• Aucun résultat trouvé

Quartic formulation of Coulomb 3D frictional contact Olivier Bonnefon, Gilles Daviet

N/A
N/A
Protected

Academic year: 2022

Partager "Quartic formulation of Coulomb 3D frictional contact Olivier Bonnefon, Gilles Daviet"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: inria-00553859

https://hal.inria.fr/inria-00553859

Submitted on 10 Jan 2011

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quartic formulation of Coulomb 3D frictional contact

Olivier Bonnefon, Gilles Daviet

To cite this version:

Olivier Bonnefon, Gilles Daviet. Quartic formulation of Coulomb 3D frictional contact. [Technical

Report] RT-0400, INRIA. 2011. �inria-00553859�

(2)

a p p o r t

t e c h n i q u e

ISSN0249-0803ISRNINRIA/RT--0400--FR+ENG

Modeling, Optimization, and Control of Dynamic Systems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Quartic formulation of Coulomb 3D frictional contact

Olivier Bonnefon — Gilles Daviet

N° 0400

January 10, 2011

(3)
(4)

Centre de recherche INRIA Grenoble – Rhône-Alpes 655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Quartic formulation of Coulomb 3D frictional contact

Olivier Bonnefon, Gilles Daviet

Theme : Modeling, Optimization, and Control of Dynamic Systems Applied Mathematics, Computation and Simulation

Equipe-Projet BiPoP´

Rapport technique n°0400 — January 10, 2011 — 9 pages

Abstract: In this paper, we focus on the problem of a single contact with Coulomb friction, which we reduce to a root-finding problem on a degree 4 polynomial. This formulation give us the exact number of solutions, as well as their analytical form when they exist.

Key-words: coulomb friction, mechanics, contact

(5)

Formulation quartique du contact avec frottement de Coulomb tridimensionnel

R´esum´e : Dans ce document, nous reformulons le probl`eme unitaire (1 contact frottant) en la recherche de z´ero d’un polynˆome du quatri`eme degr´e. Si elles existent, cette formulation donne la forme analytique des solutions.

Mots-cl´es : frottement de coulomb, m´ecanique, contact

(6)

Quartic formulation of Coulomb 3D frictional contact 3

1 Introduction

Numerical simulation of three dimensional frictionnal contact with impacts has been thoroughly studied in the last two decade [RAD05], [Bro00], [AB08], [Cad09].

In this paper, we use the framework introduced by Moreau [Mor88] and we fo- cus on the solution of the problem for a single contact, which we reduce to a root-finding problem on a degree 4 polynomial.

The idea consists in doing an enumerative exploration of the Coulomb fric- tion’s cases.

1.1 The Coulomb friction model

We first define the second order cone, Kµ ⊂ R3, of parameter µ > 0 in the unitary directione∈R3:

Kµ={x∈R3:kx−x.e ek≤µ x.e} (1) Wherea.bis the usual dot product of two vectors.

Coulomb’s frictional law is a relation between the reaction force R ∈ R3 and the relative velocityU ∈R3. In this case, eis a unitary normal to the surface at the contact point.

The relation can be written as a disjonctive formulation:

– Take-off: R= 0 and U.e≥0 – Sticking: U = 0 andR∈intKµ

– Sliding: R∈∂Kµ and U.e=0 and∃α >0, R− R.e e=−αU (2)

We noteC(µ, e) the set of all (U, R)∈R3×R3satisfying this law.

1.2 Discretised problem

The discretization of the mechanical problem is deeply described in [Mor88], [AB08].

In the case of a single contact, it consists in findingU ∈R3andR∈R3subject

to: U =M R+q,

(U, R)∈C(µ, e) (3)

WhereM ∈R3,3a regular symetric positive matrix andq∈R3. The problem is written in a orthonormal frame (e, et1, et2). We distinguish between the tangen- tial part and the normal part of R. The normal part is defined as RN :=R.e, that is the first coordinate of R.The tangential part is defined asRT ∈R2, the coordinates of the vectorR−e.Rin the frame (et1, et2).

2 Enumerative method for solving

It consists in successively looking for a solution in each of the cases defined in (2).

2.1 Take-off case

In this case,Requals to zero. The system (3) leads toU =qwhich is a solution if and only if (q,0)∈C(µ, e) . It consists in checking thate.q >0.

RT n°0400

(7)

Quartic formulation of Coulomb 3D frictional contact 4

2.2 Sticking case

Here,U must be equal to zero, and f M is invertible (3) leads toR =−M1q which is a solution if and only if∅ 6=

R∈R3|M R=−q ∩intKµ. (IfM is invertible, this amounts to checking that −M1q∈intKµ.)

