• Aucun résultat trouvé

On the L dual Minkowski problem Advances in Mathematics

N/A
N/A
Protected

Academic year: 2022

Partager "On the L dual Minkowski problem Advances in Mathematics"

Copied!
28
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

On the L

p

dual Minkowski problem

Yong Huanga,1,Yiming Zhaob,∗

aInstituteofMathematics,HunanUniversity,Changsha,410082,China

bDepartmentofMathematics,NewYorkUniversity,Brooklyn,NY11201,USA

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received4June2017

Receivedinrevisedform1April 2018

Accepted12April2018 CommunicatedbytheManaging EditorsofAIM

MSC:

52A40 52A38 35J96 35J20

Keywords:

LpdualMinkowskiproblem LpMinkowskiproblem DualMinkowskiproblem

DegenerateMonge–Ampèreequation Regularity

TheLp dualcurvature measurewas introduced byLutwak, Yang & Zhang in an attempt to unify the Lp Brunn–

Minkowski theory and the dual Brunn–Minkowski theory.

ThecharacterizationproblemforLpdualcurvaturemeasure, called the Lp dual Minkowski problem, is a fundamental problem in this unifying theory. The Lp dual Minkowski problem contains the Lp Minkowski problem and the dual Minkowskiproblem, twomajorproblems inmodern convex geometrythatremainopeningeneral.Inthispaper,existence resultsontheLp dualMinkowskiproblemintheweaksense willbeprovided.Moreover,existenceanduniquenessof the solutioninthesmoothcategorywillalsobedemonstrated.

©2018ElsevierInc.Allrightsreserved.

* Correspondingauthor.

E-mailaddresses:huangyong@hnu.edu.cn(Y. Huang),yiming.zhao@nyu.edu(Y. Zhao).

1 Research of the first authorwas supported by the National Science Fund for Distinguished Young Scholars(No. 11625103)andtheFundamentalResearchFundsfortheCentralUniversities.

https://doi.org/10.1016/j.aim.2018.05.002 0001-8708/©2018ElsevierInc.Allrightsreserved.

(2)

1. Introduction

TheclassicalBrunn–Minkowskitheoryfocusedonstudyinggeometricinvariantssuch as quermassintegrals (which include volume, surface area, and mean width) and geo- metricmeasures suchas areameasures andFederer’scurvaturemeasures.Amongthese measures are surface area measure and (Aleksandrov’s) integral curvature, two most studiedmeasuresintheBrunn–Minkowskitheory.TheMinkowskiproblemandtheAlek- sandrov problemcharacterizingthese twomeasures areinfluentialproblems notonlyin geometricanalysis,butalsointhetheoryoffullynonlinearpartialdifferentialequations.

The Lp Brunn–Minkowski theory and the dual Brunn–Minkowski theory are two theories that fundamentally extended the classical Brunn–Minkowski theory. The last twodecadessawtherapiddevelopmentofthesetwotheoriesandtheyarenowbecoming thecenterfocusofmodernconvexgeometry.

The Lp Brunn–Minkowski theory came to life when Lutwak [49,50] introduced Lp

surfaceareameasure.When p= 1,the Lp surfaceareameasure is theclassicalsurface areameasure.Since itsintroduction,thefamilyofLp surfaceareameasure hasquickly becomethetopicofmanyinfluentialworks.TheLpMinkowskiproblemistheproblemof prescribing Lp surfacearea measure,which greatly generalizes theclassical Minkowski problem. The family of Lp Minkowski problems contains important singular unsolved casessuchasthelogarithmicMinkowskiproblem(seeBöröczky,Lutwak,Yang&Zhang [10])andthecentro-affineMinkowskiproblem.

ThedualBrunn–MinkowskitheorywasintroducedbyLutwak(seeSchneider[58])in the1970s.ThedualBrunn–Minkowskitheoryhasbeenmosteffectiveinansweringques- tionsrelatedtointersections.OnemajortriumphofthedualBrunn–Minkowskitheoryis tacklingthefamousBusemann–Pettyproblem,seeGardner[21],Gardner,Koldobsky&

Schlumprecht[23], Koldobsky[38–40],Lutwak[48], andZhang[67].Overtheyears,the dualtheoryhasproducednumerousprofoundconceptsandresults.SeeGardner[22] and Schneider[58] foranoverviewofthetheory.Thedualtheorymakesextensiveuseoftech- niquesfromharmonicanalysis.Recently,thedualBrunn–Minkowskitheorytookahuge step forwardwhen Huang,Lutwak, Yang &Zhang[33] discoveredthe familyoffunda- mentalgeometricmeasures—calleddualcurvaturemeasures—inthedualtheory.These measures are dual to Federer’s curvature measures and are expected to playthe same important role asareameasures and curvature measuresinthe Brunn–Minkowskithe- ory.ThedualMinkowskiproblemistheproblemofprescribingdualcurvaturemeasures.

ThedualMinkowskiproblemnotonlycontainscriticalproblemssuchasthelogarithmic Minkowski problems and the Aleksandrov problem (prescribing curvature measure) as specialcases, butalsointroducesintrinsic PDEs—somethinglongmissing—tothedual Brunn–Minkowski theory. The dual Minkowski problem, while still largely open, has been studiedin[8,12,30,33,68,69].

