• Aucun résultat trouvé

Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Electrochimica Acta, 60, pp. 428-436, 2011-11-29

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.electacta.2011.11.087

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Effects of electrode layer composition/thickness and electrolyte

concentration on both specific capacitance and energy density of

supercapacitor

Tsay, Keh-Chyun; Zhang, Lei; Zhang, Jiujun

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=e1b7f027-a989-49dd-b778-5efe255f8a8c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=e1b7f027-a989-49dd-b778-5efe255f8a8c

(2)

ContentslistsavailableatSciVerseScienceDirect

Electrochimica

Acta

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e l e c t a c t a

Effects

of

electrode

layer

composition/thickness

and

electrolyte

concentration

on

both

specific

capacitance

and

energy

density

of

supercapacitor

Keh-Chyun

Tsay, Lei

Zhang

,

Jiujun

Zhang

InstituteforFuelCellInnovation,NationalResearchCouncilofCanada,Vancouver,BCV6T1W5,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28September2011 Receivedinrevisedform 22November2011 Accepted23November2011 Available online 29 November 2011 Keywords: Electrochemicalsupercapacitor Electrodelayer Activecarbon Compositionoptimization Electrolyte

a

b

s

t

r

a

c

t

Inthispaper,theeffectsofseveralexperimentalconditions,suchaselectrodelayerbindercontent, conductingcarboncontent,electrodelayerthickness,aswellaselectrolyteconcentration,onboththe specificcapacitanceandenergydensityofaBP2000carbon-basedsupercapacitorareinvestigatedusing bothcyclicvoltammetryandagalvaniccharging–dischargingcurve.Theelectrodelayerstudiedcontains SuperC45carbonastheconductingadditive,PTFEasthebinder,andNa2SO4astheaqueouselectrolyte,

respectively.Withthepurposeofoptimizingtheelectrodelayerstructure,15wt%ofSuperC45and5wt% ofPTFEintheelectrodelayerwithathicknessof100␮m,arefoundtobethebestcompositionintermsof improvingbothspecificcapacitanceandenergydensity.Regardingtheeffectofelectrolyteconcentration intherangeof0.1–1.0M,0.5MofNa2SO4givesthebestperformance.

© 2011 Published by Elsevier Ltd.

1. Introduction

Inrecentyears,electrochemicalsupercapacitors(ESs)havebeen recognizedaskeyenergyefficiencydevicesforrapidenergystorage anddelivery.Thisisduetotheirhighpowerdensity,longlifecycle, highefficiency,widerangeofoperatingtemperature, environmen-talfriendliness,andsafety,aswellasservingasabridgingfunction forthepower/energygapbetweentraditionaldielectriccapacitors (whichhavehighpoweroutput)and batteries/fuelcells(which havehighenergystorage)[1,2].Withtheseadvantages,EShave becomeverycompetitiveforapplicationssuchaselectrichybrid vehicles,digital communicationdevices suchas mobilephones, digitalcameras,electricaltools,pulselasertechnique, uninterrupt-iblepowersupplies,andstorageoftheenergygeneratedbysolar cells[3].However,severalchallengessuchaslowenergydensity, highcost,andhighself-chargeratehavelimiteditswider applica-tions.

Regardinglowenergydensity,oneofthemajorlimitationsis inducedbythelowspecificcapacitanceoftheelectrodematerials used.Atthecurrentstateoftechnology,themostpracticalmaterial forESelectrodelayerisnano-scaledcarbon,suchasactivated car-bon,carbonaerogels,carbonnanotubes,templatedporouscarbons andcarbonnanofibers.Althoughsomehybridmaterialsbetween carbonandmetaloxidessuchasMnOxandRuOxhavebeenused

∗ Correspondingauthor.Tel.:+16042213000x5504;fax:+16042213001. E-mailaddress:lei.zhang@nrc.gc.ca(L.Zhang).

toconstructECelectrodelayers,theyarestillinastageofresearch anddevelopment[3].Therefore,nano-scaledcarbonsarestillthe preferredESelectrodematerials.

Ingeneral,theamountofenergystoredinnano-scaled carbon-basedsupercapacitorsisdeterminedbythespecificcapacitanceof thecarbon,theelectrical/ionicconductivityoftheelectrodelayer, theionicconductivityoftheelectrolytefilledseparator,aswellas thevoltagewindowoftheelectrolyte[4].Regardingspecific capac-itanceoftheelectrodelayer,specificsurfacearea,poresize,and electrodestructureofelectrodesaredominatingfactors[5–8].Two carbonsurfacesexistintheelectrodelayer:oneistheexternal sur-faceandtheotheristheinnersurface,andeachsurfacecangive theircorrespondingspecificcapacitances[9–12].Itfollowsboth surfacesmakecontributionstothetotalspecificcapacitance.From ourexperiments withCarbonblack BP2000-based material,we observedthatthecontributionfromtheexternalcarbonsurface tothetotalcapacitanceisaround40%andtheother60% contribu-tioncamefromtheinnermicroporoussurface.Barbierietal.[13]

studiedtherelationshipbetweenspecificcapacitanceofvarious activecarbonmaterialsandtheirspecificsurfaceareas,andfound thatthespecificcapacitancecouldincreaselinearlywithspecific surfaceareawithinaspecificrangeofsurfaceareas.Shietal.[5]

alsofoundalinearrelationshipbetweenspecificcapacitanceand surfacearea.Theseresultsindicatethatcarbonsurfaceareaplays animportantroleinincreasingspecificcapacitance.

