuε(u) + ∂b

∂y(u, Xu0, Xu−τ0 )Yu−τ0 (u))}|du)p E|Aε2(t)−Aε2(s)|p ≤E(

Z t s

L1 1

√ε(|Xuε−Xu0|+|Xu−τε −Xu−τ0 |)du+ Z t

s

[L3|Yuε|+L4|Yu−τε |du)p

≤C(p, K, L1, L2, L3, L4)|t−s|p−22 (20) Similarly

E|Aε3(t)−Aε3(s)|p ≤C(p, L3, L4)(

Z t s

[|Yuε−Yu0|+|Yu−τε −Yu−τ0 |]du)p

≤C(p, K, L1, L3, L4p2|t−s|p−22 (21) Thus, by (19), (20), (21) there exist a constant ˇC independent of ε such that :

E|Ytε−Yt0−(Ysε−Ys0)|p ≤Cεˇ p2|t−s|p−22 Then, for all α∈(0,12), one can choose p∈(2,3) such that :

limε→0EkYε−Y0kα = 0.

It concludes the proof of Theorem 2(CLT).

(12)

4.2 Proof of theorem 3

Ytε = Xtε−Xt0

√ε , t≥0. So Ytε satisfies : dYtε = 1

√ε(b(t, Xtε, Xt−τε )−b(t, Xt0, Xt−τ0 ))dt+σ(t, Xtε, Xt−τε )dWt t∈(0,+∞)

Ytε = 0 t ∈[−τ,0]

Since Xtε close to Xt0 and Xt−τε close to Xt−τ0 , we have : dYtε '[∂b

∂x(t, Xt0, Xt−τ0 )Ytε+ ∂b

∂y(t, Xt0, Xt−τε )Yt−τε ]dt+σ(t, Xtε, Xt−τε )dWt where ∂b

∂x = ( ∂b

∂xi)1≤i≤d and ∂b

∂y = ( ∂b

∂yj)1≤j≤d.

Yε should be close to Y0 determined by (13). Then, by Schilder’s theorem and the contraction principle , Zε obeys the LDP with the speed h2(ε) and the rate function IM DP(h) given by (14).

Hence by Theorem 3, it is enough to show that Zε ish2(ε)−exponentially equivalent to Z0. In other words, we have to prove

lim sup

ε→0

h−2(ε) logP(kZε−Z0kα> δ) =−∞ ∀ δ >0 (22) As we first prove the case for b and σ bounded, we need the following Proposition.

Proposition 10 : b, σ are Lipschitz functions, there exist some constant C(p, K, Cb) which depend on p, K, Cb such that

E(kXε−X0k)p ≤εp2C(p, K, Cb)−→0 as ε→0 Proof :

Xtε−Xt0 = Z t

0

(b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 ))ds+√ ε

Z t 0

σ(s, Xsε, Xs−τε )dWs kXε−X0kp≤( sup

t∈[0,T]

| Z t

0

[b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )]|)pp2( sup

t∈[0,T]

| Z t

0

σ(s, Xsε, Xs−τε )dWs|)p

LetJ1ε(t) = Z t

0

[b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )]ds and J2ε(t) =

Z t 0

σ(s, Xsε, Xs−τε )dWs.

(13)

Since b is lipschitz continuous function, by H¨older’s inequality : E(kJ1εk)p ≤Cbp(

Z t 0

1ds)pqE Z t

0

(kXε−X0k)p where 1

p+ 1 q = 1

E(kJ2εk)p ≤εp2E| Z t

0

σ(s, Xsε, Xs−τε )dWs|p

≤εp2E| Z t

0

σ2(s, Xsε, Xs−τε )ds|p2

≤εp2C(K, p)

Therefore, there exists some constant C(p, K, Cb) such that E(kXε−X0k)p ≤C(p, K, Cb)(E

Z T 0

(kXε−X0k)pdt+εp2) By Gronwall’s lemma, one obtain

E(kXε−X0k)p ≤εp2C(p, K, Cb)eC(p,K,Cb) Recall

Ytε=Xtε−Xt0

√ε = 1

√ε Z t

0

[b(s, Xsε, Xs−τε )]ds+ Z t

0

[σ(s, Xsε, Xs−τε )]dWs Yt0 =

Z t 0

[∂b

∂x(s, Xs0, Xs−τ0 )Zs0+ ∂b

∂y(s, Xs0, Xs−τ0 )Zs−τ0 ]ds +

Z t 0

[σ(s, Xsε, Xs−τε )]dWs

d(Ytε−Yt0) =[∂b

∂x(t, Xt0, Xt−τ0 )(Ztε−Zt0) + ∂b

∂y(t, Xt0, Xt−τ0 )(Zt−τε −Zt−τ0 )]dt + [σ(t, Xtε, Xt−τε )−σ(t, Xt0, Xt−τ0 )]dWt

+ 1

√ε[(b(t, Xtε, Xt−τε )−b(t, Xt0, Xt−τ0 ))