ArecentsurprisingdiscoverybyLutwak,Yang&Zhang[53] revealedthatthereexists a unifying theory thatincludes the classicalBrunn–Minkowski theory, the Lp Brunn–

Minkowski theory, and the dual Brunn–Minkowski theory. The latter two were never

(3)

thoughttobeconnected.Inparticular,theyintroducedtheLp dualcurvaturemeasure, whichunifiesboththeaforementionedLpsurfaceareameasuresanddualcurvaturemea- sures.Theproblemofprescribingthisunifying familyofmeasuresiscalled theLpdual Minkowskiproblem.

Problem 1.1(The Lp dual Minkowskiproblems).Given a nonzerofinite Borelmeasure μontheunitsphere Sn1 and realnumbersp,q,whatare thenecessaryand sufficient conditionssothatμisexactlyequaltoCp,q(K,·) forsomeconvex bodyK∈Kno?

TheLpdualMinkowskiproblemswillbethoroughlyinvestigatedinthecurrentwork.

Whenthegivenmeasureμhasadensityf,theLp dualMinkowskiproblemsbecomes thefollowingMonge–AmpèretypeequationonSn1:

det(hij(v) +h(v)δij) =f(v)hp−1(v)(h2(v) +|∇h(v)|2)n−q2 , (1.1) where f is a given positive smooth function on Sn−1, h is the unknown, δij is the Kronecker delta, and ∇hand (hij) are the gradient and the Hessian of hon the unit spherewithrespectto anorthonormalbasisrespectively.

It is worth noting that the Lp dual Minkowski problem contains the classical Minkowskiproblem and the Aleksandrov problem,as well as theunsolved logarithmic Minkowskiproblem[10,70] andtheunsolvedcentro-affineMinkowskiproblem[19,71].It notonlyunifiestheLp Minkowskiproblem[19,35,49] andthedualMinkowskiproblem posedin[33],butalsoincludestheLpAleksandrovproblem[34] andmanynewproblems.

As mentioned previously, the family of Lp dual curvature measures, or sometimes simply referred to as the (p,q)-th dual curvature measure and denoted by Cp,q(K,·) for q R, were recently introduced by Lutwak, Yang & Zhang [53] in an effort to continue their groundbreaking works [33,34] with the first named author and to unify conceptsneverthoughttobeconnectedintheLpBrunn–Minkowskitheoryandthedual Minkowskitheory.

Whenq=n,the(p,n)-thdualcurvaturemeasureisuptoafactorofnequaltotheLp

surfaceareameasurewhichisthecoreconceptintheLpBrunn–Minkowskitheory.Inthis case,theLpdualMinkowskiproblembecomestheLpMinkowskiproblem,whichincludes theclassical Minkowskiproblem solved byMinkowski, Fenchel& Jessen, Aleksandrov, etc.RegularityresultsontheclassicalMinkowskiproblemincludetheinfluential paper [17] byCheng&Yau.Whenp>1,theLpMinkowskiproblemwassolvedbyLutwak[49]

andLutwak&Oliker[51] wheneverthegivendataisevenandbyChou&Wang[19] in thegeneralcase.TheLpMinkowskiproblemwhenp<1 ismuchmorecomplicatedand containslongopen problems suchas thelogarithmicMinkowskiproblem (solvedinthe symmetriccasebyBöröczky,Lutwak,Yang&Zhang[10] withrecentmajor progressin thenon-symmetriccasemadebyChen,Li&Zhu [16])andthecentro-affineMinkowski problem.

The logarithmic Minkowski problem characterizes cone volume measure which has been the central topicina number of recentworks. When thegiven data is even, the

(4)

existence of solutionsto the logarithmic Minkowski problem was completely solved in Böröczky, Lutwak,Yang,&Zhang [10].In thegeneralcase(non-even case),important contributions weremade byZhu [70], laterbyBöröczky, Hegedűs&Zhu [6], andespe- ciallybyChen,Li&Zhu[16] morerecently.

Thecentro-affineMinkowskiproblemcharacterizesthecentro-affinesurfaceareamea- surewhosedensityinthesmoothcaseisthecentro-affineGausscurvature. Thecharac- terizationproblem,inthiscase,isthecentro-affineMinkowskiproblemposedinChou&

Wang[19].SeealsoJian,Lu&Zhu[37],Lu&Wang[41],Zhu[71],etc.,onthisproblem.

We emphasize again that the Lp dual Minkowski problem, considered in the cur- rent work,containboth theunsolvedlogarithmicMinkowskiproblemand theunsolved centro-affineMinkowskiproblem.

Whenq= 0,theLp dualMinkowskiproblemsbecomestheLp Aleksandrovproblem posed byHuang,Lutawak,Yang,&Zhang[34],whichistheLp versionoftheAleksan- drov problem.Solutionsinsomespecialcasesweregivenin[34].

When p= 0,theL0 dual Minkowskiproblem becomestheunsolved dual Minkowski problem posedbyHuang, Lutawak,Yang,&Zhang[33]. Whenq <0,acompletesolu- tionto thedual Minkowskiproblem—including theexistenceandtheuniquenessofthe solution—waspresentedin[68]. Whenq= 0,thedual Minkowskiproblem becomesthe AlesksandrovproblemsolvedbyAleksandrovhimselfusingatopologicalargument.The dual Minkowskiproblem getsmuchmorechallenging whenq >0 and onlysolutionsin thecasewhenthegivendataisevenexist.When0< q < n,amasssubspaceinequality wasgiven in[33] and proventobe sufficient.Although theconditionisapparentlynec- essarywhen0< q≤1,examplesofconvexbodiesthatviolatesthegivenmasssubspace inequalitywhen1< q < nwereindependentlydiscoveredbyBör¨roczky,Henk,&Pollehn [8] andZhao[69].A bettersubspacemassinequalitywasproposed in[8,69], whichwas shown to be sufficient for the dual Minkowski problem when q (1,n) is an integer in [69] and necessary when q (1,n) (integers or not)in [8]. Very recently,Böröczky, Lutwak,Yang,Zhang&Zhao[12] showedthesufficiencyofthesubspacemassinequality when q∈(1,n) is anon-integer,thussettling theexistencepartofthedual Minkowski problem when q (0,n) andthegiven data iseven. When q=n,the dual Minkowski problembecomesthelogarithmicMinkowskiproblemmentionedabove.Whenq≥n+ 1, Henk&Pollehn[30] recentlyproposedanewsubspacemassinequalityandproveditto be necessaryfortheexistencepartofthedualMinkowskiproblemwhenthegivendata is even. Note again that, except for q = n and q 0, all existingresults on the dual Minkowskiproblem arerestrictedto thecasewhen thegiven measureiseven.

