• Aucun résultat trouvé

Dual Orlicz–Brunn–Minkowski theory Advances in Mathematics

N/A
N/A
Protected

Academic year: 2022

Partager "Dual Orlicz–Brunn–Minkowski theory Advances in Mathematics"

Copied!
26
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Dual Orlicz–Brunn–Minkowski theory

Baocheng Zhua,b,1, Jiazu Zhoua,c,∗,2,Wenxue Xua

a SchoolofMathematicsandStatistics,SouthwestUniversity,Chongqing400715, People’sRepublicofChina

b DepartmentofMathematics,HubeiUniversityforNationalities,Enshi,Hubei 445000,People’sRepublicofChina

cCollegeofMathematicalScience,KailiUniversity,Kaili,Guizhou556000, People’sRepublicofChina

a r t i c l e i n f o a bs t r a c t

Article history:

Received19September2013 Accepted14July2014 Availableonlinexxxx

CommunicatedbyErwinLutwak

MSC:

52A20 52A40 53A15

Keywords:

Starbody Orliczradialsum DualOrliczmixedvolume DualOrlicz–Brunn–Minkowski theory

DualOrlicz–Minkowskiinequality DualOrlicz–Brunn–Minkowski inequality

In this paper, a dual Orlicz–Brunn–Minkowski theory is presented. An Orlicz radial sum and dual Orlicz mixed volumesareintroduced.ThedualOrlicz–Minkowskiinequality andthedual Orlicz–Brunn–Minkowskiinequality areestab- lished.Thevariationalformulaforthevolumewithrespectto theOrliczradialsumisproved.Theequivalencebetweenthe dualOrlicz–MinkowskiinequalityandthedualOrlicz–Brunn–

Minkowski inequality is demonstrated. Orlicz intersection bodies aredefinedandtheOrlicz–Busemann–Pettyproblem isposed.

© 2014ElsevierInc.All rights reserved.

* Corresponding author at: School of Mathematics and Statistics, Southwest University, Chongqing 400715,People’sRepublicofChina.

E-mailaddresses:zhubaocheng814@163.com(B. Zhu),zhoujz@swu.edu.cn(J. Zhou),xwxjk@163.com (W. Xu).

1 Supported in part by the Fundamental Research Funds for the Central Universities (No.

XDJK2013D022).

2 Supported inpartbyNSFC(No.11271302)andthePh.D.ProgramofHigherEducationResearchFund (No.2012182110020).

http://dx.doi.org/10.1016/j.aim.2014.07.019 0001-8708/© 2014ElsevierInc.All rights reserved.

(2)

1. Introduction

TheclassicalBrunn–Minkowskitheory,alsoknownasthetheoryofmixedvolumes,is thecoreofconvex geometric analysis.Itoriginatedwith Minkowskiwhenhe combined hisconceptofmixedvolumewiththeBrunn–Minkowskiinequality.OneofMinkowski’s majorcontributions tothetheory wasto showhow histheorycouldbe developedfrom afewbasicconcepts,suchassupportfunction,vectoraddition,andvolume.

Duringthelasttwo decades,theBrunn–Minkowskitheoryhasbeen extendedtothe Lp Brunn–Minkowskitheory,whichcombinesvolumeand ageneralizedvector addition ofcompactconvexsetsintroducedbyFirey intheearly1960s (see[10])andnowcalled Lpaddition.ThirtyyearsafterFieryintroducedhisnewLpaddition,thenewLpBrunn–

Minkowskitheorywasborn inLutwak’spapers [37,38]and hassincewitnessedarapid growth.See[4,5,7,22,39,41,45,51,52]foradditionalreferences.

Recently, progress towards an Orlicz–Brunn–Minkowski theory was made by Lut- wak, Yang and Zhang [43,44] and Ludwig [32]. This theory is far more general than theLpBrunn–Minkowskitheory,wereferthereaderto[6,16,24,26,29,32,40,43,44,46,53, 57].TheOrliczextensionwasmotivatedbyconceptswithintheasymmetricLp Brunn–

Minkowskitheorydevelopedby,e.g.,Ludwig[30],HaberlandSchuster[23],andLudwig and Reitzner [33]. As part of the new Orlicz–Brunn–Minkowski theory, Lutwak, Yang andZhangestablished twofundamentalaffine inequalities,theOrliczBusemann–Petty centroid inequality [44] and the Orlicz Petty projection inequality [43]. The concepts of the Orlicz–Brunn–Minkowski theory are much more general than those of the Lp

Brunn–Minkowskitheory.