Inadditiontousingcarbonmaterialwithhighsurfacearea,for practicalpurposes,typeofbinderanditsconcentration,thickness oftheelectrode layer,aswellaspreparation procedurearealso

0013-4686/$–seefrontmatter © 2011 Published by Elsevier Ltd. doi:10.1016/j.electacta.2011.11.087

(3)

importantinachievinghighspecificcapacitance,andinturnhigh supercapacitorperformance.Thepurposeofthisworkisto opti-mizethesupercapacitor’sperformancebyinvestigatingtheeffects ofthesefactorsontheelectrodelayers.

In this paper,we report ourattempt in theoptimization of carbonbased supercapacitor performance usingin-house fabri-catedelectrode layersand modified test cellapparatus.Several factorsaffectingelectrodepreparationwereinvestigated includ-ingbindercontent,conductingcarboncontent,aswellaselectrode layerthickness.Electrochemicalmethodssuchascyclic voltam-metry(CV)andgalvaniccharging-discharging curve(GCC)were employedfortestingelectrodeperformance.

2. Experimental

2.1. Materialsforelectrodelayer

Forelectrode layerpreparation,Carbon blackBP2000 (Cabot Corporation),conductingcarbonSuperC45andSuperPLi(both fromTIMCAL),and 60wt%polytetrafluoroethylene(PTFE)-water dispersion(Aldrich)wereusedasreceivedwithoutfurther mod-ification.

2.2. Electrodelayerpreparation

Forelectrodelayerpreparation,carbonandconductingcarbon powdersweremixedwithaVortexMixer(ThermoScientific)for 30mintoformauniformlymixedpower.Thispowderwasthen transferredintoabeakercontainingbothPTFEbinderandethanol solutionunderconstantstirringtoformapowdersuspension.Then thetemperatureofthissuspensionwasraisedtoevaporatethe sol-vent.Aftermostoftheethanolwasremoved,thepasteformedwas collectedonaglassplate.Usingaspatula,thispastewas manipu-latedbyrepeatedlyfoldingandpressingtillasufficientmechanical strengthwasachieved.Thenthispastewasrolledtoathin elec-trodesheetwiththerequiredthicknessusingaMTIrollingpress. Finally,thiselectrodesheetwasplacedintoavacuumovenat90◦C

underactivevacuumforatleast12h.

Forelectrodelayerpreparation,thedryelectrodesheetwascut intotwo2cm×2cmelectrodelayersquares.Thenthesetwo elec-trodelayerswere sandwichedwitha 30␮mthick porousPTFE separator (W.L.Gore &Associates, Inc.) in themiddle, forming anelectrode separator assembly (ESA). Theassembly was then impregnatedin anaqueouselectrolyte containing Na2SO4 with

desiredconcentrationinsideavacuumovenat60◦Cforatleast

1h.Thiselectrolyte-impregnatedESAwasthenassembledintothe two-electrodetestcellpurchasedbyIMIandmodifiedinour labo-ratory.

2.3. Two-electrodetestcellassemblingandelectrochemical measurements

Fig.1showsthetwo-electrodecelldesignfortestingand diag-nosingsupercapacitorperformance.Theactiveelectrodesurfaces forbothpositiveandnegativeelectrodesareall4.0cm2.Itcanbe

seenthatthetwoelectrodesareplacedbetweentwoTeflonplates withtwometalplatesoutside.Thesetwometalplatesserveas hold-erstotightentheESAtogether.Ononemetalplate,therearethree screws(M5×0.8mm)withathree-pointgeometry,whichensurea betterpressurebalancethanafour-pointgeometry.Betweeneach Teflonplateandelectrodethereisametalsheetserveascurrent collector.Duringassembly,screwsweretightenedwithatorque screwdriverto80cNm.Thepressurefromthestainlesssteelplates canbedirectlytransferredtotheESAthroughtwostainlesssteel coinsplacedonthebackofeachTeflonplateoftheinternalcell. Thetestcellwasthensetina100mLvolumebeakerfilledwith

about20mLofNa2SO4solution.Thebeakertogetherwiththetest

cellandelectrolytewereplacedinavacuumovenat60◦Cforat

leasthalfanhourtoremovetrappedair.

Forelectrochemicalmeasurements,cyclicvoltammogramsand galvanic charging–discharging curves were recorded using a Solartron1287potentiostat.Forcellinternalresistance measure-ments, a Tsuruga 3566 AC m-ohm Tester was used at an AC frequencyof1kHz.Allmeasurementsweremadeatroom tem-peratureandambientpressure.

