• Aucun résultat trouvé

Hydration reactions in Portland cement-silica fume blends

N/A
N/A
Protected

Academic year: 2021

Partager "Hydration reactions in Portland cement-silica fume blends"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Cement and Concrete Research, 15, July 4, pp. 585-592, 1985-07-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=d6e9dce9-a723-44fc-92a1-1e3e46143b6c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d6e9dce9-a723-44fc-92a1-1e3e46143b6c

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(85)90056-0

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Hydration reactions in Portland cement-silica fume blends

(2)

Ser

I

"

9

--

TPll

N21d

National Research

Conseil national

no.

1305

I$

co 2

ouncil Canada

de

recherches

Canada

Division of

Division des

Building Research

recherches en b8timent

Hydration Reactions in

Portland Cemen CSilica

Fume Blends

by Huang Cheng-yi and R.F. Feldman

Reprinted from

Cement and Concrete Research

Volume 15, No. 4, 1985

p. 585

-

592

(DBR Paper No. 1305)

Price $1.00

NRCC 24755

(3)

La calorimetric par conduction et l'estimation de la teneur en Ca(OH)2 ont servi

a

suivre

a

leur debut le cours des reactions d'hydratation de melanges de ciment Portland et de poudre de silice; par la suite, le contr8le s'est fait par determination

de la teneur en et de la teneur en eau non haporable.

Au cours des premieres heures, la poudre de silice a acc€l€r€ l'hydratation du C3S et du C3A. Sur des periodes prolongbes, les pates de m6langes s'hydratent davantage que les mortiers, peut-Stre parce que le sable pdsent capte le Ca(OH)2 produit.

(4)

CEMENT and CONCRETE RESEARCH. Vol. 1 5 , pp. 585-592, 1985. P r i n t e d i n t h e USA. 0008-8846185 $3.00+00. Copyright ( c ) 1985 Pergamon P r e s s , L t d .

HYDRATION REACTIONS I N PORTLAND CEMENT-SILICA FUME BLENDS

Huang Cheng-yi and R.F. Feldman D i v i s i o n of B u i l d i n g Research

B u i l d i n g M a t e r i a l s S e c t i o n N a t i o n a l R e s e a r c h C o u n c i l Canada

Ottawa, K1A 0R6, Canada.

(Communicated by F.H. Wittmann) (Received Oct. 4, 1984)

ABSTRACT

E a r l y h y d r a t i o n r e a c t i o n s of p o r t l a n d c e m e n t - s i l i c a fume b l e n d s were followed by conduction c a l o r i m e t r y , Ca(OH)2 e s t i m a t i o n , and l a t e r r e a c t i o n s by Ca(OH)2 and non-evaporable w a t e r c o n t e n t s . S i l i c a fume a c c e l e r a t e d b o t h C3S and C3A h y d r a t i o n i n t h e f i r s t few h o u r s . A t l o n g e r p e r i o d s p a s t e s of b l e n d s h y d r a t e d t o a g r e a t e r e x t e n t t h a n m o r t a r s , p o s s i b l y because sand a c t e d a s a Ca(OHl2 s i n k i n t h e m o r t a r s .

I n t r o d u c t i o n

When s i l i c e o u s by-products s u c h a s condensed s i l i c a fumes, f l y a s h and b l a s t f u r n a c e s l a g a r e mixed w i t h p o r t l a n d cement and h y d r a t e d , t h e y produce a p o r e s t r u c t u r e more d i s c o n t i n u o u s and impermeable t h a n t h a t of h y d r a t e d cement p a s t e (1-4).

M i c r o s t r u c t u r a l s t u d i e s show t h a t i n m o r t a r s c o n t a i n i n g s i l i c a fume p a r t of t h e change i n p o r e d i s t r i b u t i o n r e s u l t s from s i l i c a fume r e a c t i n g w i t h

t h e Ca(OH)2 formed around t h e s a n d g r a i n s . S i l i c a fume i n t h e m o r t a r a l s o improves t h e bond between t h e h y d r a t e d cement m a t r i x and t h e s a n d , and enhances freeze-thaw r e s i s t a n c e ( 5 ) .