Duringthelastthree decades,convexgeometric analysishasachieved importantde- velopments. Lutwak’s dual Brunn–Minkowski theory, introduced in the 1970s, helped achievingamajorbreakthrough inthe solutionoftheBusemann–Petty probleminthe 1990s. In contrast to the Brunn–Minkowski theory, in the dual theory, convex bodies arereplaced bystar-shaped sets, andprojections ontosubspacesarereplaced byinter- sectionswithsubspaces.Themachineryofthedualtheoryincludesdualmixedvolumes andimportantauxiliarybodiesknownas intersectionbodies(see[11–13,18,27,28,35,36, 54–56]).

LpharmonicradialcombinationofconvexbodieswereinvestigatedbyFirey(see[8,9]).

Then,LutwakextendedtheLp harmonicradialcombinationtostarbodiesin[38].IfK andLarestarbodies(seeSection2forprecisedefinitionandunexplainedterminology), and a,b 0 (not both zero), then for p 1, the Lp harmonic radial combination, a·K+pb·L isastarbodyanddefinedby(see[38])

ρ(a·K+pb·L, u)p=aρ(K, u)p+bρ(L, u)p, u∈Sn1, (1.1) where thefunction ρis theradial functionof theset involved. In[38],Lutwak showed thatassociated withLp harmonicradialcombinationthere wereintegralrepresentation andinequalitiesfortheLpdualmixedvolume.SincethenanLpdualBrunn–Minkowski

(3)

theory hasbeen developed(see [20,31,33,38,42,56]).Motivatedbythemanner inwhich Lutwak, Yang and Zhang extended the Lp Brunn–Minkowski theory to the Orlicz–

Brunn–Minkowski theory, we extend the dual Lp Brunn–Minkowski theory to a dual Orlicz–Brunn–Minkowski theory.

Todoso,wedefineanOrliczradialsumanddualOrliczmixedvolumesasextensions of dual Lp mixed volumes. Considerconvex function φ : (−∞,0)(0,+) (0,) such that limt→∞φ(t) = 0, limt→0φ(t) = , and set φ(0) = . This means thatφ mustbeincreasingon(−∞,0) anddecreasingon(0,).Wewillassumethatφiseither strictlyincreasingon(−∞,0) orstrictlydecreasingon(0,) throughoutthispaper.Let Cdenotetheclassofallsuchconvexfunctionsφ.LetC+betheclassofconvexandstrictly decreasing functionsφ: (0,) (0,) such thatlimt→∞φ(t)= 0, limt→0φ(t)=, and φ(0)=.

For φ ∈ C+, we define the Orlicz radial sum K+φL of two star bodies about the originK andLinRn,by

ρ(K+φL, u) = sup

t >0 :φ

ρ(K, u) t

+φ

ρ(L, u) t

≤φ(1)

, u∈Sn−1. (1.2) We will show thatthe Orlicz radialsum reduces to the Lp harmonicradial sumwhen φ(t)=t−p inSection3.

Wealso definethedual OrliczmixedvolumeVφ(K,L),and provethe followingdual Orlicz–Minkowski inequality:Forφ∈ C+,ifK,L∈ Son (see Section2forprecise defini- tion),then

Vφ(K, L)≥V(K)φ

V(L) V(K)

n1 ,

where V(·) isthevolumefunctionofthesetinvolved.

InSection5,wewillestablishOrliczradialsumversionsofthedualBrunn–Minkowski inequality forstar bodiesincluding theequality conditions. Forexample, thefollowing dual Orlicz–Brunn–Minkowski inequality:

φ(1)≥φ

V(K) V(K+φL)

n1 +φ

V(L) V(K+φL)

n1

, (1.3)

withequalityifandonlyifKandLaredilatesofeachother.Hereφ∈ C+andV denotes volume.