Evenmorechallengingthanfindingthecorrectnecessaryandsufficientconditionsfor the existenceofsolutionto thosenewly posedMinkowski-type problemsis establishing theuniquenessofthesolution.Sofar,uniquenessofthesolutionhasonlybeenestablished for very few cases including the Lp Minkowski problem when p 1,the Aleksandrov problem, the dual Minkowski problem when q < 0, and the logarithmic Minkowski problem whenthedimensionis2and thegiven dataiseven(see[9]).

(5)

Ascanbeseenfromtheabovediscussion,evenspecialcasesoftheLpdualMinkowski problemscanbe extremely challenging.Inthecurrent work,we willstudy theLp dual Minkowskiproblems inthecasewhenp=q.

In Section 3, we will consider the Lp dual Minkowski problems (when p = q) in theweaksense usingvariational method.Because the behaviorof the functional to be optimizedchangesconsiderablybasedonthevaluesofpandqwithrespectto0,results obtainedherehavetobesplit intothree parts.

Whenp>0 and q <0,acomplete characterizationto existencepartoftheLp dual Minkowskiproblem willbe given.Thisisanextensionto theexistenceresultsobtained in[68].

Theorem1.2.Letp>0,q <0,andμbeanon-zerofiniteBorelmeasureonSn−1.There existsaconvexbodyK∈Kno suchthatμ=Cp,q(K,·)ifandonlyifμisnotconcentrated onany closed hemisphere.

Whenp,q >0 andp =q, a complete solution to the existencepart of the Lp dual Minkowskiproblem will be presented when thegiven data is even. Setting q= n, the followingtheorem containsthesolutionto theevenLp Minkowskiproblem whenp>0 andp=nwhichwasobtainedinLutwak[49] andHaberl,Lutwak,Yang &Zhang[27].

Theorem 1.3. Let p,q > 0, p= q, and μ be a non-zero even Borel measure on Sn−1. There existsan origin symmetricconvex body K Kne such that μ=Cp,q(K,·) if and onlyif μisnot concentratedinany great subsphere.

TheLp Minkowskiproblemwhenp≥1 andp=nwassolvedinthegeneralcase(not assumingevennessofthemeasure)inChou&Wang[19] andlaterinHug,Lutwak,Yang

&Zhang[35].Unfortunately,theirsolutionsdonotextendtothiscaseinfullgenerality.

ThekeyobstacleisthelackofaMinkowskitypeinequalityinthismoregeneralsetting.

Inparticular,notethattheLp Minkowskiproblemwhen0< p<1 was studiedbyZhu [72] andwasessentiallysolvedbyChen,Li&Zhu [15] recently.

Whenp,q <0 andp=q, thefollowing resultwillnowbe established.

Theorem 1.4. Let p,q < 0, p = q, and μ be a non-zero finite even Borel measure on Sn1.Ifμ vanishesonallgreatsubsphere,thenthereexistsanoriginsymmetricconvex bodyK∈Kne suchthat μ=Cp,q(K,·).

NotethattheoptimizationproblemtobeintroducedinSection3failswhenthegiven measureμhaspositiveconcentrationinanygreat subsphere.

Tocomplementandenrichtheresultsobtainedviavariationalmethod,solutionsvia continuitymethodswillbeprovided.InSection4,boththeexistenceandtheuniqueness of thesolution to theLp dual Minkowskiproblem inthe smooth category will be pre- sented.Note thatwhen p= 0, the following theorem provides regularity resultsto the dualMinkowskiproblemfornegativeindices.

(6)

Theorem 1.5. Suppose p > q and 0 < α 1. For any given positive function f Cα(Sn1),there exists aunique solution h∈C2,α(Sn1) to(1.1).If f issmooth, then thesolution isalso smooth.

Since whenq=n,thedualMinkowskiproblem becomestheLp Minkowskiproblem, Theorem1.5alsosolvestheLpMinkowskiproblemforp> nwhichwasoriginallysolved byChou&Wang[19].

The uniqueness part of the Lp dual Minkowski problem when p> q and the given measure is discrete (inthe polytopalcase)wasproved byLutwak, Yang& Zhang[53].

The uniqueness established in Theorem 1.5 settles the case when the given measure possesses asufficientlysmoothdensityandthe solutionisassumedto possesssufficient regularity.Itremainsunknownwhethertheuniquenessresultstillholdsiftheregularity assumption oftheconvexbodyisremoved(see,forexample[57]).