These i n v e s t i g a t i o n s r e v e a l e d t h e importance of t h e sand-matrix

i n t e r f a c e a f f e c t i n g t h e p r o p e r t i e s of c o n c r e t e s and m o r t a r s . An u n d e r s t a n d i n g of t h e r o l e of t h e sand-cement i n t e r f a c e r e q u i r e s a s t u d y of t h e h y d r a t i o n o f silica-fume-cement blend. The o b j e c t of t h i s p a p e r i s t o f o l l o w t h e h y d r a t i o n c h a r a c t e r i s t i c s of cement c o n t a i n i n g 0-30% s i l i c a fume and formed a t a

w a t e r l s o l i d r a t i o of 0.25 o r 0.45, and compare some of t h e s e r e s u l t s w i t h m o r t a r s .

Experimental M a t e r i a l s

Normal Type I p o r t l a n d cement and s i l i c a fume from e a s t e r n Canada were used. T h e i r chemical composition and some p h y s i c a l p r o p e r t i e s a r e g i v e n i n

(5)

586 Vol. 1 5 , No. 4

Huang Cheng-yi and R.F. Feldman

Table I. Ottawa s i l i c a sand ground t o p a s s 100 mesh s i e v e and a f l y a s h were a l s o used i n some of t h e e x p e r i m e n t s a s r e p l a c e m e n t s f o r cement. P a s t e s were p r e p a r e d a t w/(c+sf) ( w a t e r / c e m e n t + s i l i c a fume) r a t i o s of 0.25 a n d 0.45, c o n t a i n i n g 0 , 10 and 30% s i l i c a fume a t e a c h water-to-binder r a t i o , w i t h Melment i n amounts of 0 , 0.3 and 2.0% by w e i g h t of b i n d e r . Heat e v o l u t i o n f o r p e r i o d s l e s s t h a n t h r e e days was measured on b l e n d s a t a w / ( c + s f ) of 0.60, u s i n g 0, 10, 20 and 30% s i l i c a fume.

Mixing

Cement was mixed w i t h a p o r t i o n of t h e w a t e r i n a Hobart Model N-50

mixer (ASTM C-305). The remaining w a t e r was added w h i l e mixing a t a slow

speed f o r 2 min.; s i l i c a fume was then added and mixed a t a low speed f o r 2 min. and a t a medium s p e e d f o r a n o t h e r 2 min.

P r o p e r t i e s determined Ca(OH), c o n t e n t

-

A D i f f e r e n t i a l Scanning C a l o r i m e t e r (DSC c e l l ) , a module of t h e Du P o n t 1090 Thermal A n a l y s i s System, was u s e d t o o b t a i n thermograms from which t h e r e l a t i v e a r e a s of t h e peaks r e s u l t i n g from Ca(OHI2 decomposition were

determined. In e a c h experiment a 20-mg sample was h e a t e d i n N 2 atmosphere a t

a r a t e of 20°C/min. Measurements were made a t a w / ( c + s f ) of 0.25 and 0.45 f o r

h y d r a t i o n t i m e s of 1 , 3, 7, 14, 28, 90 and 180 d a y s , and a t a w / ( c + s f ) of 0.6 f o r h y d r a t i o n t i m e s of 1.5, 4, 6, 8 , 10, 12, 16, 24 and 72 h.

TABLE I

Chemical Composition and some P h y s i c a l P r o p e r t i e s of Cement, S i l i c a Fume and F l y Ash

P o r t l a n d Cement S i l i c a Fume F l y Ash

% % % Si02 21.16 95.17 55.6 A 2 20 5.87 0.21 22.7 Fe O3 2.21 0.13 4.3 C a8 63.07 0.23 13.3 MgO 1.56 0.15 2.4 I .L. 1.36 2.30 0.6 3 3.29 0.12 0.16 Na2 0 0.09 0.10 K2° 1.08 0.27 C 1.56 C3S 43.96 C2 27.47 C3A 11.82 C4AF 6.72 S p e c i f i c s u r f a c e a r e a , B l a i n e (m2 /kg) 332 S p e c i f i c s u r f a c e a r e a , N 2 a d s o r p t i o n (m2Ig) 2 1 P o z z o l a n i c a c t i v i t y i n d e x w i t h p o r t l a n d cement 110% w i t h lime 5.8 MPa

(6)

Vol. 1 5 , No. 4 587

CEMENT, S i 0 2 FUME, BLENDS, HYDRATION, CALORIMETRY

Non-evaporable w a t e r con t e n t

T h i s was measured a t h y d r a t i o n t i m e s of 1, 3, 7, 14, 28, 90 and 180 days by d e t e r m i n i n g t h e l o s s i n weight between 100 and 1000°C u s i n g a Thermogravimetric Module of t h e Du Pont 1090 system.