When φ(t) = tp, with p≥ 1. Theabove dual Orlicz–Brunn–Minkowski inequality reduces toLutwak’sLpdual Brunn–Minkowskiinequality(see[38]):

V(K+φL)np ≥V(K)np +V(L)pn, (1.4) with equalityifand onlyifK andL aredilatesofeachother.

(4)

This paperis organizedas follows. In Section2, wecollect somebasicconcepts and various facts that will be used in the proofs of our results. In Section 3, the Orlicz radialsumis introduced, and someofits basicpropertiesare shown.The definitionof thedual Orlicz mixedvolumeisgiven inSection4. InSection5,we establishthedual Orlicz–Brunn–MinkowskiinequalityandthedualOrlicz–Minkowskiinequality.Weview theseinequalitiesascentraltothedualOrlicz–Brunn–MinkowskiTheory.InSection6,we introduceOrliczintersectionbodiesandproposetheOrlicz–Busemann–Pettyproblem.

2. Preliminaries

The unit ball in Rn and its surface are denoted by B and Sn1, respectively. The volume of the unit ball B is denoted by ωn = πn/2(1+n/2), where Γ(·) is the Gammafunction.Wewrite V(K) forthevolumeofthecompactsetK inRn.

ForA∈GL(n) writeAtforthetransposeofAandAtfortheinverseofthetranspose ofA.Write|A| fortheabsolute valueof thedeterminantofA.

Wesaythatthesequencei},ofφi∈ C+,issuchthatφi→φ0∈ C+ provided

i−φ0|I := max

s∈Iφi(s)−φ0(s)0, foreverycompactinterval I⊂R.

TheradialfunctionρK=ρ(K,·):Rn\{0}→[0,),ofacompactstar-shaped(about theorigin)K⊂Rn,isdefinedby(see[14,50])

ρ(K, x) = max{λ≥0 :λx∈K}.

If ρK is positive and continuous, then K is called a star body (about the origin).

WriteSon forthesetofstarbodiesabouttheorigininRn.TwostarbodiesKandLare dilates(ofoneanother)ifρK(u)/ρL(u) isindependentofu∈Sn1.Ifs>0,wehave

ρ(sK, x) =sρ(K, x), for allx∈Rn\ {0}. (2.1) Moregenerally,from thedefinitionoftheradialfunctionitfollowsimmediatelythat for A∈GL(n) the radialfunctionof the image AK ={Ay :y ∈K}of K is given by (see[14,50])

ρ(AK, x) =ρ

K, A−1x , for allx∈Rn. (2.2) ForK∈ Son,define therealnumbersRK andrK by

RK = max

uSn−1ρK(u) and rK= min

uSn−1ρK(u). (2.3) Notethat0< rK < RK <∞, forallK∈ Son.

(5)

Obviously, forK,L∈ Son,

K⊂L if and only if ρK ≤ρL. (2.4) TheradialHausdorffmetricbetweenthestarbodiesKand Lis

δ(K, L) = max

uSn−1

ρK(u)−ρL(u). A sequence{Ki}ofstarbodiesissaidtobeconvergentto Kif

δ(K i, K)0, asi→ ∞.

Therefore, asequenceofstarbodiesKiconvergesto Kifandonlyifthesequenceof radialfunctionsρ(Ki) convergesuniformlyto ρ(K,·) (see[49,Theorem 7.9]).

The radialMinkowskiaddition and scalarproduct of sets Qand T inRn is defined by(see[14,35])

aQ+bT ={ax+by:x∈Q, y∈T}, for alla, b∈R. IfK,L∈ Son anda,b≥0,aK+bL canbe definedasastar bodysuchthat

ρaK+bL(u) =K(u) +L(u), for allu∈Sn1. (2.5) Thepolarcoordinateformulaforthevolumeof acompactsetK is

V(K) = 1 n

Sn−1

ρnK(u)dS(u), (2.6)

where S istheLebesguemeasureonSn−1(i.e.,the(n1)-dimensionalHausdorffmea- sure).