Note again that the uniqueness of the solution to the Lp dual Minkowski problem remainsoneofthebiggestchallengesinMinkowskitypeproblems.Whiletheuniqueness has been established for p 1 by using the Lp Minkowski inequality [35], very little progress has been made for p < 1. Important recent results in this direction include Andrews [2],Böröczky,Lutwak, Yang&Zhang[9],Choi&Daskalopoulos [18],Huang, Liu&Xu[31],andJian,Lu&Wang[36].

A major accomplishmentin[53] is showing thattheLp dualcurvature measuresare valuations.See,forexample,Alesker [1], Haberl[26], Haberl&Parapatits[28],Ludwig [42,43,45,46], Ludwig& Reitzner [47], Schuster [59,60], Schuster & Wannerer [61] and thereferencesthereinforimportantvaluationsinthetheoryofconvexbodies.

Acknowledgments. The authors are grateful to the anonymous referee for his/her valuableinput.

2. Preliminaries

This section is divided into three subsections. In the first subsection, basics in the theoryofconvexbodieswillbecovered.Inthesecond subsection,thenotionofLp dual curvaturemeasure,orthe(p,q)-thdualcurvaturemeasure,willbeintroduced.Lastbut notleast,inthethirdsubsection,wewillpresenttheLp dualMinkowskiproblems—the characterizationproblem for(p,q)-thdualcurvaturemeasure.

2.1. Basicsinthetheory ofconvex bodies

The book[58] by Schneider offersacomprehensiveoverview ofthetheory ofconvex bodies.

Let Rn be then-dimensional Euclidean space. Theunit spherein Rn is denoted by Sn−1. Wewill write C(Sn−1) for thespace of continuousfunctions onSn−1. The sub- set C+(Sn1) of C(Sn1) containonlypositivefunctionswhereasthesubsetCe(Sn1) containonlyeven functions.Wewill alsowriteCe+(Sn1) forC+(Sn1)∩Ce(Sn1).

(7)

AconvexbodyinRn isacompactconvexsetwithnonemptyinterior.Theboundary ofK iswrittenas ∂K.Denote byKn0 theclassofconvexbodiesthatcontaintheorigin intheirinteriorsinRn andbyKne theclassoforigin-symmetricconvexbodiesinRn.

LetK be acompactconvex subset ofRn. Thesupportfunction hK of K is defined by

hK(y) = max{x·y:x∈K}, y∈Rn.

ThesupportfunctionhK isacontinuousfunctionhomogeneousofdegree1.SupposeK containstheorigininitsinterior. TheradialfunctionρK isdefinedby

ρK(x) = max:λx∈K}, x∈Rn\ {0}.

The radial function ρK is a continuous function homogeneous of degree 1. It is not hardtoseethatρK(u)u∈∂K forallu∈Sn−1.

Foreachf ∈C+(Sn−1),theWulffshape[f] generatedbyf istheconvexbodydefined by

[f] ={x∈Rn :x·v≤f(v), for allv∈Sn−1}. Itisapparentthath[f]≤f and[hK]=KforeachK∈Kn0.

The Lp combination of two convex bodies K,L Kn0 was first studied by Firey and was the starting point of the now rich Lp Brunn–Minkowskitheory developed by Lutwak [49,50]. For t > 0,the Lp combination of K and L, denoted byK+pt·L, is definedtobetheWulff shapegeneratedbyhtwhere

ht=

(hpK+thpL)1p, ifp= 0, hKhtL, ifp= 0.

Whenp≥1,bytheconvexityofp norm, wegetthat hpK+pt·L=hpK+thpL.

SupposeKi isasequenceofconvexbodiesinRn.WesayKi convergestoacompact convexsubsetK⊂Rn if

max{|hKi(v)−hK(v)|:v∈Sn1} →0, (2.1) asi→ ∞.IfK containstheorigininitsinterior, equation(2.1) implies

max{|ρKi(u)−ρK(u)|:u∈Sn1} →0, asi→ ∞.

(8)

ForaconvexbodyK∈Kn0,thepolarbodyofK isgivenby K={y∈Rn :y·x≤1, for allx∈K}. It issimpletocheckthatKKn0 and that

hK(x) = 1/ρK(x),

ρK(x) = 1/hK(x), (2.2)

forx∈Rn\ {o}.Moreover,wehave(K)=K.

Bythe definitionofpolar bodyand therelations(2.2),for K,Ki Kn0,we haveKi converges toK ifandonlyifKi convergesto K.

For a compact convex subset K in Rn and v Sn1, the supporting hyperplane H(K,v) ofK at visgiven by

H(K, v) ={x∈K:x·v=hK(v)}.

By its definition, the supporting hyperplane H(K,v) is non-empty and contains only boundary points of K. For x H(K,v), we say v is an outer unit normal of K at x∈∂K.

Letω⊂Sn1 beaBorelset.TheradialGauss imageofK atω,denotedbyαK(ω), is definedto bethesetofallunitvectorsvsuchthatv isanouter unitnormalofK at someboundarypointK(u) whereu∈ω,i.e.,

αK(ω) ={v∈Sn1:v·uρK(u) =hK(v) for someu∈ω}.

Whenω ={u}isasingleton,weusuallywrite αK(u) insteadof themorecumbersome notation αK({u}). LetωK be thesubsetof Sn−1 suchthatαK(u) containsmorethan oneelementforeachu∈ωK.ByTheorem2.2.5in[58],thesetωKhassphericalLebesgue measure0.TheradialGaussmapofK,denotedbyαK,isthemapdefinedonSn−1K

thattakeseachpointuinitsdomaintotheuniquevectorinαK(u).HenceαK isdefined almost everywhereonSn−1withrespect tothesphericalLebesguemeasure.