Rate of h e a t e v o l u t i o n

I

T h i s was d e t e r m i n e d by a conduction c a l o r i m e t e r ( s u p p l i e d by T e c h n i c a l

1

P h y s i c s Department, TNO and TH, D e l f t , Holland) of s e n s i t i v i t y 16.5 mV/W.

i Measurements were made a t a w/(c+sf) of 0.60 u s i n g 0 , 1 0 , 20 and 30% s i l i c a

'

fume c o n t e n t p a s t e s , a 30% ground s i l i c a sand p a s t e , and a 30% f l y a s h p a s t e .

I

E x p e r i m e n t s w e r e c o n t i n u e d f o r 7 2 h . R e s u l t s Ca(OH), c o n t e n t

The amount of Ca(OH)2 l i b e r a t e d d u r i n g t h e e a r l y s t a g e s of t h e cement p a s t e h y d r a t i o n (0-72 h ) was determined a t a w / s of 0.60 f o r b i n d e r s

c o n t a i n i n g 0 and 30% s i l i c a fume o r 30% ground s i l i c a sand. These r e s u l t s a r e p r e s e n t e d i n Fig. 1 a s t h e p e r c e n t of Ca(OH)2 p e r u n i t w e i g h t o f i g n i t e d sample. The t h r e e c u r v e s a r e v e r y s i m i l a r up t o 8 h , b u t a f t e r t h i s p e r i o d t h e Ca(OH)2 c o n t e n t i s g r e a t e s t f o r t h e cement p a s t e a l o n e , f o l l o w e d by t h e sand blend and t h e s i l i c a fume blend. This i n d i c a t e s t h a t b o t h ground sand and s i l i c a fume a c c e l e r a t e t h e p r o d u c t i o n of Ca(0H) from t h e cement i n t h e f i r s t e i g h t hours. Although t h e s e b l e n d s a r e o n l y f 0 % cement, t h e Ca(OH)2 I c o n t e n t s a r e a s h i g h a s f o r p u r e cement. The h e a t e v o l u t i o n d a t a c o n f i r m

t h e s e r e s u l t s . Beyond e i g h t h o u r s , Ca(OH)2 i n b o t h sand and s i l i c a fume b l e n d s d e c r e a s e s g r e a t l y r e l a t i v e t o t h e cement. However, based on cement c o n t e n t , t h e sand blend and t h e cement have t h e same Ca(OH)2 c o n t e n t , w h i l e

i w i t h t h e s i l i c a fume i t i s lower. I I I I I I I

-

1 4

-

I +- I 0 10 -

I

3 I 2 8 - -

i

Z

_---

---O FIG. 1

-

6 -

-

Change i n Ca(0H) c o n t e n t a t e a r l y i I

0 t i m e s f o r cement and cement b l e n d s .

"

0-0 CEMENT

0 - - - 0 CEMENT + 30% Si02 FUME

0-- CEMENT + 30% Si02

0

.'

D 10 20 30 4 0 5 0 60 70 I I M E . h

The Ca(0H) c o n t e n t f o r t h e 0 , 10 and 30% s i l i c a fume b l e n d s mixed a t a w / ( c + s f ) of 0.2% and 0.45 and h y d r a t e d up t o 180 d a y s a r e p r e s e n t e d i n Fig. 2, a l o n g w i t h t h e nomenclature f o r t h e s e mixes. A t a w / ( c + s f ) of 0.45, w i t h 0%

H

s i l i c a fume ( S ), t h e r e i s l i t t l e i n c r e a s e i n Ca(OH)2 beyond 14 days; i t

a t t a i n s a v a l u e of a b o u t 16.2% a f t e r 180 days h y d r a t i o n . The e q u i v a l e n t v a l u e I

(7)