Thefirstdual mixedvolume,V1(K,L),ofK,L∈ Son,isdefinedby nV1(K, L) = lim

ε0

V(K+εL)−V(K)

ε (2.7)

In [34] Lutwak proved the following integral representation for the first dual mixed volume:IfK,L∈ Son,then

V1(K, L) = 1 n

Sn−1

ρnK1(u)ρL(u)dS(u). (2.8)

This integral representation, together with the Hölderinequality (see [25]), and the polarcoordinateformula,immediatelyleads tothefollowingdualMinkowski inequality

(6)

forthefirstdualmixedvolume(see[35]):IfK,L∈ Son,then

V1(K, L)n ≤V(K)n−1V(L), (2.9) withequalityifandonlyifKand Laredilates.

From the dual Minkowski inequality, we can obtain the dual Brunn–Minkowski in- equality(see[35]):IfK,L∈ Son anda,b≥0 then

V(aK+bL)n1 ≤aV(K)1n+bV(L)n1, (2.10) withequalityifandonlyifKand Laredilates.

ForK,L∈ S0n,p≥1,theLp dualmixedvolumeVp(K,L) ofKandL isdefinedby

−n

pV−p(K, L) = lim

ε→0

V(K+pε·L)−V(K)

ε . (2.11)

In[38]LutwakalsoprovedthefollowingintegralrepresentationfortheLpdualmixed volume:ForK,L∈ S0n,andp≥1,

V−p(K, L) = 1 n

Sn−1

ρn+pK (u)ρLp(u)dS(u). (2.12)

Suppose that μ is a probability measure on a space X and g : X I R is a μ-integrable function,where I is apossibly infiniteinterval. Jensen’sinequality states thatifφ:I→Ris aconvexfunction,then

X

φ

g(x) dμ(x)≥φ

X

g(x)dμ(x)

. (2.13)

Ifφ is strictly convex, equality holds ifand only ifg(x) isconstantfor μ-almost all x∈X (see[25]).

3. Orliczradialsum

WefirstdefinetheOrliczradialsum.

Definition3.1.LetK,L∈ Son withradialfunctionsρKL,respectively.Fora,b≥0 (not bothzero)andφ∈ C+,definetheOrlicz radialsuma·K+φb·Lof Kand Lby

ρa·K+

φb·L(u) = sup

t >0 :

ρK(u) t

+

ρL(u) t

≤φ(1)

,

u∈Sn−1. (3.1)

(7)

From (2.2)andthedefinitionof Orliczradialsum,wehave:

Proposition 3.1. SupposeK,L∈ Son,anda,b≥0.If φ∈ C+,thenforA∈GL(n), A(a·K+φb·L) =a·AK+φb·AL. (3.2) Proof. Foru∈Sn−1,by(2.2)

ρa·AK+

φb·AL(u) = sup

t >0 :

ρAK(u) t

+

ρAL(u) t

≤φ(1)

= sup

t >0 :

ρK(A1u) t

+

ρL(A1u) t

≤φ(1)

=ρa·K+

φb·L A1u

=ρA(a·K+

φb·L)(u). 2

Since K,L ∈ Son, 0 < ρK < and 0 < ρL < , hence ρKt 0 and ρtL 0 as t → ∞. By this and the assumption that φ is strictly decreasing in (0,), the function

t →aφ ρK

t

+ ρL

t

is strictlyincreasingin(0,).Itisalsocontinuous.Thus,we have:

Lemma 3.1.Suppose K,L∈ Son andu∈Sn−1.If φ∈ C+,then

ρK(u) t

+

ρL(u) t

=φ(1) if andonly if

ρa·K+

φb·L(u) =t.

Remark3.1.Whenφ(t)=tp,withp≥1,itiseasytoshowthattheOrliczradialsum reduces toLutwak’sLpharmonicradialcombination(see[38]):

ρ(a·K+φb·L, u)−p=aρ(K, u)−p+bρ(L, u)−p, u∈Sn−1.