2.3 Sliding case

Whenµ > 0, This is the only non-trivial case. The main contribution of this document is the reformulation of this problem as a quartic root-finding problem.

In the two following sections, we derive formulations of such polynomials.

3 Quartic polynomial in

tan(θ)2

It consists in finding α >0 and R ∈∂Kµ such that−α 0

RT

=M R+q.

That is : 

 M+

0 0 0

0 α 0

0 0 α

R+q= 0 (4)

3.1 R

T

is on a conic

The first line of the system (4) and theR∈∂Kµequation define the intersection between a plan and a cone in R3:

µRN =kRT k

M11

µ kRT k=−q1−M12RT1−M13RT2 (5) That is:

µ2R2N = (R2T1+R2T1)

M112

µ2 (R2T1+R2T1) = (−q1−M12RT1−M13RT2)2 (6) This means that RT is contained into a conic, whose focus and directrice are:

D:q1+M12RT1+M13RT2= 0 f ocus:O

M112

µ2 Dist(O, RT)2=Dist(D, RT)2(M122 +M132)

Dist(O,RT) Dist(D,RT) =µ

(M122+M132) M11 =e

(7)

The parametric equation is:

RT1=rcos(θ) RT2=rsin(θ) r= 1+ecos(θp φ)

(8)

With pa simple expression of M11, M12, M13, andφa constant angle between Dand (O, RT1)

RT n°0400

(8)

Quartic formulation of Coulomb 3D frictional contact 5

3.2 The last two lines of the system (4)

kRT k µ M˜1.+

M˜ +

α 0

0 α

RT + ˜q= 0 (9) M˜ is symetric, so there exists a unitary matrixV such thatVM V˜ T =

d1 0 0 d2

. One can get:

kRT k

µ VM˜1.+V

M˜ +

α 0 0 α

VTV RT +Vq˜= 0 (10) Rename:

kR¯T k µ M¯1.+

d1+α 0 0 d2

RT + ¯q= 0 (11) In the plan,V is either a rotation or a symmetry. So ¯RT =V RT is a conic with the same focus and a rotated directrice, which means that there existsφ1 such that :

T1=rcos(θ) R¯T2=rsin(θ) r= 1+ecos(θp φ1)

(12) The equation (11) is :

(d1+α) ¯RT1 =−q¯1+a1kRT k

(d2+α) ¯RT2 =−q¯2+a2kRT k (13) The case ( ¯RT1= 0 or ¯RT2= 0) has to be examined. We try to eliminatealpha:

d1T1T2+αR¯T1T2=−q¯1T2+a1T2kRT k

d2T1T2+αR¯T1T2=−q¯2T1+a2T1kRT k (14) that leads to:

(d1−d2) ¯RT1T2=−q¯1T2+ ¯q2T1+ (a1T2−a2T1)kRT k (15) The parametric expression of ¯RT leads to:

(d1−d2)r2cos(θ)sin(θ) =−q¯1rsin(θ) + ¯q2rcos(θ) +r(a1rsin(θ)−a2rcos(θ)) ie: (d1−d2)rcos(θ)sin(θ) =−q¯1sin(θ) + ¯q2cos(θ) +r(a1sin(θ)−a2cos(θ))

(16) with the expression of r:

(d1−d2)1+ecos(θp φ1)cos(θ)sin(θ) =

−q¯1sin(θ) + ¯q2cos(θ) +1+ecos(θp φ1)(a1sin(θ)−a2cos(θ)) ie: (d1−d2)pcos(θ)sin(θ) =

(1 +ecos(θ−φ1))(−q¯1sin(θ) + ¯q2cos(θ)) +p(a1sin(θ)−a2cos(θ)) ie: (d1−d2)pcos(θ)sin(θ) =p(a1sin(θ)−a2cos(θ))

+(1 +e(cos(θ)cos(φ1) +sin(θ)sin(φ1)))(−q¯1sin(θ) + ¯q2cos(θ)) ie: 0 = (d1−d2)pcos(θ)sin(θ) +p(−a1sin(θ) +a2cos(θ))

+(1 +ecos(θ)cos(φ1) +esin(θ)sin(φ1))(¯q1sin(θ)−q¯2cos(θ)) (17)

RT n°0400

(9)

Quartic formulation of Coulomb 3D frictional contact 6

rename:

Acos(θ)2+Bsin(θ)2+Csin(θ)cos(θ) +Dsin(θ) +Ecos(θ) = 0 (18) with A=−e¯q2cos(φ1)

B=e¯q1sin(φ1)