Huang Cheng-yi and R.F. Feldman I i I I 1 S I L I C A FUME. W l l C 4 Sf) S Og 0.45. 0 o 5 / m 5 . H - 10 a?,$ * v y 0

-

30

i

TIME, d a y s FIG. 2 Change i n Ca(OH)2 c o n t e n t t o 180 d a y s f o r v a r i o u s s i l i c a fume-cemen t m i x t u r e s f o r m o r t a r , p r e s e n t e d p r e v i o u s l y ( 5 ) , i s 17.3%. T h i s v a l u e was o b t a i n e d by d e t e r m i n i n g t h e Ca(OH)2 c o n t e n t t h e r m o g r a v i m e t r i c a l l y , u s i n g a 1000 mg specimen f o r g r e a t e r a c c u r a c y ; t h e c a l c u l a t i o n was based on b i n d e r c o n t e n t , o m i t t i n g t h e l a r g e j u a n t i t y of s a n d i n t h e mortar. The p a s t e p r e p a r e d a t a w/(c+sf) of 0.25 (S ) shows s i m i l a r r e s u l t s i n t h a t l i t t l e change o c c u r r e d a f t e r 14 d a y s , y i e l d i n g a v a l u e of 10.4% a f t e r 180 days.

H

The p a s t e P10 a t t a i n s a Ca(OH)2 c o n t e n t of 11.2% a f t e r a b o u t 1 0 d a y s and t h e n d e c r e a s e s t o 9.7 a t 28 d a y s and 8.1 and 8.3% a t 9 0 and 180 days. Thus c o n s i d e r a b l e change s t i l l o c c u r s between 28 and 90 days. The e q u i v a l e n t m o r t a r p r e p a r e d a t t h e same w / ( c + s f ) r a t i o of 0.45 and 10% s i l i c a fume a t t a i n s a maximum of 9.5% Ca(OH)2 a t about 7 d a y s , d e c l i n i n g g r a d u a l l y t o 4.6% a f t e r

180 d a y s , w i t h most of t h e d e c r e a s e t a k i n g p l a c e between 14 and 28 days. P a s t e P!,

- "

d e c l i n e s from a maxirmm of 7.2% a t one day t o 2.2% a t 180 days.

H

a

H

P a s t e s P30 and P30 b o t h have Ca(OHl2 l e v e l s of z e r o a t 14 days; f o r P a t t h r e e and seven d a y s , however, t h e l e v e l s a r e 2.0 and 0.4% as compared t o 1.5 and 0% a t one and t h r e e d a y s f o r t h e e q u i v a l e n t mortar.

Non-evaporable w a t e r c o n t e n t

The change p e r u n i t w e i g h t of i g n i t e d sample o v e r t i m e i n

non-evaporable w a t e r c o n t e n t i s shown i n Fig. 3. The specimens a t a w / ( c + s f ) of 0.45, made a t a h i g h e r w a t e r c o n t e n t , n a t u r a l l y show t h e l a r g e s t g a i n ;

sH

a t t a i n s 19.2% a f t e r 28 days and 20.7% a f t e r 180 days. Specimen p y 0 a t t a i n s 15.1% a f t e r 28 days b u t o n l y 15.5 a f t e r 180 days, w h i l e pH h a s t h e

non-evaporable w a t e r c o n t e n t of 14.4% a f t e r 28 days and 1?!)3% a f t e r 180 days.

The non-evaporable w a t e r c o n t e n t l e v e l a t t a i n e d by pY0 i s l o w compared t o t h a t o f

sH,

even i f i t i s c a l c u l a t e d on t h e b a s i s of i g n i t e d w e i g h t of cement, assuming t h a t t h e s i l i c a fume e i t h e r does n o t r e a c t o r does n o t c o n t r i b u t e t o

H

t h e non-evaporable w a t e r ; on t h i s b a s i s , however, t h e v a l u e f o r P 3 0 i s c l o s e t o t h a t of

sH,

b u t f o r b o t h pHO and p t 0 ( e s p e c i a l l y

pya)

t h e y a r e a l m o s t c o n s t a n t a f t e r 28 days. ~ e s u i t s f o r comparable m o r t a r s , determined s i m i l a r l y t o t h o s e of Ca(OH)2 and based on b i n d e r c o n t e n t ( 5 ) , show s i m i l a r t r e n d s ; t h e 30% s i l i c a fume c o n t e n t specimen changed from 11.5% a t 14 days t o 11,9% a t 180 days; o v e r t h e same p e r i o d , measurements f o r t h e 10% s i l i c a fume m o r t a r