If K,L ∈ Son, let R = max{RK,RL} and r = min{rK,rL}. For a,b 0, let C = max{a,b}and c =a+b. Since φ iscontinuous and strictly deceasing in(0,), hence theinverseφ1 isalsocontinuousand deceasingin(0,).

(8)

Lemma3.2. SupposeK,L∈ Son.If φ∈ C+,then r

φ1(φ(1)2C ) ≤ρa·K+

φb·L(u) R φ1(φ(1)c ), forallu∈Sn1.

Proof. Supposeu∈Sn1 andletρa·K+

φb·L(u)=t.ByLemma 3.1andthefactthatφ isstrictlydeceasingon(0,),wehave

φ(1) =aφ

ρK(u) t

+

ρL(u) t

≤Cφ rK

t

+ rL

t

2Cφ r

t

. (3.3)

Since the inverseφ−1 of φ is strictly deceasing on(0,), we have the lower bound forρa·K+

φb·L(u):

t≥ r φ−1(φ(1)2C ).

Onthe other hand,from Eq. (3.3), together with theconvexityand the strictly de- creasingon(0,) ofφ,wehave

φ(1) a+b = a

a+

ρK(u) t

+ b

a+ ρL(u)

t

a a+

RK

t

+ b

a+ RL

t

≥φ a

a+bRK+a+bb RL

t

≥φ R

t

. Thenweobtaintheupperestimate:

t≤ R

φ1(φ(1)c ). 2

WenowprovethattheOrliczradialsumoftwo starbodiesisagainastarbody.

Lemma 3.3. Supposeφ∈ C+ anda,b≥0(not both zero).If K,L∈ Son,then a·K+φ

b·L∈ Son.

(9)

Proof. Letu0∈Sn1,for anysubsequence {ui}⊂Sn1 such thatui →u0 asi→ ∞, we needtoshow

ρa·K+

φb·L(ui)→ρa·K+

φb·L(u0), asi→ ∞. Let

ρa·K+

φb·L(ui) =ti. Then Lemma 3.2gives

r

φ1(φ(1)2C) ≤ti R φ1(φ(1)c ).

Since K,L ∈ Son, we have 0 < rK RK < , 0 < rL RL < . Thus, there exist λ,μsuchthat0< λ≤ti ≤μ<∞, foralli. Toshow thatthe boundedsequence {ti} converges to ρa·K+

φb·L(u0), we show that every convergent subsequence of {ti} convergestoρa·K+

φb·L(u0).Denoteanarbitraryconvergentsubsequenceof{ti}by{ti} as well,and supposethatforthissubsequence

ti→t0.

It isclearthatλ≤t0≤μ.Lemma 3.1andthefactρa·K+

φb·L(ui)=ti showthat

ρK(ui) ti

+

ρL(ui) ti

=φ(1).

SinceρKandρLarecontinuousonSn1,togetherwiththecontinuityofφandti→t0, itfollows that

ρK(u0) t0

+

ρL(u0) t0

=φ(1).

ByLemma 3.1,wehave

t0=ρa·K+

φb·L(u0).

This shows

ρa·K+

φb·L(ui)→ρa·K+

φb·L(u0).

Therefore, thecontinuityofρa·K+φb·L isprovedanda·K+φb·L∈ Son. 2

(10)

FromthedefinitionoftheOrliczradialsum(3.1),forσ >0,wehave ρa·(σK)+

φb·(σL)(u) = sup

t >0 :

ρσK(u) t

+

ρσL(u) t

≤φ(1)

= sup

σt >0 :

ρK(u) t

+

ρL(u) t

≤φ(1)

=σρa·K+

φb·L(u).

Thisgivesthat

ρa·(σK)+φb·(σL)(u) =σρa·K+φb·L(u). (3.4) Next,weshowthattheOrliczradialsum+φ:Son→ Son iscontinuous.

Lemma3.4.Supposeφ∈ C+.IfKi,Li ∈ SonandKi →K∈ Son,Li→L∈ Son,asi→ ∞, then

a·Ki+φb·Li→a·K+φb·L, asi→ ∞ forallaandb.