−(∂b

∂x(t, Xt0, Xt−τ0 )(Xtε−Xt0) + ∂b

∂y(t, Xt0, Xt−τ0 )(Xt−τε −Xt0))]dt

=[∂b

∂x(t, Xt0, Xt−τ0 )(Xtε−Xt0) + ∂b

∂y(t, Xt0, Xt−τ0 )(Xt−τε −Xt−τ0 )]dt+dUtε

(14)

Utε = Z t

0

σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 )]dWs + 1

√ε Z t

0

[(b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 ))

−(∂b

∂x(s, Xs0, Xs−τ0 )(Xsε−Xs0) + ∂b

∂y(s, Xs0, Xs−τ0 )(Xs−τε −Xs−τ0 ))]ds Ytε−Yt0 =Utε+

Z t 0

[∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 )]J(s, t)Utε

where J(s, s) = Id and db

dt = (∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 ))J(s, t)Utε(s)ds for 0≤s≤t Since

|h∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 ), x+yi| ≤L(|x|2+|y|2) One has

|J(s, t)u| ≤C(p, K, Cb)|u| ∀y∈Rd As

k∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 )k= sup

x,y,v∈Rd,kuk≤1

k[∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 )](u)k One has, for all t ∈[0, T],

|Ytε−Yt0| ≤ |Utε|+k∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 )kC(p, K, Cb) Z t

0

|Usε|ds

≤(1 +k∂b

∂x(t, Xt0, Xt−τ0 ) + ∂b

∂y(t, Xt0, Xt−τ0 )k

C(p, K, Cb)

L )kUεk (23) One has to prove

Proposition 11 : For all r >0 lim sup

ε→0

h−2(ε) logP(kUεk

h(ε) > r) = −∞

(15)

Proof

|Utε| ≤|

Z t 0

(σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 ))dWs| +

Z t 0

√1

ε|(b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 ))

−(∂b

∂x(s, Xs0, Xs−τ0 )(Xsε−Xs0) + ∂b

∂y(s, Xs0, Xs−τ0 )(Xs−τε −Xs−τ0 ))|ds :=|Mtε|+

Z t 0

√1

ε|(b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 ))(Xsε−Xs0)|ds

where Mtε is a continuous martingale with hMεit=

Z t 0

(σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 ))(σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 ))ds For all η >0, one has :

P( sup

0≤t≤T

|Mtε| ≥ rh(ε)

2 )≤P( sup

0≤t≤T

|Mtε| ≥ rh(ε)

2 ;hMεit≤η) +P(hMεiT ≥η)

≤2 exp (−

(rh(ε))2 22

2η ) +P(hMεiT ≥η)

≤2 exp (−(rh(ε))2

2η ) +P(hMεiT ≥η) Since,

hMεiT = Z T

0

(σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 ))(σ(s, Xsε, Xs−τε )−σ(s, Xs0, Xs−τ0 ))ds

≤L Z T

0

|Xsε−Xs0|ds =εL Z T

0

|Ysε|2ds

for some L. forε small enough, by proposition 1, one has : E(

Z T 0

|Ysε|2ds)12 ≤ 1 2( η

εL)12

(16)

Using lemma 8, one has : P(hMεiT ≥η)≤P(

Z T 0

|Ysε|2ds≥ η εL)

≤P((

Z T 0

|Ysε|2ds)12 −E( Z T

0

|Ysε|2ds)12 ≥( η

εL)12 − 1 2( η

εL)12)

≤P((

Z T 0

|Ysε|2ds)12 −E( Z T

0

|Ysε|2ds)12 ≥ 1 2( η

εL)12)

≤exp{− η 8εCTL}

Notice that εh2(ε)−→0 andη >0 is taken arbitrary, one get : lim sup

ε→0

h−2(ε) logP( sup

0≤t≤1

|Mtε| ≥ rh(ε)

2 ) =−∞ (24)

Since b ∈ C1 and ∂b

∂x, ∂b

∂x are uniformly continuous, for all η > 0 there exist some δ > 0 such that :

|b(s, x, y)−b(s, u, y)− ∂b

∂x(s, x, y)(x−u)| ≤ |x−u|

as |Xtε−Xt0| ≤δ

|b(s, x, y)−b(s, x, v)− ∂b

∂y(s, x, y)(y−v)| ≤ |y−v| as |Xt−τε −Xt−τ0 | ≤δ

Hence, P(

Z T 0

√1

ε|b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )− ∂b

∂x(s, Xs0, Xs−τ0 )(Xsε−Xs0)

−(∂b

∂y(s, Xs0, Xs−τ0 )(Xs−τε −Xs−τ0 )|ds≥ rh(ε) 2 )

≤P(kXε−X0k≥δ) +P( Z T

0

|Ztε|dt ≥ rh(ε) 4η ) +P(

Z T 0

|Zt−τε |dt≥ rh(ε) 4η ) By Freidlin-Wentzell Theorem :

lim sup

ε→0

εlogP(kXε−X0k≥δ) = 0

(17)

and

lim sup

ε→0

εh−2(ε) logP(kXε−X0k ≥δ) = 0

Since ε is sufficiently small, E( Z T

0

|Ztε|2dt)12 ≤ rh(ε) 4η√

T by lemma 7.