(8)

Vol. 1 5 , No. 4

CEMENT, S i 0 2 F W , BLENDS, HYDRATION, CALORIMETRY

TIME, davs FIG. 3

Change i n non-evaporable w a t e r c o n t e n t w i t h time f o r v a r i o u s s i l i c a f u m e c e m e n t m i x t u r e s .

d e c l i n e d from 13.5% a t 28 days t o 11.9% a t 180 days, S i m i l a r r e s u l t s a r e o b t a i n e d f o r m o r t a r s made a t w / ( c + s f ) of 0.60. P a s t e s made a t a w/(c+sf) of 0.6 a l s o have shown much l e s s change i n non-evaporable w a t e r c o n t e n t between 10 and 90 days w i t h s i l i c a fume c o n t e n t s from 8 t o 20% ( 6 ) . O t h e r s have found s i m i l a r e f f e c t s ( 7 ) . With v a r i o u s f i b r e s i n c l u d e d

i n

p d e t e s , t h e d e g r e e of h y d r a t i o n i s 25% l o w e r t h a n t h e r e f e r e n c e p a d t e (8).

The specimens a t w/(c+sf) of 0.25 show s i m i l a z ' t r e n d s t o t h o s e o b s e r v e d f o r t h e h i g h e r r a t i o , a l t h o u g h changes between 28 and 180 days a r e g r e a t e r . At one d a y , non-eva o r a b l e w a t e r c o n t e n t f o r

P

S' and p t O a r e s i m i l a r , w h i l e i t i s much lower f o r P3O9 presumably due t o t h e l a r g e r d o s e of Melment and low

H

w a t e r c o n t e n t ( 9 ) .

sH,

py0 and P30 a r e , however, a l l v e r y s i m i l a r a f t e r one day.

Rate of h e a t e v o l u t i o n

The e f f e c t of s i l i c a fume c o n t e n t on t h e r a t e of h e a t e v o l u t i o n of cement a t a w/ ( c + s f ) of 0.60 i s shown i n Fig. 4. There a r e t h r e e p e a k s e v i d e n t , e s p e c i a l l y w i t h 1 0 , 20 and 30% s i l i c a fume mixes. The r e s d l t s a r e p l o t t e d on t h e b a s i s of t h e cement c o n t e n t f o r comparison; t H e r e i @ c o n s i d e r a b l e i n c r e a s e i n t h e r a t e of h e a t e v o l u t i o n and t h e o c c u r r e n c e of t h e p e a k s i s a c c e l e r a t e d , t h e g r e a t e r t h e s i l i c a flrme c o n t e n t . However, t h e r e i s l i t t l e e f f e c t on t h e dormant p e r i o d which o c c u r s a t a b o u t 1175 h , an o b s e r v a t i o n r e p o r t e d p r e v i o u s l y (10). The t o t a l h e a t e v o l v e d a t v a r i o u s t i m e s from t h e s t a r t of t h e h y d r a t i o n r e a c t i o n i s p l o t t e d i n F i g s . 5 and 6; t h e dependence of h e a t e v o l u t i o n on s i l i c a fume c o n t e n t i s c l e a r l y shown. I f t h e s e r e s u l t s a r e p l o t t e d a g a i n s t

(9)

Huang Cheng-yi and R.F. Feldman Vol. 1 5 , No. 4 A - 0 % S I L I C A F U M E B - 1 0 % S I L I C A F U M E C - 20% S I L I C A F U M E D - 3 0 % S I L I C A F U M E 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 15 16 17 1 8 19 2 0 2 1 2 2 2 3 24 T I M E , h FIG. 4 Change i n r a t e of h e a t e v o l u t i o n of c e m e n t - s i l i c a fume p a s t e s w i t h t i m e . T I M E , h FIG. 5 T o t a l h e a t e v o l v e d by c e m e n t - s i l i c a fume b l e n d s d u r i n g h y d r a t i o n w i t h t ime

.