2.4. Specificcapacitancecalculationbasedontheexperiment measurements

Sincethetwoelectrodesareidenticalandtheelectrodematerial is Carbonblack BP2000, which is non-faradic, the supercapaci-tors we studiedin this papershould besymmetrical and pure double-layer supercapacitors. For a symmetrical double-layer supercapacitor,thecapacitancemeasuredfromcyclic voltammo-gram(CV)orgalvaniccharging–dischargingcurve(GCC)inafull cellhardwareshouldbecalculatedaccordingtoEqs.(1)–(4)[14]:

1 CT = 1 Cp + 1 Cn (1)

where CT is the total capacitance (F)measured usingthe

two-electrode cell apparatus, Cp is the capacitance of the positive

electrodelayer,andCnisthecapacitanceofthenegativeelectrode

layer.Forasymmetricsupercapacitor,CnshouldequaltoCp.Ifwe

candefinetheindividualelectrodecapacitance(C):

C=Cp=Cn (2)

Eq.(1)willbecomeEq.(3):

CT=1

2C (3)

Forapositiveornegativeelectrode,thespecificcapacitanceofthe activematerial(CS)ofthiselectrodecanbedefinedas:

CS= C mact

= 2CT mact

(4)

wheremactisthemassweightofactivematerialinthepositiveor

negativeelectrodelayer.NotethatthisEq.(4)isonlyapplicable forasymmetricsupercapacitor.FromEq.(4),itcanbeseenthat thespecificcapacitancecanbeobtainedbymeasuringthetotalcell capacitance(CT).

ThetotalcapacitanceCTcanbecalculatedusingthemeasured

chargequalityQ,whichiseitherthetotalchargeatforward charg-ingdirection(Qf)orthatatthebackwardchargingdirection(Qb)in

thecellvoltagerangeofV1toVcell.IfV1istheinitialcellvoltage,

andsummingitequalsto0,andVcellisthevoltageatafullycharged

state.Normally,Qf=Qb.Therefore,CTcanbeexpressedasEq.(5):

CT= Q Vcell = Qf Vcell = Qb Vcell (5)

NotethatfromtheCVcurve,thechargesQfandQbcanbeobtained throughintegration,asexpressedbyEqs.(6)and(7):

Qf = V



cell V1 I(V )dt= V



cell V1 I(V )

v

dV (6) Qb= V1



Vcell I(V )dt= V1



Vcell I(V )

v

dV (7)

where

v

isthevoltagescanrate,I(V)isthecurrent,whichisa

func-tionofcell voltage(V),dV anddt arethecellvoltageand time changeswiththevoltagescanning,respectively.Inasimilarway,

(4)

Fig.1. Schematicillustrationofthetwo-electrodesupercapacitortestcell.

fromthegalvaniccharging–dischargingcurve(boththecharging current,If,anddischargingcurrent,Ib,areconstant),thechargesQf

andQbcanalsobeobtainedthroughintegration,asexpressedby

Eqs.(8)and(9): Qf = t



end 0 Idt=Iftend (8) Qb= t



end 0 Idt=Ibtend (9)

wheretendisthechargingordischargingtimewhenthe

superca-pacitorisfullychargedordischarged.

2.5. Energydensitycalculationbasedonthemeasuredcell voltageandspecificcapacitance

Inordertoobtaintheexpressionofenergyforasupercapacitor,

Fig.2schematicallyshowsthechargingcurveofadouble-layer supercapacitorataconstantchargingcurrentofIf.Assumingthat

t dt end V Vcell 0 Time Cell Voltage Charging

S

1 Vdt

Charging at a constant current (I )t

S

2

Fig.2.Schematicillustrationofthechargingcurveofapuredouble-layer super-capacitor(theequivalentseriesresistance(ESR)andparallelleakageresistanceare notconsideredhere).

thecellisfullychargedatatimeoftend,givingacellvoltageofVcell,

asshowninFig.2,theenergy(ESC)canbeexpressedas:

ESC=QfV= t



end 0 If dtV=If t



end 0 Vdt (10)

FromFig.2,itcanbeseenthattheareaunderthecharginglineis markedbyS1,andtheareaabovethecharginglineismarkedbyS2.

Thetermof

t



end

0

VdtinEq.(10)isequaltoS1,whichcanbeexpressed

asEq.(11): t



end 0 Vdt= S1 S1+S2 Vcelltend (11)

CombiningEq.(11)withEq.(10),wecanobtain:

ESC= S1 S1+S2

IftendVcell= S1 S1+S2

QfVcell (12)

CombiningEq.(5)withEq.(12),ageneralexpressionforenergycan beobtained:

ESC= S1 S1+S2CTV

2

cell (13)

For a puredouble-layersupercapacitor, thechargingcurveis a straightline,soS1=S2,suggestingthatS1/(S1+S2)=1/2.Therefore,

Eq.(13)canbewrittenasEq.(14):

ESC= 1 2CTV

2

cell (14)