Letη ⊂Sn−1beaBorelset.ThereverseradialGaussimageofK,denotedbyαK(η), is defined to be the set of all radial directions such that the corresponding boundary points haveat leastoneouterunitnormalinη, i.e.,

αK(η) ={u∈Sn−1:v·uρK(u) =hK(v) for somev∈η}.

When η ={v}is asingleton,weusually write αK(v) instead ofthe morecumbersome notationαK({v}).LetηKbethesubsetofSn1suchthatαK(v) containsmorethanone element foreachv ∈ηK. ByTheorem2.2.11 in[58],the setηK hassphericalLebesgue measure 0. Thereverse radialGauss mapof K,denoted byαK, isthe mapdefined on Sn1KthattakeseachpointvinitsdomaintotheuniquevectorinαK(v).HenceαK is definedalmost everywhereonSn1 withrespect tothesphericalLebesguemeasure.

(9)

2.2. (p,q)-thdual curvature measures

DualquermassintegralsarethefundamentalgeometricinvariantsinthedualBrunn–

Minkowskitheory.Suppose1≤q≤nisaninteger.The(n−q)-thdualquermassintegral ofK∈Kn0, denotedbyWnq(K),canbeviewed astheaverageofq-dimensionalinter- sectionareas.Thatis,

Wnq(K) = ωn

ωq

G(n,q)

Hq(K∩ξq)dξq,

whereHqistheq-dimensionalHausdorffmeasure andtheintegrationiswithrespect to theHaar measureon theGrassmannianG(n,q) containing allq-dimensionalsubspaces ξq inRn.

The dual quermassintegrals have the following integral representation (see Lutwak [48]):

Wn−q(K) = 1 n

Sn1

ρqK(u)du,

whichimmediatelyallowsustoextendthedefinitiontoallq∈R.

Theexactgeometricmeasuresthatcanbeviewedasthedifferentialsofdualquermass- integralsremained hidden until the ground-breaking workby Huang,Lutwak, Yang &

Zhang[33].Forq= 0,theq-thdualcurvaturemeasureofK∈Kn0,denotedbyCq(K,·), canbedefinedastheuniqueBorelmeasureonSn1thatsatisfiesthefollowingequation foreachL∈Kn0:

d dt

t=0

Wn−q(K+0t·L) =q

Sn−1

loghL(v)dCq(K, v). (2.3)

NotethatthereisacorrespondingversionoftheformulathatallowsustodefineC0(K,·), see[33].Dual curvaturemeasures arethenotionsinthedual Brunn–Minkowskitheory thataredual toFederer’scurvaturemeasures.

The(p,q)-thdual curvature measurewasvery recentlyintroducedbyLutwak,Yang

&Zhang[53].Forp,q= 0,the(p,q)-thdual curvaturemeasureofK∈Kn0,denotedby Cp,q(K,·),isdefinedtobetheuniqueBorelmeasureonSn1thatsatisfiesthefollowing equationforeachL∈Kn0:

d dt

t=0

Wn−q(K+pt·L) =q

Sn−1

hpL(v)dCp,q(K, v). (2.4)

Notethatwhenp= 0,the(0,q)-thdualcurvaturemeasureisdefinedasin(2.3) sothat they are exactlythe q-th dual curvature measure.There is acorresponding version of

(10)

(2.4) thatallowsustodefineCp,q(K,·) forq= 0.Itshouldalsobepointedoutthatthe (p,q)-th dual curvature measure defined in[53] is slightlymore general than whatwe are usinginthecurrentpaper.

Key propertiesofLpdual curvaturemeasureswereshownin[53].Whenviewedas a functionfromthesetKn0 (equippedwiththeHausdorffmetric)tothespaceofBorelmea- suresonSn−1 (equippedwiththeweaktopology),the(p,q)-thdual curvaturemeasure is continuous.Thatis, foreachf ∈C(Sn−1),

i→∞lim

Sn−1

f(v)dCp,q(Ki, v) =

Sn−1

f(v)dCp,q(K0, v),

given thatK0,Ki Kn0 and Ki converges to K0.Moreover, itisalsoavaluation.That is,

Cp,q(K∪L,·) +Cp,q(K∩,·) =Cp,q(K,·) +Cp,q(L,·), given thatK,L∈Kn0 aresuchthatK∪L∈Kn0.

Itwasshownin[53] thatthe(p,q)-thdualcurvaturemeasureisabsolutelycontinuous with respecttotheq-th dualcurvaturemeasure andcanbe writtenas

dCp,q(K,·) =hKpdCq(K,·).

The above equation works even when p or q is 0. By definition, it is immediate that the (0,q)-th dualcurvature measure is exactlytheq-th dual curvature measure.When q=n,Cn(K,·) isthecone-volumemeasure,

dCn(K,·) = 1

nhKdSK(·), and thusCp,n(K,·) givestheLpsurfaceareameasure,

dCp,n(K,·) = 1

nh1KpdS(K,·) = 1

ndSp(K,·).

IfKisapolytopethatcontainstheorigininitsinteriorwithouterunitnormalsvi,i= 1,. . . ,m,thenthe(p,q)-thcurvaturemeasure C˜p,q(K,·) is discreteandis concentrated on{v1,. . . ,vm}.Namely,

Cp,q(K,·) = m i=1

ciδvi(·), where

(11)

ci= 1

nhK(vi)−p

Sn1Δi

ρK(u)qdu,

andΔiis thecone formedbytheoriginandtheface ofK withnormalvi.