Using Cauchy-Schwartz inequality and lemma 8, one get P(

Z T 0

|Zsε|dt ≥ rh(ε)

2η )≤P((

Z T 0

|Zsε|dt)12)≥ rh(ε) 2η )

≤P((

Z T 0

|Zsε|dt)12 −E( Z T

0

|Zsε|dt)12)≥ rh(ε) 4η√

T)

≤exp{−(rh(ε))2 32η2CT }

Analogously,

P( Z T

0

|Zs−τε |dt≥ rh(ε)

2η )≤exp{−(rh(ε))2 32η2CT } Since η is taken arbitrary, one has :

lim sup

ε→0

h−2(ε) logP( Z T

0

√1

ε|b(s, Xsε, Xs−τε )−b(s, Xs0, Xs−τ0 )− ∂b

∂x(s, Xs0, Xs−τ0 )(Xsε−Xs0))

−(∂b

∂y(s, Xs0, Xs−τ0 )(Xs−τε −Xs−τ0 ))|ds≥ rh(ε)

2 ) = −∞ (25)

One complete the proof of proposition 11 by (23), (24) and (25).

Next, one has to prove in H¨older norm.

Lemma 12 : For allδ >0, lim sup

ε→0

h−2(ε) logP(kZε−Z0kα > δ) = −∞

Proof :

I3ε(t) = Z t

0

[∂b

∂x(s, Xs0, Xs−τ0 )(Ysε−Ys0) + ∂b

∂y(s, Xs0, Xs−τ0 )(Ys−τε −Ys−τ0 )]ds

(18)

Using H¨older’s inequality, one has

|I3ε(t)−I3ε(s)| ≤(

Z t s

|∂b

∂x(s, Xs0, Xs−τ0 )|qdu)1q( Z t

s

|Ysε−Ys0|pdu)1p +≤(

Z t s

|∂b

∂y(s, Xs0, Xs−τ0 )|qdu)1q( Z t

s

|Ys−τε −Ys−τ0 |pdu)1p

≤Cq

x,∂y|t−s|1q[(

Z t s

|Yuε|pdu)1p + ( Z t

s

|Yu−τε |pdu)1p]

Choose q ∈(2; 3), α= 1

q , one get kI3εkα ≤Cx,∂y(

Z t s

(1 +u)α(kYε−Y0kα)pdu)1p Hence, for t∈[0,1], one has

kYuε−Yu0kα ≤C(p, ∂xb, ∂yb)[kI1εkpα+kI2εkpα+ Z t

s

(kYuε−Yu0kα)pdu]1p Applying Gronwall’s lemma to g(t) = (kYε−Y0kα)p, one has :

(kYε−Y0kα)p ≤C(p, Cx,∂y)(kI1εkα+kI2εkα)peC(p,T ,C∂xb,∂y b) It suffices to show that for δ >0,

lim sup

ε→0

h−2(ε) logP(kIiεkα

h(ε) ≤δ) = −∞ i= 1,2 Forε >0, η >0,

P(kI1εkα ≥h(ε)δ)≤P(kI1εkα ≥h(ε)δ,kXε−X0k < η) +P(kXε−X0k ≥η) Since

|(σ(s, x, y)−σ(s, u, v))(σ(s, x, y)−σ(s, u, v))| ≤L(|x−u|2+|y−v|2) then, for each s ≥0,0< α < 1

2 and h(ε)δ≥ηdL,

P(kI1εkα ≥h(ε)δ,kXε−X0k< η)≤2dexp(−(h(ε)δ)22ld2 )

Références

Documents relatifs

(iii) L’origine est un point d’´ equilibre stable de x(t) = ˙ Ax(t) si et seulement si toutes les valeurs propres de A sont de partie r´ eelle n´ egative ou nulle et si pour

On peut montrer qu’une telle matrice a toujours une direction propre dans le cˆ one positif (ensemble des vecteurs dont toutes les coordonn´ees sont positives), qui correspond ` a

´ el´ ementaire Cons´ equences. Coordonn´

) le résultat suivant : Toute description d’événements dans l’espace nécessite l’emploi d’un corps rigide auquel les événements doivent être rapportés. ) Je définis la

– Il ne peut y avoir plus d’un processus dans sa section critique en mˆeme temps – Un processus en dehors de sa section critique ne peut bloquer un autre

Jacques Gangloff (ENSPS) Syst `emes temps r ´eel et syst `emes embarqu ´es Ann ´ee scolaire 2007-2008 1 /

– Obligation de publier les sources (pas de module binaire dans le noyau) – Pas adapt´e aux syst`emes `a taille m´emoire tr`es

Si dans le grand syst` eme aucun vecteur n’est combinaison lin´ eaire des autres, ceux du petit syst` eme sont encore moins combinaisons lin´ eaires des autres vecteurs du petit