Thisequationhasbeenwildlydiscussedandusedinliterature[15]. ItshouldbenotedthatthisEq.(14)isonlyapplicabletothecaseof idealdouble-layersupercapacitorswithoutequivalentseries resis-tanceandparallelleakageresistance.Iftheelectrodematerialis Faradaicorhybridizedbetweendouble-layerandFaradaic materi-als,thechargingcurvemaynotbeapproximatedtoastraightline, sothatS1isnotequaltoS2.Inthiscase,thefactorS1/(S1+S2)will

(5)

-0.02 -0.01 0 0.01 0.02 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2

Cell Voltage, Volt

Current Density, A/cm

2 100mVps 50mVps 20mVps 10mVps 5mVps 2mVps 40 60 80 100 120 120 100 80 60 40 20 0 Scan Rate, mV/s Specific Capacitance, F/g

(b)

(a)

Fig.3. (a)Cyclicvoltammograms,recordedatvariousvoltagescanratesusinga car-bonBP2000-basedsupercapacitorwithanelectrodecompositionofBP2000:Super C45:PTFE=80:15:5(wt%),electrodethicknessof100␮m,andactivecarbonloading of3.0mg/cm2.(b)Specificcapacitanceasafunctionofvoltagescanrate.

Furthermore,theenergydensityoftheactiveelectrode

mate-rial(ESC-act)canbeobtainedbydividingCTinEq.(13)bythemass

weightofactiveelectrodematerialmact:

ESC-act=1 2 CT mactV 2 cell (15)

Iftheindividualelectrodecapacitance(C)isobtainedbyCVmethod, theenergydensityoftheactiveelectrodematerialcanbeexpressed alternativelybasedonEqs.(3)and(15):

ESC-act=1 4 C mact V2 cell= 1 4CSV 2 cell (16)

Again,thisequationisonlyapplicabletothecaseofpure double-layersupercapacitors.ForaFaradaicorhybridsupercapacitor,Eq.

(13)shouldbeused.

3. Resultsanddiscussion

3.1. Specificcapacitancemeasuredbycyclicvoltammetryandthe effectofpotentialscanrateonspecificcapacitance

Fig. 3(a) shows the cyclic voltammograms of a symmetri-calsupercapacitorcellwhosebothelectrodeswerecomposedof BP2000carbonparticles.TheelectrodelayerconsistedofBP2000 carbon,SuperC45and PTFEwithawt%ratioof 80:15:5.It can beseenthatatlowscanrates,theCVsdisplayanidealcapacitive behaviour(rectangularshape),butwhenthescanrateisincreased, thisidealbehaviourisdistortedwithagraduallossincellspecific capacitancewhichismeasuredand calculatedaccordingtoEqs.

(1)–(4).Formoreclarity,Fig.3(b)showsthedependencyof spe-cificcapacitanceonpotentialscanrate.Theobserveddecreasein

0 2 4 6 8 10 120 100 80 60 40 20 0 Discharge Current mA Energy Density, Wh/kg

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 250 200 150 100 50 0 Time, Sec

Cell Voltage, Volt

100mA 50mA 20mA 10mA 5mA 20 40 60 80 100 120 120 100 80 60 40 20 0 Discharge Current mA Specific Capacitance, F/g

(a)

(b)

Fig. 4.(a) Charging–discharging curves, recorded at various charging rates usingacarbonBP2000-basedsupercapacitorwithanelectrodecompositionof BP2000:SuperC45:PTFE=80:15:5(wt%),electrodethicknessof100␮m,andactive carbonloadingof3.0mg/cm2;(b)specificcapacitanceasafunctionofchargingrate;

and(c)energydensityasafunctionofchargingrate.

specificcapacitancewithincreasingthepotentialscanrateisdue tothelimitedtransferofionstothecarbonparticlesurface, result-ingininaccessibleporeportionsoftheelectrodelayerathighscan rates(chargingrates).Thisphenomenonistypicalforalltypesof supercapacitors,reflectingthelimitedmasstransferkineticswithin theporouselectrodelayer[16–18].

3.2. Specificcapacitanceandenergydensitymeasuredbycell charging–dischargingcurves,andtheeffectofchargingrateon theperformance

Fig.4(a)showsthecharging–dischargingcurvesatthecharging ratesfrom5mAto100mAinthecellvoltagerangebetween0and 1.0V.Thischarging–dischargingcurrentrangecoversnearlythe samerangeincyclicvoltammogrammeasurementsexcept2and

(6)

60 65 70 75 80 85 90 95 12 10 8 6 4 2 0

PTFE Binder Content, wt%

Specif ic Capacitance, F/ g 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 Energy Density, Wh/kg

Fig.5.SpecificcapacitanceandenergydensityofcarbonBP2000electrodematerial asafunctionofPTFEcontents.DatafromTable1.