If K is a convex body thathas C2 boundary with positive curvature and contains the origin in its interior, then Cp,q(K,·) is absolutely continuous with respect to the Lebesguemeasure,

dCp,q(K, v)

dv = 1

nh1−pK (h2K+|∇hK|2)q−n2 det((hK)ij+hKδij),

where∇hK and((hK)ij) arethegradientandtheHessianofhKontheunitsphereSn1 withrespectto anorthonormalbasisrespectively.

2.3. The Lp dual Minkowskiproblems

It is natural to consider the characterization problem for (p,q)-th dual curvature measure.

Problem 2.1(The Lp dual Minkowskiproblems).Given a nonzerofinite Borelmeasure μontheunitsphere Sn−1 and realnumbersp,q,whatare thenecessaryand sufficient conditionssothatthereexistsaconvexbodyK∈Kn0 satisfying

Cp,q(K,·) =μ?

Whenp= 0,theLpdual MinkowskiproblemsbecomesthedualMinkowskiproblem, which sinceits introduction in[33] has quicklyestablished its fundamentalrole inthe dual Brunn–Minkowski theory already generating works such as [8,12,30,33,68,69]. In particular, thecaseof p= 0,q=nis thelogarithmic Minkowskiproblem while p= 0, q= 0,itistheAleksandrovproblem.

Whenq =n, the Lp dual Minkowskiproblems becomesthe Lp Minkowskiproblem which is fundamentalinthe Lp Brunn–Minkowskitheory. The Lp Minkowskiproblem when p > 1 was solved in the even case by Lutwak [49] and in the general case by Chou–Wang [19]. A different approach was provided by Hug, Lutwak, Yang & Zhang [35].AsmoothsolutionwasobtainedbyHuang&Lu[32] for2< p< n.Thesolutionof theLpMinkowskiproblemplaysavitalroleinestablishingvariouspowerfulsharpaffine isoperimetricinequalities,see, e.g.,Cianchi,Lutwak,Yang&Zhang[20],Lutwak,Yang

&Zhang [52], and Zhang [66]. It containsimportant and unsolved singularcases such asthelogarithmic Minkowskiproblem(p= 0) andthecentroaffineMinkowskiproblem (p=−n).

ThelogarithmicMinkowskiproblem studies conevolumemeasures thatappearedin agrowing numberof works.See,for example,Barthe, Guédon, Mendelson&Naor [4],

(12)

Böröczky&Henk[7],Böröczky,Lutwak,Yang&Zhang[9–11],Henk&Linke[29],Lud- wig [44],Ludwig&Reitzner[47],Naor[54],Naor&Romik[55],Paouris&Werner[56], Stancu [62,63],Xiong[65], Zhu[70],andZou&Xiong[73]. ThelogarithmicMinkowski problem has strong connections with isotropic measures (Böröczky, Lutwak, Yang &

Zhang [11]), curvature flows (Andrews [2,3]), and thelog-Brunn–Minkowski inequality (e.g.,Böröczky,Lutwak,Yang&Zhang[9],Xi&Leng[64]),aninequalitystrongerthan theclassicalBrunn–Minkowskiinequality.

Whenthegivenmeasureμhasadensityf,theLp dualMinkowskiproblemsisequiv- alent tothefollowingMonge–AmpèreequationonSn1,

det(hij(v) +h(v)δij) =f(v)hp−1(v)(h2(v) +|∇h(v)|2)n−q2 , v∈Sn−1. (2.5) Since theunitballsoffinite dimensionalBanachspacesareorigin-symmetricconvex bodiesandthedualcurvaturemeasureofanorigin-symmetricconvexbodyiseven,itis of greatinteresttostudy thefollowing evenLp dualMinkowskiproblems.

Problem2.2(The evenLp dual Minkowskiproblems).GivenanonzeroevenfiniteBorel measure μon theunitsphere Sn1 and real numbersp,q, whatare thenecessary and sufficient conditionsso thatthere existsaconvex bodyK∈Kne satisfying

Cp,q(K,·) =μ?

In the current work, we will study the Lp dual Minkowski problems when p = q from two different angles. One is from convex geometric analysis point of viewwhere we will solvethe Lp dual Minkowskiproblems using variationalmethod. The solution will include cases when the given measure possesses no density. This will be done in Section3.Inadditionto that,wewillsolvetheMonge–Ampèreequation(2.5) byusing continuity methods and Caffarelli’s regularity results of the Minkowski problem [13, 14]. Both existence and uniqueness of the solution (in the smooth category) will be demonstrated.Thiswill bedoneinSection4.

3. Avariationalmethodto weaksolutions

Inthissection,wewillusevariationalmethodtostudyweaksolutionstotheLpdual Minkowski problems when p= q and p,q = 0. Note thatwhen p= 0, this problem is known as thedual Minkowskiproblem,and when q= 0, this problem isknown as the Lp Aleksandrovproblem.Boththese specialcaseshavealreadybeenconsidered.

3.1. Anassociatedoptimization problem

To obtain aweak solutionusing variational method, thefirst step is to convert the existenceproblem intoanoptimizationproblem whoseoptimizerisexactlythesolution to theoriginalproblem.

(13)

Forany nonzerofinite Borelmeasure μ onSn1 and p,q= 0, defineΦp,q : Kno R by

Φp,q(Q) =1 plog

Sn−1

hQ(v)pdμ(v) +1 qlog

Sn−1

ρQ(u)qdu,

foreachQ∈Kno.

Weconsiderthemaximizationproblem

sup{Φp,q(Q) :Q∈Kno}.