Proof. Supposeu∈Sn−1. Wewill showthat ρa·Ki+

φb·Li(u)→ρa·K+

φb·L(u), as i→ ∞. (3.5) Let

ρa·Ki+φb·Li(u) =ti.

WriteRi= max{RKi,RLi}andri= min{rKi,rLi}. ThenLemma 3.2gives ri

φ−1(φ(1)2C )≤ti Ri φ−1(φ(1)c ).

SinceKi →K ∈ Son and Li →L∈ Son, wehaveRKi →RK <∞, RLi →RL <∞, and rKi →rK >0, rLi →rL >0.By thefact thatthe functionsR = max{RK,RL} and r = min{rK,rL}are continuous, we have Ri R <∞, ri r > 0.Thus, there existλ,μsuchthat

0< λ≤ti≤μ <∞, for alli. (3.6) Toshowthattheboundedsequence{ti}convergestoρa·K+

φb·L(u),weshowthatevery convergent subsequence of {ti} converges to ρa·K+φb·L(u). Denote an arbitrary con-

(11)

vergent subsequence of {ti}by {ti}as well, and suppose that for this subsequencewe have

ti→t0.

It isclearthatλ≤t0≤μ.LetKi=ti 1Ki andLi=ti 1Li. SinceKi→K,Li →L, and t−1i →t−10 ,wehavet−1i Ki→t−10 K andt−1i Li→t−10 L.

Now (3.4), andthefactρa·Ki+

φb·Li(u)=ti,show thatρK

i+φLi(u)= 1.Thatis,

ρK

i(u) + ρL

i(u) =φ(1), for alli.

Sincet−1i Ki→t−10 Kandt−1i Li→t−10 L,togetherwiththecontinuityofφ,and(2.1),it follows that

ρK(u) t0

+

ρL(u) t0

=φ(1).

ByLemma 3.1,wehave

t0=ρa·K+φb·L(u).

This shows

ρa·Ki+

φb·Li(u)→ρa·K+

φb·L(u).

Now thepointwiseconvergence(3.5)hasbeen proved.

Wewill showthattheconvergence(3.5)isuniformforany u0∈Sn−1.

Assumethatρa·Ki+φb·Lidoesnotconvergeuniformlytoρa·K+φb·L.Then,thereexists aδ0>0 such that,fori≥N0N,

ρa·Ki+φb·Li(ui)−ρa·K+φb·L(ui)≥δ0. (3.7) Since Sn1 is compact, for some u0 Sn1, there exists asubsequence {ui} Sn1 suchthatui →u0 asi→ ∞.

From Lemma 3.2, there exist an N0 Nand positive λ,μ such that(3.6)holds for i≥N0. Then,thereexists apositives0suchthat

ρa·Ki+

φb·Li(ui)→s0. From (3.7),wehave

s0−ρa·K+φb·L(u0)≥δ0.

(12)

Thisimplies

s0=ρa·K+

φb·L(u0). (3.8)

Letsi=ρa·Ki+

φb·Li(ui).ByLemma 3.1,wehave

ρKi(ui) si

+

ρLi(ui) si

=φ(1).

This,togetherwith thefactsthatKi→K,Li →Landsi→s0,gives

ρK(u0) s0

+

ρL(u0) s0

=φ(1).

ByLemma 3.1again,wehave

s0=ρa·K+

φb·L(u0).

Thiscontradictsto (3.8). Therefore, ρa·Ki+

φb·Li→ρa·K+

φb·L

uniformlyonSn−1 andhence

a·Ki+φb·Li→a·K+φb·L. 2

WewillseethattheOrlicz radialsum+φ iscontinuousinaandb.

Lemma3.5. Supposeφ∈ C+.If ai,bi0andai→a,bi→b,asi→ ∞,then ai·K+φbi·L→a·K+φb·L, asi→ ∞,

forallK,L∈ Son.

Proof. Supposeu∈Sn−1and K,L∈ Son.Wewillshow that

ρai·K+φbi·L(u)→ρa·K+φb·L(u), asi→ ∞. (3.9) Let

ρai·K+

φbi·L(u) =ti. ThenLemma 3.2gives

r φ−1(φ(1)2C

i) ≤ti R φ−1(φ(1)c

i ).