5mV/swhichhavecharging/dischargingcurrentslessthan1mA. Thespecificcapacitancesatvariouscharging–dischargingcurrents werecalculatedbasedonthemeasuredCT,Vcell,andQusingEq.(5),

andplottedasafunctionofcharging–dischargingcurrent,asshown inFig.4(b).Basedonthesespecificcapacitancevalues,theenergy densitycanbecalculatedaccordingtoEq.(16),andplottedasa functionofcharging–dischargingcurrent,asinFig.4(c).Specific capacitanceobtainedfromlowchargingratesareslightlyhigher thanthosefromhighrates.Thisisduetolimitedionaccessible timetothemicropore[6].Theaverageparticlesizereportedis about12–15nm[19,20]andsomemicroporeswithsizelessthan 4nmcontributeasignificantportionofporevolumeaccordingto ourBETmeasurements.Smallermicroporesaremoredifficultto accessandrequirethecharging–dischargingratetobelowerthan acriticalvalue.Whenthecharging–dischargingrateishigherthan thiscriticalvalue,currentperturbationisunabletoreachinsidethe pore.

3.3. Effectofbindercontent

Themainrolesofabinderinside theelectrodelayerare:(1) to holdcarbon particles togetherforming a compacted porous layer;and(2)tohelpthiselectrodelayertoadhereuniformlyonto thecurrentcollector.Materialswithathree-dimensionalnetwork structurelinkedbylongmolecularchains,andgood electrochemi-calstabilityaswellasgoodadhesiontometalplatearedesiredfor electrodelayerbinders.Withrespecttothis, polytetrafluoroethy-lene(PTFE)hasbeenrecognizedasoneofthemostpopularchoices. However,PTFEisahydrophobicagent,andiftoomuchPTFEisused,

60 65 70 75 80 85 90 95 25 20 15 10 5 0

Conducting Carbon Content, wt%

Specific Capacitance, F/g 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 Energy Den s ity, Wh/kg

Fig.6.SpecificcapacitanceandenergydensityofcarbonBP2000electrodematerial

asafunctionofconductingcarboncontent.DatafromTable2. Table

1 Performance data of Carbon black BP2000-based supercapacitor, measured by both cyclic voltammetry (at a potential scan rate of 20 mV/s), and galvanic charge–discharge curves (at a charging–discharging rate of 5 mA/cm 2). The electrolyte: 0.5 M Na 2 SO 4 aqueous solution (Room temperature); conducting carbon (Super C45) content in the electrode layer: 15 wt%; and electrode layer thickness: 100 ␮ m. Binder content (wt%) Active carbon loading, mact mg/cm 2 Specific capacitance from CV, CS (F/g active carbon) Electrode geometric capacitance from CV, C ′(F/cm 2) Specific capacitance from GC, CS (F/g active carbon) Electrode geometric capacitance from GC, C ′(F/cm 2) Average specific capacitance, CS (F/g active carbon) Cell voltage, Vcell (V) Energy density, Espc-act (Wh/kg active carbon) 3.0 2.95 80.0 0.118 82.3 0.121 81.2 1.00 5.64 5.0 3.00 86.1 0.129 88.2 0.132 87.2 1.00 6.05 8.0 2.73 80.6 0.110 83.2 0.114 81.9 1.00 5.69 10.0 2.70 75.9 0.102 77.5 0.105 76.7 1.00 5.33

(7)

K.-C. Tsay et al. / Electrochimica Acta 60 (2012) 428– 436 433

PerformancedataofCarbonblackBP2000-basedsupercapacitor,measuredbybothcyclicvoltammetry(atapotentialscanrateof20mV/s),andgalvaniccharge–dischargecurves(atacharging–dischargingrateof20mA/cm).

Theelectrolyteis0.5MNa2SO4aqueoussolution(roomtemperature).PTFEbindercontentintheelectrodelayer:5wt%;electrodelayerthickness:100␮m.

Conductingcarbon content(wt%) Activecarbon loading,mactmg/cm2 Specificcapacitance fromCV,CS(F/g activecarbon) Electrodegeometric capacitancefromCV, C′ (F/cm2) Specificcapacitance fromGC,CS(F/g activecarbon) Electrodegeometric capacitancefromGC, C′ (F/cm2) Averagespecific capacitance,CS(F/g activecarbon) Cellvoltage, Vcell(V) Energydensity, Espc-act(Wh/kg activecarbon) 5 3.11 80.0 0.126 92.5 0.144 86.3 1.00 6.00 10 3.49 86.1 0.150 88.7 0.155 87.4 1.00 6.07 15 3.00 80.6 0.129 88.2 0.132 84.4 1.00 5.86 20 2.68 75.9 0.107 87.0 0.117 81.5 1.00 5.66 Table3

PerformancedataofCarbonblackBP2000-basedsupercapacitor,measuredbybothcyclicvoltammetry(atapotentialscanrateof20mV/s),andgalvaniccharge–dischargecurves(atacharging–dischargingrateof5mA/cm2).

Theelectrolyteis0.5MNa2SO4aqueoussolution(roomtemperature).Conductingcarbon(SuperC45)contentintheelectrodelayer:15wt%;PTFEbindercontent:5wt%.