C= (d1−d2)p+ecos(φ1)¯q1−esin(φ1)¯q2

D= ¯q1−pa1

E=−q¯2+pa2

(19)

Performing the following change of variables:

t=tan(θ/2) sin(θ) =1+t2t2

cos(θ) = 1−1+tt22

(20)

leads to:

A(1−1+tt22)2 +B1+t4t22 +C2t(1−1+t2t2)+D2t+E(1−t2) = 0

ie: A(1−t2)2+ 4Bt2+C2t(1−t2) + 2Dt(1 +t2) +E(1−t2)(1 +t2) = 0 ie: P4=A−E P3=−2C+ 2D P2= 4B−2A

P1= 2C+ 2D P0=A+E

(21) Finally, we get 4 possible values forRT, checking the sign ofαandRN selects the solutions.

3.3 Case R

T12

= 0

From (13),RT1 leads to:

kRT k=|R¯T2|=aq¯11T =

0

±aq¯11

(22)

From (13),RT2leads to:

kRT k=|R¯T1|=aq¯22T =

±aq¯22

0

(23)

From ¯RT, we have to check the coherence with the equation (12). If it is on the conic, we compute R, and the sign condition of the equation (4) must be checked.

4 Quartic polynomial in α

Just like in previous formulation, we want to findα >0 andR∈∂Kµsuch that UN = 0 and−α

0 RT

=M R+q.

RT n°0400

(10)

Quartic formulation of Coulomb 3D frictional contact 7

That is :





0 =

 M+

0 0 0

0 α 0

0 0 α

R+q kRT k = µRN

(24)

Let’s decomposeM:

M :=

m0 m01 m02

m01 MT

m02

Ifm00= 0, sinceM is positive-semidefinite,m01=m02= 0. Then :

• ifqN 6= 0, there is no solution to the problem

• ifqN = 0, we can chose an arbitraryαand take any solution of the linear system onRT then setRN =µ1 kRT k.

We suppose now thatm00>0. We can rewrite (24) as:





0 = (m00, m01, m02)·R+qN

0 =

MT+

α 0 0 α

RT+

m01

m02

RN+qT

kRT k = µRN

and then, substituting the first line into the second one :

0 = (m00, m01, m02)·R+qN

0 = Λ(α)RT +w kRT k = µRN

(25)

with Λ(α) :=

λ1+α λ12

λ12 λ2

=MT +

α 0 0 α

− 1 m00

m01

m02

(m01, m02) and

w:=qT − qN

m00

m01

m02

To study Λ(α), we define:

L:=m00Λ(0) =m00MT − m01

m02

(m01, m02)

SinceM is positive definite, we have∀i6=j|mij| ≤ √miimjj. That means that ∀i= 0,1Lii=m00m(i+1)(i+1)−m20(i+1)≥0. We conclude thattrL≥0.

Moreover, deriving the determinant ofL, we remark that detL=m00detM ≥0

.

RT n°0400

(11)

Quartic formulation of Coulomb 3D frictional contact 8

Lis therefore a 2×2 symmetric matrix with a positive trace and determinant, which means L is positive-semidefinite. So is Λ (sincem00 >0), and ∀α >0, Λ(α) is positive-definite.

We get

RT =− 1 det Λ(α)

λ2+α −λ12

−λ12 λ1

w (26)

Now, let’s return to equation (25) and combine its first line into the last one, then square the result:

R2T1+R2T2= µ2

m200(m01RT1+m02RT2+qN)2 Multiplying both sides by (det Λ(α))2:

0 = (det Λ(α)RT1)2+ (det Λ(α)RT2)2

− µ2

m200[m01det Λ(α)RT1+m02det Λ(α)RT2+ det Λ(α)qN]2 (27) Now remember from (26) that det Λ(α)RT i are linear functions in α, and det Λ(α) is a degree 2 polynomial inα.

The expression in (27) is therefore a degree 4 polynomial (a quartic) inα, whose roots in R+∗are the solution of our frictionnal contact problem.

5 Numerical example

We consider the following problem, which is derived from a ??? system:

M =

0.01344 −9.421e−07 0.001486

−9.421e−07 0.1061 0.0001733 0.001486 0.0001733 0.001442

 andq=

−0.1458

−0.2484

−0.1515

 andµ= 0.6 The formulation, usingt = tan(θ)2 , described in the section 3, leads to the

following polynomial:

P(t) =−1.349578×101t4−1.879711t3−6.600166×102t2+8.851747×101t+1.349783×101 The formulation, usingα, described in 4, leads to the following polynomial:

P(α) =−7.65275α4−1.62238α3−7.13689×10−2α2+7.43684×10−4α+3.70595×10−5 Both of thems yield the solution:

R=

10.2059 1.93189 5.8108

However, we found that in this particular case we could reach the machine precision using the formulation based on t= tan(θ)2 of the section 3, while the worse-conditioned polynomial of section 4 gave us an error of 10−8. Precision measurements were done using the Alart-Curnier [AC91] function.