Lemma 3.1. Letp,q = 0 andμ be a nonzerofinite Borel measureon Sn−1.If K Kno

satisfies

Sn1

hpK(v)dμ(v) =Wnq(K), (3.1)

and

Φp,q(K) = sup{Φp,q(Q) :Q∈Kno}, (3.2) then

μ=Cp,q(K,·).

Proof. Foreachf ∈C+(Sn1),let[f] betheWulffshapegenerated byf, i.e., [f] ={x∈Rn :x·v≤f(v) for allv∈Sn−1} ∈Kno.

Definethefunctional Ψp,q :C+(Sn−1)Rby Ψp,q(f) =1

plog

Sn−1

f(v)pdμ(v) +1 qlog

Sn−1

ρ[f](u)qdu.

NotethatΨp,q(f) ishomogeneousofdegree0,i.e.forallλ>0 andf ∈C+(Sn1), Ψp,q(λf) = Ψp,q(f).

Weclaimthat

Ψp,q(f)Ψp,q(hK), (3.3)

foreachf ∈C+(Sn1).Indeed,sinceh[f]≤f and[hK]=K, wehave

(14)

Ψp,q(f)Ψp,q(h[f]) = Φp,q([f])Φp,q(K) = Ψp,q(hK), where thesecondinequalitysignfollowsfrom(3.2).

Forany g∈C(Sn1) andt∈(−δ,δ) where δ >0 issufficiently small,let

ht(v) =hK(v)etg(v). (3.4)

ByTheorem4.5 of[33], d

dtWn−q([ht]) t=0

=q

Sn−1

g(v)dCq(K, v). (3.5)

By(3.3),thedefinitionofΨp,q,and(3.5),wehave 0 = d

dtΨp,q(ht) t=0

= d dt

1 plog

Sn−1

ht(v)pdμ(v) +1

qlogWnq([ht])

t=0

=

Sn−1

hpK(v)dμ(v)

−1

Sn−1

hK(v)pg(v)dμ(v) + 1 Wnq(K)

Sn−1

g(v)dCq(K, v).

By(3.1),wehave

hK(v)pdμ(v) =dCq(K, v).

Weconcludethatμ=Cp,q(K,·). 2

Wheneverp=q,wecantakeadvantageofthedifferentdegreesofhomogeneityofthe two sidesin(3.1) andgetthefollowing lemma.

Lemma 3.2. Let p,q = 0, p= q, and μ be a nonzero finite Borelmeasure on Sn−1. If K∈Kno satisfies

Φp,q(K) = sup{Φp,q(Q) :Q∈Kno}, then thereexistsaconstant c>0such that

μ=Cp,q(cK,·).

(15)

Proof. Notethatsincep=q, wemayfindaconstantc>0 suchthat

Sn−1

hpcK(v)dμ(v) =Wn−q(cK).

SinceΦp,q ishomogeneousofdegree0,wehave

Φp,q(cK) = sup{Φp,q(Q) :Q∈Kno}. ByLemma3.1,wehave

μ=Cp,q(cK,·). 2

WeremarkthatthereisanobviouswaytoadaptLemmas3.1and3.2andtheirproofs so that they canbe used to treat the case when the given measure μ is even and the solutionconvexbodyKisorigin-symmetric.Inparticular,wehavethefollowinglemma.

Lemma3.3. Letp,q= 0,p=q,andμbe anonzeroevenfinite Borelmeasureon Sn−1. If K∈Kne satisfies

Φp,q(K) = sup{Φp,q(Q) :Q∈Kne}, thenthere existsaconstant c>0suchthat

μ=Cp,q(cK,·).

Lemmas3.2and3.3converttheexistencepartoftheLpdualMinkowskiprobleminto anoptimizationproblem.Therestofthissectionisaimed toproveanoptimizerexists.

3.2. Existence ofan optimizer

Since the behavior of Φp,q changesbased on the values of pand q, we shall divide ourresultsinto three cases:i)p>0 and q <0;ii) p,q >0 andp=q; iii) p,q <0 and p=q.Thecasep<0,q >0 remains unsolved.Progressalongthatdirectionisofgreat interest.

Letusfirstdealwiththecasep>0,q <0.

Lemma3.4. Letp>0,q <0,andμbe anon-zerofinite BorelmeasureonSn−1.There exists aconvex body K Kno such that Φp,q(K) = sup{Φp,q(Q): Q Kno}if μ is not concentratedonany closed hemisphere.

Proof. SupposeQlis amaximizationsequence;i.e.,

llim→∞Φp,q(Ql) = sup{Φp,q(Q) :Q∈Kno}.

(16)

Note thatΦp,q is homogeneousofdegree0.Sowe may(after rescaling)assumethat

Sn1ρqQl(u)du= 1.

WeclaimthatQl isuniformlybounded.Ifnot,aftertakingsubsequence,wemayfind vl ∈Sn1 such thatρQl(vl)→ ∞ as l → ∞. By thedefinition ofpolar body and the supportfunction,

1 =

Sn−1

ρqQ

l(u)du

=

Sn1

h−qQ l(u)du

Sn−1

ρQl(vl)−q(vl·u)−q+ du

=ρQl(vl)q

Sn−1

(v1·u)+qdu.

Here (t)+ = max{t,0} for any t R. Since

Sn−1(v1·u)+qdu is positive and q < 0, we have ρQl(vl) is bounded. This is a contradiction to the choice of vl. Hence Ql is uniformly bounded.

By Blaschke’s selection theorem, (after taking asubsequence) we may assume that Ql converges toacompactconvex subsetK0Rn.