Electrodelayer thickness,␮m Activecarbon loading,mactmg/cm2 Specificcapacitance fromCV,CS(F/g activecarbon) Electrodegeometric capacitancefromCV, C′ (F/cm2) Specificcapacitance fromGC,CS(F/g activecarbon) Electrodegeometric capacitancefromGC, C′ (F/cm2) Averagespecific capacitance,CS(F/g activecarbon) Cellvoltage, Vcell(V) Energydensity, Espc-act(Wh/kg activecarbon) 50 1.46 84.8 0.062 80.7 0.059 82.8 1.00 5.75 100 3.00 86.1 0.129 88.2 0.132 87.2 1.00 6.06 200 5.64 84.1 0.237 87.0 0.245 85.6 1.00 5.94 300 7.94 78.9 0.313 84.8 0.337 81.9 1.00 5.69

(8)

Table 4 Performance data of Carbon black BP2000-based supercapacitor, measured by both cyclic voltammetry (at a potential scan rate of 20 mV/s), and galvanic charge–discharge curves (at a charging-discharging rate of 5 mA/cm 2). Conducting carbon (Super C45) content in the electrode layer: 15 wt%; PTFE binder content: 5 wt%; electrode thickness: 100 ␮ m. Na 2 SO 4 concentration, M Active carbon loading, mact mg/cm 2 Specific capacitance from CV, CS (F/g active carbon) Electrode geometric capacitance from CV, C ′(F/cm 2) Specific capacitance from GC, CS (F/g active carbon) Electrode geometric capacitance from GC, C ′(F/cm 2) Average specific capacitance, CS (F/g active carbon) Cell voltage, Vcell (V) Energy density, Espc-act (Wh/kg active carbon) 1 3.12 78.1 0.122 81.1 0.126 79.6 1.00 5.53 0.5 3.00 86.1 0.129 88.2 0.132 87.2 1.00 6.06 0.2 3.02 74.7 0.113 76.9 0.116 75.8 1.00 5.26 0.1 2.80 74.2 0.104 77.4 0.108 75.8 1.00 5.26

theporouselectrodelayerwillbecomemorehydrophobic,

lead-ingtoadifficultyinbothelectrolytepenetrationandionmobility

insidethematrixstructurewhenaqueouselectrolyteisemployed.

Asaresult,theelectrodeperformancewillbereduced.Therefore,

thePTFEcontentshouldbeoptimized.Inthispaper,several

typi-calPTFEcontentsweretestedwiththepurposeofelectrodelayer

optimizationwithrespecttotheperformance.

Table1showsthedataobtainedatvariousPTFEbindercontents intheelectrodelayerbytwomethods(cyclicvoltammetry(CV)and galvaniccharging–dischargingcurve(GCC)).Itcanbeseenthatthe specificcapacitancedifferencesbetweenthosedataobtainedbyCV andthosebyGCCareinsignificant(∼2%difference),suggestingthat thedataobtainedhereisreliable.

Toseethetrend moreclearly, bothspecific capacitanceand energydensityoftheelectrodeactivematerialswerealsoplotted asafunctionofPTFEcontent,asshowninFig.5.Itcanbeseenthata maximumspecificcapacitanceexists(∼86–88F/g)ataPTFEbinder contentof5%.WithanyfurtherincreaseinPTFEcontent,thespecific capacitanceisdecreased.Thisismainlybecausethehydrophobicity oftheelectrodelayercanbeincreasedwithincreasingPTFEbinder content,preventingaqueouselectrolyteionsfromenteringpores intheactivecarbonparticles,leadingtolesschargeaccumulation inthedouble-layer,resultinginreducedspecificcapacitance.The trade-offbetweenmoreporeformationandincreasing hydropho-bicitywithincreasingPTFEcontentshouldgiveanoptimizedPTFE content,whichis5wt%inthispaper.Intheliterature,hydrophilic Nafion®ionomerwasusedasthebinder[21],where

hydrophobic-itydidnotseemtobeanissueintheelectrodelayer.IntheNafion®

bindercontentrangefrom10to30%,nosignificantinfluenceon specificcapacitancecouldbeobserved.

3.4. Effectofconductingcarboncontent

Normally,highsurfaceareaactivatedcarbonsuchasBP2000 giveshigherspecificcapacitancebuthasapoorelectronic conduc-tivityandthuscausesahighercellinternalresistance.Conducting carbonhasahigherelectronicconductivitythanactivatedcarbon and is normallyused toimprove electronicconductivityof the supercapacitorelectrodelayer.Becausetheconductingcarbonhas alowsurfaceareacomparedtoactivatedcarbon,itscontributionto electrodecapacitanceisinsignificant.Inthispaper,both conduct-ingcarbons,SuperC45andSuperPLiwereusedintheelectrode layerstoimprovetheelectronicconductivityoftheelectrodelayer. ItwasfoundthatthesupercapacitorcellwithSuperC45electrodes hadalowerinternalresistancecomparedtothatwithSuperPLi, andbothconductingcarbonshadamaximumspecificcapacitance iftheircontentsareatarangeof10–15wt%.Themaximumspecific capacitancesobservedarenearlythesame,whichisintherangeof 88–92F/g.Table2showsthetypicalsupercapacitorperformance datawhenSuperC45isusedastheconductingcarbon.Itcanbe seenthatbothmethods(CVandGCC)couldgivethesimilar val-uesofspecificcapacitance.Fig.6showsbothspecificcapacitance andenergydensityasafunctionofconductingcarboncontent.The maximumvaluesforspecificcapacitanceandenergydensitycould beachievedwhentheconductingcarboncontentisintherangeof 10–15wt%.