(13)

Since ai a,bi b and the facts that the functions Ci = max{ai,bi} and ci = ai+bi arecontinuous, we haveCi →C and ci →c. Since theinverse φ1 of φ isalso continuous anddeceasing in(0,), thereexist λ,μsuchthat0< λ≤ti≤μ<∞,for all i. To show thatthe bound sequence {ti}converges to ρa·K+

φb·L(u), we show that every convergent subsequence of {ti} converges to ρa·K+

φb·L(u). Denote an arbitrary convergent subsequenceof {ti} by{ti} as well, and suppose that forthis subsequence we have

ti→t0. It isclearthat0< λ≤t0≤μ.Sinceρai·K+

φbi·L(u)=ti,thatis, aiφ

ρK(u) ti

+biφ

ρL(u) ti

=φ(1) for alli.

Since ai→aandbi →b,together withthecontinuityof φ, andti→t0 itfollowsthat

ρK(u) t0

+

ρL(u) t0

=φ(1).

ByLemma 3.1,wehave

t0=ρa·K+

φb·L(u).

This shows

ρai·K+

φbi·L(u)→ρa·K+

φb·L(u).

Now thepointwiseconvergence(3.9)hasbeen proved.

To showtheconvergence(3.9)isuniformonSn−1,weassumethatρai·K+

φbi·L does not converge uniformly to ρa·K+

φb·L. Then, there exist a positive δ0 and an N0 N suchthat,fori≥N0,

ρai·K+

φbi·L(ui)−ρa·K+

φb·L(ui)≥δ0. (3.10) SinceSn−1iscompact,foru0∈Sn−1,thereexistsasubsequence{ui}⊂Sn−1suchthat ui→u0 asi→ ∞.

From Lemma 3.2,thereexist anN0Nand positiveλ,μsuchthat,fori≥N0, 0< λ≤ρai·K+

φbi·L(ui)≤μ <∞. Then, thereexists apositives0suchthat,fori≥N0,

ρai·K+φbi·L(ui)→s0.

(14)

From(3.10),wehave

s0−ρa·K+φb·L(u0)≥δ0. Thisimplies

s0=ρa·K+

φb·L(u0). (3.11)

Letsi=ρai·K+

φbi·L(ui).ByLemma 3.1,wehave aiφ

ρK(ui) si

+biφ

ρL(ui) si

=φ(1).

This,togetherwith thefactsthatai →a,bi→bandsi→s0,gives

ρK(u0) s0

+

ρL(u0) s0

=φ(1).

ByLemma 3.1again,wehave

s0=ρa·K+

φb·L(u0).

Thiscontradictsto (3.11).Therefore,

ρai·K+φbi·L→ρa·K+φb·L uniformlyonSn−1 and

ai·K+φbi·L→a·K+φb·L. 2

The following lemma shows that the Orlicz radial sum and the radial Minkowski additionarecloselyrelated.

Lemma3.6. LetK,L∈ Son.For0< λ<1,if φ∈ C+,then

(1−λ)·K+φλ·L⊆(1−λ)K+λL. (3.12) If φisstrictlyconvex,equalityholds ifandonly ifK andLare dilatesof eachother.

Proof. LetKλ= (1−λ)·K+φλ·L.ByLemma 3.1and convexityofφ,we have φ(1) = (1−λ)φ

ρK(u) ρKλ(u)

+λφ

ρL(u) ρKλ(u)

≥φ

(1−λ)ρK(u) +λρL(u) ρKλ(u)

. (3.13)

(15)

Since φisstrictlydecreasingon(0,),thenwehave (1−λ)ρK(u) +λρL(u)≥ρKλ(u).

This is,

ρ(1−λ)K+λL(u)≥ρKλ(u).

By (2.4), we obtain the desired inclusion. From the equality condition in Jensen’s inequality (2.13), ifφ is strictly convex, thenequation holds in(3.13) if and onlyif K and Laredilatesofeachother. 2

4. DualOrliczmixedvolume

Letus introducethedualOrlicz mixedvolume.