I I I I . / - F 80 - /.' ,/ / ' / 70

-

- 3% GROUND SAND - 39% FLY A S H IEDM.1 0 1 0 20 3 0 4 0 5 0 T I M E . h FIG. 6 T o t a l h e a t e v o l v e d by v a r i o u s cement b l e n d s d u r i n g h y d r a t i o n w i t h t ime

.

t h e t o t a l weight of t h e b l e n d , an i n c r e a s e i n t o t a l h e a t e v o l v e d o v e r t h e cement w i t h o u t s i l i c a fume a d d i t i o n would s t i l l b e r e c o r d e d u p t o 20 h of h y d r a t i o n f o r a l l t h r e e a d d i t i o n s . T h i s r e s u l t i s c o n t r a r y t o e a r l i e r o n e s

(10)

Vol. 15, No. 4 591

CEMENT, S i 0 2 FUME, BLENDS, HYDRATION, CALORIMETRY

(10) which were o b t a i n e d a t a w/(c+sf) of 0.5 and 20°C, i n c o n t r a s t t o t h e

p r e s e n t work which was performed a t a w/(c+sf) of 0.60 and 25OC. F u r t h e r h e a t

e v o l u t i o n measurements p r e s e n t e d i n Fig. 6 compare v a r i o u s a d d i t i o n s r e p l a c i n g

30% cement. The ground s i l i c a sand h a s o n l y a v e r y s l i g h t e f f e c t , b u t t h e f l y

a s h h a s a c o n s i d e r a b l y g r e a t e r e f f e c t . Whether t h i s i s due t o a c c e l e r a t i o n of

t h e cement h y d r a t i o n o r e a r l y p o z z o l a n i c r e a c t i o n i s n o t known. However,

d u r i n g t h e f i r s t 12 h , t h e s i l i c a fume, even a t 10% a d d i t i o n , c a u s e s t h e l a r g e s t a c c e l e r a t i o n of t h e cement h y d r a t i o n r e a c t i o n .

Discussion

1 . The e f f e c t of an amorphous s i l i c a ( A e r o s i l , . w i t h a s u r f a c e a r e a of

200 m2Ig) on t h e h y d r a t i o n of C S and cement h a s been r e p o r t e d p r e v i o u s l y

(10). It was found t h a t t h e Ca4+ and OH- i o n c o n c e n t r a t i o n i s g r e a t l y

reduced w i t h i n t h e f i r s t 10 minutes. The h y d r a t i o n of C3S i s a c c e l e r a t e d

because a r e t a r d i n g h y d r a t e l a y e r t h a t forms on t h e s u r f a c e of t h e C3S

g r a i n a t e a r l y t i m e s i s c o n v e r t e d more r a p i d l y i n t h e l o w e r ~ a + + and OH-

s o l u t i o n t o a second, l e s s r e t a r d i n g l a y e r . I n a d d i t i o n , i t was s u g g e s t e d

t h a t i n cement t h e r e t a r d i n g c o a t i n g of e t t r i n g i t e on C3A was n o t formed

a s e f f i c i e n t l y , a l s o because of t h e lower ~ a + + c o n c e n t r a t i o n i n t h e e a r l y

p e r i o d s . It a p p e a r s t h a t l a r g e amounts of s i l i c a fume, a l t h o u g h n o t

p o s s e s s i n g a s l a r g e a s u r f a c e a r e a a s A e r o s i l , impose s i m i l a r e f f e c t s on

C3S i n t h e cement h y d r a t i o n . Before e i g h t h o u r s h y d r a t i o n , l a r g e r

q u a n t i t i e s of Ca(0H) r e l a t i v e t o t h e cement a l o n e were p r e s e n t , p r o b a b l y

due t o t h e n u c l e a t i n g i n f l u e n c e of t h e s i l i c a fume s u r f a c e . A f t e r e i g h t

h o u r s , t h e Ca(OH)2 c o n t e n t i s lower t h a n would b e produced by normal

cement h y d r a t i o n , and i t i s p r o b a b l e t h a t a t t h i s p o i n t ~ a + + i o n s have

r e a c t e d w i t h t h e s i l i c a fume. Heat e v o l u t i o n r e s u l t s would i n d i c a t e t h i s ,

s i n c e ground s i l i c a s a n d , which a l s o a p p e a r s t o a c c e l e r a t e t h e cement

h y d r a t i o n (Ca(0H) c o n t e n t r e s u l t s ) g i v e s a r e l a t i v e l y low h e a t e v o l u t i o n

curve. S i l i c a fume, from i t s e f f e c t on peak 3 of Fig. 4 , a l s o a f f e c t s t h e

h y d r a t i o n r a t e of C3A.