Drops in both specific capacitance and energy density with increasingconductingcarboncontentseeninFig.6couldbemainly causedbyreducedactivesurfaceareainsidetheelectrodelayer whenmoreconductingcarbonwithsmallersurfaceareaisputinto theelectrodelayer.

3.5. Effectofelectrodethickness

Electrodelayerthicknessdirectlyrelatestovolumetric capac-itance. Thicker electrodes containing more active carbon offer

(9)

60 65 70 75 80 85 90 95 350 300 250 200 150 100 50 0

Electrode layer thickness, um

Specific Capacitance, F/g 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 Energy Density, Wh/kg

Fig.7.SpecificcapacitanceandenergydensityofcarbonBP2000electrodematerial asafunctionofelectrodelayerthickness.DatafromTable3.

highervolumetriccapacitance,asseeninTable3.Notethatthe SuperC45conductingcarbonandthePTFEbindercontentused hereare15wt%and 5wt%,respectively,whichhavegiven opti-mizedperformance,asshowninTables1and2.However,itcan beseen from Table 3 that withincreasing electrode thickness, thespecificcapacitanceisdecreasedbecausethetransportofthe electrolytic ions into/from active layerbecomes more difficult. Therefore, an optimized electrode layerthickness exists. Fig. 7

showsboththespecificcapacitanceandenergydensityasa func-tionofelectrodelayerthickness.Themaximumvaluesforspecific capacitanceandenergydensitycouldbeachievedwhenthe elec-trodelayerthicknessis∼100␮m.

3.6. Effectofelectrolyteconcentration

Intheliterature[22],electrolyteconcentrationshowedastrong effect on supercapacitor capacitance. For example, if the elec-trolyteconcentrationishigh,theiontransportwithintheelectrode layerwillbeeasier,leadingtoaneffectivebuilding-upfordouble layer.However,iftheelectrolyteconcentrationistoohigh,theion activitymaybereducedduetolesswaterhydration,resultingin decreasesionmobility. Therefore,anoptimizedelectrolyte con-centrationshouldexist.Ingeneral,foraqueouselectrolytebased supercapacitors,themostpopularelectrolyteisaqueousNa2SO4.

Therefore, in this work,we employed Na2SO4 asa

representa-tive system to investigate the electrolyte concentration effect.

Table4 displaystheperformancedataof Carbonblack BP2000-basedsupercapacitor,collectedusingbothcyclicvoltammetryand

60 65 70 75 80 85 90 95 1.2 1 0.8 0.6 0.4 0.2 0 Electrolyte Concentration, M Specific Capacitan c e, F/g 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 Energy Density, Wh/kg

Fig.8.SpecificcapacitanceandenergydensityofcarbonBP2000electrodematerial asafunctionofNa2SO4electrolyteconcentration.DatafromTable4.

galvaniccharging–dischargingcurveatdifferentNa2SO4

concen-trations.Inthesemeasurements,thethicknessofelectrodelayer was 100␮m, the conducting carbon (Super C45) content was 15wt%,andthePTFEbindercontentwas5wt%.Thiscompositionof theelectrodelayerhasbeenidentifiedasthefavouritecomposition asshowninTables1–3.

Fig.8 shows both the specific capacitance and energy den-sityofcarbonBP2000electrodematerialasafunctionofNa2SO4

electrolyteconcentration.Itcanbeclearlyseenthatbothspecific capacitanceandenergydensityarethehighestwhentheelectrolyte concentrationis0.5M.Whentheelectrolyteconcentrationislower than0.5M,bothofthemarelow,whichmaybedueaninsufficient numberofionsfordouble-layerbuilding-up.Thisobservationis consistentwiththeliterature[22].However,whentheelectrolyte concentrationishigherthan0.5M,bothspecificcapacitanceand energydensityarereduced, whichcouldbedue toreduced ion activity(lesswaterhydration)athigherelectrolyteconcentrations.

4. Conclusions

Inordertooptimizesupercapacitorperformance,theeffectof severalexperimentalconditions, suchaselectrode layerbinder content,conductingcarboncontent,electrodelayerthickness,as well as electrolyte concentration, on both the specific capaci-tanceandenergydensityofanelectrodeactivematerial(BP2000), were investigated using both cyclic voltammetry and galvanic charging–dischargingcurves.Inelectrodelayerfabrication,Super C45 carbon was used as the conducting additive, PTFE as the binder, and Na2SO4 as the aqueous electrolyte, respectively. It

wasfound that 15wt% of Super C45 and 5wt% of PTFE in the electrode layerwitha thickness of 100␮m couldgivea better performance in terms of both specific capacitance and energy density.Regardingtheeffectofelectrolyteconcentration,it was observedthat0.5MofNa2SO4 couldgivethebestperformance

within the tested electrolyte concentration range from 0.1 to 1.0M.