Definition 4.1.Forφ∈ C+,wedefine thedual OrliczmixedvolumeVφ(K,L) by Vφ(K, L) = 1

n

Sn−1

φ

ρL(u) ρK(u)

ρnK(u)dS(u), (4.1)

forallK,L∈ Son.

Remark 4.1. When φ(t) =t−p, with p≥ 1.The dual Orlicz mixedvolume reduces to Lutwak’s Lp dualmixedvolume(see[38]):

Vp(K, L) = 1 n

Sn−1

ρn+pK (u)ρ−pL (u)dS(u),

forallK,L∈ Son.

Wedenotetherightderivativeofareal-valuedfunctionf byfr.Forφ∈ C+,thereis φr(1)<0 becauseφisconvexand strictlydecreasing.

Lemma 4.1.Letφ∈ C+ andK,L∈ Son.Then

ε→0lim+

ρK+φε·L(u)−ρK(u)

ε =ρK(u)

φr(1)φ

ρL(u) ρK(u)

, (4.2)

uniformly forallu∈Sn−1.

Proof. Supposeε>0,K,L∈ Son,andu∈Sn−1.Let t(ε) =ρK+φε·L(u).

(16)

Then,byLemma 3.5,wehave

t(ε)→ρK(u) as ε→0. (4.3)

ByLemma 3.1,wehave φ

ρK(u) t(ε)

+εφ

ρL(u) t(ε)

=φ(1).

Then

ρK(u) t(ε) =φ−1

φ(1)−εφ ρL(u)

t(ε)

.

Let

s=φ−1

φ(1)−εφ ρL(u)

t(ε)

(4.4) andnotethats→1+ asε→0+.Thus

t(ε)−ρK(u)

t(ε) = 1−ρK(u)

t(ε) = 1−s. (4.5)

Combining(4.5)andLemma 3.5,weobtain

ε→0lim+ ρK+

φε·L(u)−ρK(u)

ε = lim

ε→0+

t(ε)

ε ·t(ε)−ρK(u) t(ε)

= lim

ε→0+t(ε)·φ ρL(u)

t(ε)

·

t(ε)ρK(u) t(ε)

φ(1)−(φ(1)−εφ(ρt(ε)L(u)))

=ρK(u)·φ

ρL(u) ρK(u)

· lim

s→1+

1−s φ(1)−φ(s)

= ρK(u) φr(1)φ

ρL(u) ρK(u)

. (4.6)

Thenthepointwiselimit(4.2)hasbeenproved.

Moreover,theconvergenceisuniformforanyu∈Sn−1.Indeed,by(4.4)and(4.6),it sufficestorecallthatbyLemma 3.5,

εlim0+ρK+φε·L(u) =ρK(u), uniformlyforu∈Sn1. 2

Références

Documents relatifs

The fundamental inequality for projection bodies is the Petty pro- jection inequality: Of all convex bodies of fixed (say, unit) volume, the ones whose polar projection bodies

A classical and useful result proved by Petty [41] is the minimal surface area theorem, which states: A convex body (i.e., a compact convex set with non-empty interior) in

In Section 4, as illustrations of the effectiveness and practicability of our L p transference principle, several new L p Brunn-Minkowski type inequalities are established, which

Like many other central objects of interest in convex geometry, such as the L p affine and geominimal surface areas and the L p John ellipsoids (see e.g., [27, 34, 37, 42, 43, 52,

Finally, a very general Minkowski-type inequality, involving two Orlicz functions, two convex bodies, and a star body, is proved, that includes as special cases several others in

∗ Keywords: affine isoperimetric inequalities, affine surface area, geominimal surface area, Orlicz-Brunn-Minkowski theory, Orlicz mixed volume, Petty body.... Note that formula

(It turns out, mainly as a consequence of results obtained in [15], that Orlicz addition is not associative unless it is already L p addition.) These authors also provide a

The logarithmic Minkowski problem asks for necessary and sufficient conditions for a finite Borel measure on the unit sphere so that it is the cone-volume measure of a convex