2. The r a t e s of h y d r a t i o n i n m o r t a r s and p a s t e s c o n t a i n i n g s i l i c a fumes a r e

somewhat d i f f e r e n t . Hydration p r o c e e d s f a s t e r i n p a s t e s w i t h s i l i c a fume,

r e g a r d i n g b o t h Ca(OH)2 and non-evaporable w a t e r c o n t e n t s ; t h e h y d r a t i o n r e a c t i o n s i n m o r t a r s c o n t a i n i n g s i l i c a fume t e r m i n a t e e a r l i e r w i t h r e g a r d

t o t h e above two p a r a m e t e r s . I n an e a r l i e r p a p e r (51, i t was shown t h a t

t h e sand-paste i n t e r f a c e i n m o r t a r s a f f e c t e d p o r e s t r u c t u r e and s t r e n g t h .

The i n t e r f a c e around v a r i o u s t y p e s of i n c l u s i o n s i s n o r m a l l y l i m e r i c h ,

and i n t h e p r e s e n c e of s i l i c a fume, i t i s i n f l u e n c e d d u r i n g t h e r e a c t i o n .

Reduction of Ca(OH)2 c o n t e n t d u r i n g t h e r e a c t i o n a l s o g r e a t l y r e d u c e s t h e p e r m e a b i l i t y of t h e s e b o d i e s , even w i t h r e g a r d t o t h e m o b i l i t y of i o n s

s u c h a s CI1- and O F ( 1 ) . Large q u a n t i t i e s of sand i n m o r t a r s a p p e a r t o

a c t a s a s i n k f o r c r y s t a l l i z e d Ca(OH)2. I f , a t e a r l y p e r i o d s of h y d r a t i o n

( w i t h i n 14 d a y s ) , sand p a r t i c l e s l i m i t t h e amount of Ca(OH)2 t h a t i s

d e p o s i t e d i n t h e p a s t e m a t r i x , t h e p a s t e i t s e l f may become l e s s permeable and a c c e s s t o cement g r a i n s by H20 may be reduced; t h i s may r e s u l t i n l i m i t e d h y d r a t i o n r e l a t i v e t o mixes w i t h o u t sand.

Conclusions

1. S i l i c a fume a c c e l e r a t e s h y d r a t i o n r e a c t i o n s i n p o r t l a n d cement by

p r o v i d i n g n u c l e a t i o n s i t e s f o r Ca(OH)2 w i t h i n minutes a f t e r r e a c t i o n

commences, and a l s o by r e a c t i n g w i t h ~ a + + i o n s . Reduced ~ a + + i o n a f f e c t s

t h e n a t u r e of h y d r a t i o n p r o d u c t s .

2. The d e g r e e of h y d r a t i o n of p a s t e s and m o r t a r s of s i l i c a fume-cement b l e n d s

(11)

Vol. 1 5 , No. 6 Huang Cheng-yi and R.F. Feldman

a s i n k f o r w e l l c r y s t a l l i z e d Ca(OH)2 and l o w e r s t h e p e r m e a b i l i t y o f t h e p a s t e phase of t h e mortar.

Acknowledgement

The a u t h o r s w i s h t o r e c o g n i z e t h e work of G.W. Chan and G.M. Polomark, who h e l p e d perform t h e experiments. T h i s p a p e r i s a c o n t r i b u t i o n of t h e D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council Canada, and i s s u b m i t t e d w i t h t h e a p p r o v a l of t h e D i r e c t o r .

References

( 1 ) R.F. Feldman, Proc. F i r s t I n t e r . Conf. on Use of F l y Ash, S i l i c a Fume, S l a g and Other M i n e r a l By-products i n Concrete, A C I SP 79,

1,

415 (1983).

R.F. Feldman and Huang C h e n c y i , RILEM Seminar on t h e D u r a b i l i t y of Concrete S t r u c t u r e s Under Normal Outdoor Exposure, 26-29 March 1984, Hanover, FRG.