Acknowledgements

This work is supported by Transport Canada and National Research Council of Canada’s Institutefor Fuel Cell Innovation. DiscussionwithDr.LucieRobitalille,Dr.AlexisLaforgue,Dr. Dong-fangYang,Dr.YvesGrincourt,Dr.YonghongBing,Ms.JennyKim, Mr.WeiQuandRyanBakerarehighlyappreciated.Theauthors would also like to thank TIMCAL for providing materials and information.

References

[1]F.Béguin,E.Raymundo-Pi ˇnero,in:F.Béguin,E.Frackowiak(Eds.),Carbonsfor ElectrochemicalEnergyStorageandConversionSystems,CRCPress,2010. [2]R.Kötz,M.Carlen,Electrochim.Acta45(2000)2483.

[3]G.Wang,L.Zhang,J.Zhang,Chem.Soc.Rev.(2011),doi:10.1039/C1CS15060J. [4]F.Lufrano,P.Staiti,Int.J.Electrochem.Sci.5(2010)903.

[5]H.Shi,Electrochem.Acta41(1996)1633. [6]D.Qu,H.Shi,J.PowerSources74(1998)99.

[7]C.Laargeot,C.Porte,J.chmiola,P.Taberna,Y.Gogotsi,P.Simon,J.Am.Chem. Soc.130(2008)2730.

[8]J.Chmiola,G.Yushin,Y.Gogotsi,P.Simon,P.L.Taberna,Science313(2006) 1760.

[9]S.Ardizzone,G.Fregonara,S.Trasatti,Electrochim.Acta35(1990)263. [10]V.V.Pani ´c,R.M.Stevanovi ´c,V.M.Jovanovi ´c,A.B.Dekanski,J.PowerSources181

(2008)186.

[11]J.H.Kim,Y.S.Lee,A.K.Sharma,C.G.Liu,Electrochim.Acta52(2006)1727. [12]D.P.Serrano,J.A.Botas,J.L.G.Fierro,R.Guil-López,P.Pizarro,G.Gómez,Fuel89

(2010)1241.

[13]O.Barbieri,M.Hahn,A.Herzog,R.Kötz,Carbon43(2005)13032417. [14]M.D.Stoller,R.S.Ruoff,EnergyEnviron.Sci.3(2010)1294.

[15] B.E.Conway,ElectrochemicalSupercapacitors,ScientificFundamentalsand TechnologicalApplications,KluwerAcademic/PlenumPublishing,NewYork, 1999.

(10)

[16]O.E.Barcia,E.D’Elia,I.Frateur,O.R.Mattos,N.Peˇıbe‘re,B.Tribollet,Electrochim. Acta47(2002)2109.

[17]P.L.Taberna,P.Simon,J.F.Fauvarque,J.Electrochem.Soc.150(2003)A292. [18]J.Bisquert,Phys.Chem.Chem.Phys.2(2000)4185.

[19]C.Delacôte,A.Bonakdarpour,C.M.Johnston,P.Zelenay,A.Wieckowski,The royalsocietyofchemistry,FaradayDiscuss.140(2008)269.

[20]Z.Yue,J.Economy,Micropor.Mesopor.Mater.96(2006)314. [21]F.Lufrano,P.Staiti,M.Minutoli,J.Electrochem.Soc.151(2004)A64. [22]J.P.Zheng,T.R.Jow,J.Electrochem.Soc.144(1997)2417.

Figure

Fig. 1. Schematic illustration of the two-electrode supercapacitor test cell.
Fig. 4. (a) Charging–discharging curves, recorded at various charging rates using a carbon BP2000-based supercapacitor with an electrode composition of BP2000:Super C45:PTFE = 80:15:5 (wt%), electrode thickness of 100 ␮m, and active carbon loading of 3.0 m
Fig. 5. Specific capacitance and energy density of carbon BP2000 electrode material as a function of PTFE contents
Table 1 shows the data obtained at various PTFE binder contents in the electrode layer by two methods (cyclic voltammetry (CV) and galvanic charging–discharging curve (GCC))
+2

Références

Documents relatifs

Dans cet expos´ e on ´ etudie le processus de comptage N ∗ (t) qui compte le nombre d’´ ev` enements r´ ecurrents se produisant dans l’intervalle de temps [0, t] et qui refl`

Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway.. The Aryl Hydrocarbon Receptor is a Critical Regulator of

To demonstrate the validation and application of siRNA delivery into immune cells using the dendrimer AD, we have selected four examples (Figure 4) in which AD has been used to

Since particle mass can be neglected in the case of ultrafine aggregates, resuspension of micrometric agglomerates can be studied by analyzing the influence of

Three categories of events that range from moderate to high risk could be considered in the vulnerability assessment, namely: normal design events, (all credible scenarios,

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

The effects of temperature, moisture, wind, seismic loads and nmemus other conditions can cause s i w c a n t movement and dimensional changes in structures and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des