We will show thatK0 hasthe origininits interior. Ifnot, then theorigin ison the boundaryof K0 andtherefore, thereexists u0∈Sn−1 suchthathK0(u0)= 0.Since Ql converges toK0,wehave

l→∞lim hQl(u0) = 0.

Foreachδ >0,define

ωδ={v∈Sn−1:v·u0> δ}.

Since μ is not concentrated in any closed hemisphere, there exists δ0 > 0 such that μ(ωδ0)>0.SinceρQl(v)v·u0≤hQl(u0),wehaveρQl(v) goesto0 uniformlyonωδ0.

This, togetherwith

Sn−1ρqQ

l(u)du= 1 andp>0,implies Φp,q(Ql) =1

plog

Sn1

hpQl(v)dμ(v)

≤ −1 plog

ωδ0

hpQl(v)dμ(v)

(17)

=1 plog

ωδ0

ρ−pQ

l(v)dμ(v)

→ −∞,

which isa contradiction to Ql being amaximizationsequence. HenceK0 contains the origininitsinterior.LetK =K0.Since Ql convergesto K0,Ql convergesto K.That K isamaximizernow followsdirectlyfrom thecontinuityof Φp,q and thefactthatQl

isamaximizing sequence. 2

The “if” part of the following theorem follows directly from Lemmas 3.2 and 3.4 whereasthe“onlyif” partisobvious.

Theorem3.5.Letp>0,q <0andμbeanon-zerofinite BorelmeasureonSn−1.There existsaconvexbodyK∈Kno suchthatμ= ˜Cp,q(K,·)ifandonlyifμisnotconcentrated onany closed hemisphere.

Letusnowconsider thecasep,q >0 andp=q.

Thefollowingtwolemmasprovide importantestimatesforestablishingtheexistence ofanoptimizer.

Lemma3.6.Letp,ε0>0andμbeanon-zeroevenfiniteBorelmeasureonSn1.Suppose e1l,· · ·,enl isa sequenceof orthonormal basis inRn and {al}isa sequenceof positive real numbers. Assume e1l,· · ·,enl converges to an orthonormal basise1,· · ·,en in Rn. Define

Gl={x∈Rn:|x·e1l|2+· · ·+|x·en−1,l|2≤a2l and |x·en,l|2≤ε0}.

If μ isnot concentrated in any great subsphere, thenthere exists c,L>0 (independent ofl) suchthat

Sn−1

hpGl(v)dμ(v)≥c,

foreach l > L.

Proof. Notethat±ε0en,l∈Gl.Hence,bythedefinitionofsupportfunction,

hGl(v)≥ε0|v·en,l|, (3.6) foreachv∈Sn1.Foreachδ >0,define

ωδ ={v∈Sn−1:|v·en|> δ}.

(18)

Bymonotoneconvergencetheorem,andthefactthatμisnotconcentratedinanygreat subsphere,

δlim0+μ(ωδ) =μ(Sn−1\span{e1,· · ·, en1})>0 Hence,there existsδ0>0 such thatμ(ωδ0)>0.

Since enl convergestoen,there existsL>0 such thatforl > L,wehave

|enl−en|< δ0/2.

This, togetherwith(3.6),impliesthatforv∈ωδ0 andl > L, hGl(v)≥ε0(|v·en| − |v·(en−enl)|)≥ε0δ0/2.

Hence,

Sn−1

hpG

l(v)dμ(v)

ωδ0

hpG

l(v)dμ(v) 1

2ε0δ0 p

μ(ωδ0) =:c. 2

Let0< a<1 ande1,· · ·,en beanorthonormalbasisinRn.Define Ta={x∈Rn :|x·e1| ≤aand |x·e2|2+· · ·+|x·en|21}.

Thefollowinglemma estimatesthedual quermassintegralofthegeneralizedellipsoid Ta.

Lemma 3.7.Let0< a<1ande1,· · ·en bean orthonormalbasis inRn.If q >0,then

alim0+

Sn−1

ρqTa(u)du= 0.

Proof. Sinceq >0,wehaveρqT

a isbounded.Thus,bydominatedconvergencetheorem,

alim0+

Sn−1

ρqTa(u)du=

Sn−1

alim0+ρqTa(u)du.

It issimpletoseethat

alim0+ρTa(u) =

1, ifu∈span{e2,· · ·, en}, 0, otherwise.

Hencewegetthedesiredresult. 2

Weareready toshowtheexistenceofanoptimizer.

Références

Documents relatifs

Le cas général est à 5 variables, donc trop lourd pour être traité comme ci-dessus.. Ce 2 ème cas toutefois ne comporte que des facteurs premiers à la

Si ABCD est un rectangle alors AC=BD est une implication vraie (tous les rectangles ont des diagonales de même longueur). D'une façon générale, le fait qu'une proposition soit

Traduire en ´ecriture symbolique (`a l’aide de quantificateurs. .) la proposition sui- vante et d´eterminer sa valeur de v´erit´e :. � tout nombre r´eel est inf´erieur ou ´egal

[r]

Like many other central objects of interest in convex geometry, such as the L p affine and geominimal surface areas and the L p John ellipsoids (see e.g., [27, 34, 37, 42, 43, 52,

Aleksandrov’s integral curvature (the Aleksandrov problem resp.) and the cone volume measure (the logarithmic Minkowski problem resp.) were never thought to be connected un- til

As part of the new Orlicz–Brunn–Minkowski theory, Lutwak, Yang and Zhang established two fundamental affine inequalities, the Orlicz Busemann–Petty centroid inequality [44] and

[r]