RT n°0400

(12)

Quartic formulation of Coulomb 3D frictional contact 9

6 Conclusion

We presented two distinct approaches for expressing the sliding case of Coulomb’s frictional law as a degree 4 polynomial, from which we can deduce the analytic solutions. While in itself restricted to systems with a single contact, this method can be embedded as a local solver in a Gauss-Seidel like algorithm [JAJ98], al- lowing us to deal with real-world problems. These quartic formulations are implemented in the Siconos Platform [AP07], [AB08], and are used as well in the MECHE framework for simulating fibrous materials.

References

[AB08] V. Acary and B. Brogliato. Numerical Methods for Nonsmooth Dy- namical Systems: Applications in Mechanics and Electronics, vol- ume 35 of Lecture Notes in Applied and Computational Mechanics.

Springer Verlag, 2008.

[AC91] P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng., 92(3):353–375, 1991.

[AP07] V. Acary and F. P´erignon. An introduction to Siconos. Technical Re- port TR-0340, INRIA, http://hal.inria.fr/inria-00162911/en/, 2007.

[Bro00] B. Brogliato, editor. Impact in Mechanical systems: Analysis and Modelling, volume 551 ofLecture Notes in Physics. Springer, 2000.

[Cad09] F. Cadoux.M´ethodes d’optimisation pour la dynamique non-r´eguli`ere.

PhD thesis, Universit´e Joseph Fourier, November 2009.

[JAJ98] Franck Jourdan, Pierre Alart, and Michel Jean. A Gauss-Seidel like algorithm to solve frictional contact problems.Comput. Methods Appl.

Mech. Eng., 155(1-2):31–47, 1998.

[Mor88] J.-J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth mechanics and applications, CISM Courses Lect. 302, 1-82 (1988)., 1988.

[RAD05] M. Renouf, V. Acary, and G. Dumont. 3d frictional contact and impact multibody dynamics. a comparison of algorithms suitable for real-time applications. InECCOMAS, 2005.

RT n°0400

(13)

Centre de recherche INRIA Grenoble – Rhône-Alpes 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur

INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr ISSN 0249-0803

Références

Documents relatifs

حلاصإ ىلع زكر رىاط خيشلا نأ وى و ويف ةجيتن مىأ لىإ يثبح ةتماخ في تصلَخ امك يسايسلا و يعامتجلاا حلاصلإا قيقتح في ةيلمعلا هذى ةيهملأ ميلعتلا و ةيبترلا بيلاسأ ,

In Chapter 3 , we explore the hardware architecture developed for simulating Spiking Neural Networks and propose an approach fitting dynamic sensors to be used with Precise

Par exemple, elle peut transformer de manière sûre un int en double, mais elle peut aussi effectuer des opérations intrinsèquement dan- gereuses comme la conversion d’un void*

نﺎﻓرﻋو رﻜﺸ ،ﻪﺘﻤﺤر باوﺒأ ﺢﺘﻔﺒ ﺎﻴﻠﻋ مﻌﻨأ يذﻝا ﷲا دﻤﺤأو رﻜﺸأ ﻲﻌﺴﻝا ﻲﻓ ﻲﻝ ﻪﻘﻴﻓوﺘ ﻰﻠﻋو ،ﻪﻨﻤ ةدازﺘﺴﻻاو مﻠﻌﻝا بﻠط ﺔﻤﻌﻨ ءارو .مﻴرﻜﻝا ﻪﻝوﺴر ﻰﻠﻋ مﻬﻠﻝا

(3) ( 1 ) ءاجو يف رارقلا يسنرفلا ون زوجي لامعتسا ليجستلا يتوصلا وفصوب لايلد يف تابثلإا كلذو يف تلااحلا يتلا لا اييف طرتشي نوناقلا ةيمكشلا

mRNA expression level (A); and protein expression level (B) of TNF-α, normalized to the corresponding level expression of housekeeping gene β-Actin, in differentiated SH-SY5Y

The present study is the first in a series of projects designed to evaluate the nutritional value of algal biomass produced from four freshwater species isolated in Northern

resolution. 6.25: Simulated absorption of the THEDEX bolometer... 6.26: Simulated reflectivity of the THEDEX FPA surface. 6.27: Comparison between simulated and measured