R.F.M. Bakker, Conference on Alkali-Aggregate R e a c t i o n i n C o n c r e t e , Cape Town, South A f r i c a , 6 (1981).

M. Regourd and B. Mortureux, Proc. F o u r t h I n t e r . Conf. on Cement-Microscopy

,

Las Vegas

,

p. 249 (1982).

Huang Cheng-yi and R.F. Feldman. To b e p u b l i s h e d i n Cem. Conc. Res. E.J. S e l l e v o l d , D.H. Bager, E. K l i t g a a r d Jensen and T. Knudsen, "Condensed S i l i c a Fume i n Concrete," Norwegian I n s t . Techn. Univ. Trondheim, BML 82.610, 19-51 (1982).

I. Meland, N o r d i c Con. ReS. Publ. No. 2, 183 (1983).

R.W. Mikhail and A.M. Youssef, Cem. Cmc. Res. 4 (61, 869 (1974). I, O d l e r and T. Becker, Cern. Conc. Res, 10, 321-333 (1980).

I. Meland, Proc. F i r s t I n t e r . Conf. on Use of F l y Ash, S i l i c a Fume, S l a g and O t h e r M i n e r a l By-products i n C o n c r e t e , A C I SP 79, 2, 665 (1983). H.Na S t e i n and J.M. S t e v e l s , J. Appl. Chem., 14, 338 (7964).

(12)

T h i s paper. w h i l e being d i s t r i b u t e d i n r e p r i n t form by t h e D i v i s i o n of B u i l d i n g R e s e a r c h , remains t h e c o p y r i g h t of t h e o r i g i n a l p u b l i s h e r . It s h o u l d n o t be r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e p e r m i s s i o n of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n . D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a , O t t a w a , O n t a r i o , K1A OR6. Ce document e s t d i s t r i b u e s o u s forme d e t i r e - a - p a r t p a r l a D i v i s i o n d e s r e c h e r c h e s e n blltiment. Les d t o i t s d e r e p r o d u c t i o n s o n t t o u t e f o i s l a p r o p r i d t 6 d e l ' e d i t e u r o r i g i n a l . Ce document n e p e u t O t r e r e p r o d u i t en t o t a l i t s ou en p a r t i e s a n s l e consentement d e l ' e d i t e u r . Une l i s t e d e s p u b l i c a t i o n s d e l a D i v i s i o n p e u t G t r e o b t e n u e en e c r i v a n t

a

l a S e c t i o n d e s p u b l i c a t i o n s , D i v i s i o n d e s r e c h e r c h e s e n b l t i m e n t , C o n s e i l n a t i o n a l d e r e c h e r c h e s Canada, Ottawa, O n t a r i o , K1A OR6.

Figure

Table  I.  Ottawa  s i l i c a  sand  ground  t o  p a s s   100 mesh  s i e v e   and  a  f l y   a s h  were  a l s o  used  i n   some  of  t h e   e x p e r i m e n t s   a s   r e p l a c e m e n t s   f o r   cement

Références

Documents relatifs

hat’s where the second component of the NRC-IRC’s Indoor Air Initiative comes into play, studying the products and services available to help consumers make

We have used the same image-based algorithms to align the color from the 3D sensor with the multi-spectral image, by using the chan- nels from the multi-spectral image that

Our main results are (1) in auction-based scheduling, languages have reduced complexities in agents’ valuation and system’s communication; (2) although languages migrate

Flowchart of the proposed integrated process Fermentator UF Extractor A1 permeate A2 permeate 1-butanol reservoir Permeate with low content of 2, 3-butanediol..

In addition, Fanger played a decisive role in founding the International Society of Indoor Air Quality and Climate (ISIAQ), the International Academy of Indoor Air Sciences (IAIAS),

As a result, the program is able to summarize the observed activities (which would nor- mally be stored as lengthy and difficult to analyse video clips) in a very intuitive and

The results showed that, when an intermediate-scale fire resistance furnace (1.2 m wide by 1.8 m long by 0.5 m deep) is heated up using the CAN/ULC-S101-89 or ASTM

In this paper, we propose an attention-based architecture that allows to better handle the asymmetric aspect of the question-answer matching, such that the model gives more focus to