• Aucun résultat trouvé

ZSM zeolite-filled polydimethylsiloxane for 1-butanol/2,3-butanediol separation

N/A
N/A
Protected

Academic year: 2021

Partager "ZSM zeolite-filled polydimethylsiloxane for 1-butanol/2,3-butanediol separation"

Copied!
21
0
0

Texte intégral

(1)

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=ad6e87ed-1223-426a-8cef-d4ca811bbb3b

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ad6e87ed-1223-426a-8cef-d4ca811bbb3b

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

ZSM zeolite-filled polydimethylsiloxane for 1-butanol/2,3-butanediol

separation

(2)

Separation of 1-Butanol/2,3-Butanediol Using

ZSM-5-filled Polydimethylsiloxane Membranes

P. Shao, A. Kumar

24 August 2009

(3)

Introduction

• 2,3-Butanediol, a bio-product

– Hemi-cellulose Glucose 2,3-Butanediol + 2CO

2

+ H

2

+ 2ATP

• 2,3-Butanediol, an important intermediate

Industrial solvent:

Monomers:

R

R

(MEK)

CH

3

CH

3

H

H

OH

OH

O

(MEK)

CH

3

CH

3

H

H

OH

OH

O

CH

3

CH

3

H

H

OH

OH

(1,3-Butadiene)

(2,3-Butene)

CH

3

CH

3

H

H

OH

OH

(1,3-Butadiene)

(2,3-Butene)

(4)

Recovery of 2,3-butanediol:

a challenging separation

Challenge analysis in terms of

solubility parameter

• Physicochemical properties

– High affinity for water

– Much bigger molecular size

than water (0.52 nm versus

0.25 nm)

Species

Solubility Parameter (Mpa)

1/2

Water

47.8

0

2,3-Butanediol

33.5

14.3

Challenging

Methanol

29.6

18.2

Challenging

Ethanol

26.5

21.3

Fair

2-Propanol

23.5

24.3

Easy

1-Butanol

23.1

24.7

Easy

• Possible recovery methods

– Distillation

– Vacuum membrane distillation

– Integrated process

(5)

Flowchart of the proposed

integrated process

Fermentator

UF

Extractor

A1

permeate

A2

permeate

1-butanol

reservoir

Permeate with low content of 2, 3-butanediol

A3

permeate

(6)

Solvent selection

criteria

• High partition coefficient

• High selectivity

• Membrane permeability

• Volatility

• Evaporation heat

• Toxicity

• Environmental concerns

• Cost

Candidate solvents

Better Process Economics

Solvents

BP (

o

C)

Alcohols

1-butanol

117

3-ethyl-3-pentanol

142

2-ethyl-1-butanol

147

1-heptanol

176

2-octanol

180

2-ethyl-1-hexanol

184

1-octanol

195

1-nonanol

213

1-decanol

243

1-dodecanol

259

Esters

dibutyl phthalate

340

tributyl phosphate

289

(7)

Mixed matrix membrane

• Materials

Polydimethylsiloxane (PDMS)

ZSM-5 zeolite fillers

n

Si

O

CH

3

CH3

n

Si

O

CH

3

CH3

2. Good interfacial compatibility

1. Dispersion of filler particles

(8)

SEM images

• ZSM-5 loading

– ZSM-5:PDMS= 80w/w%

• Factors contributing

to good dispersion

– Sonicating

– Stronger interactions

– Highly volatile solvent

• Pentane(36

o

C)

– Increased viscosity of

the dope solution

(9)

Permeability of membranes

with up to 80 % loading

1.0E-08

1.0E-07

1.0E-06

P

erm

ea

bi

li

ty

(c

m

2

/s

)

of t

he

fi

ll

ed

P

D

M

S

2,3-butanediol

1-butanol

1-Butanol in feed: 45 w/w%

(10)

Selectivity versus ZSM-5

loading

3-Dimentional

mass transport

0

5

10

15

20

25

30

40

50

60

70

80

90

100

S

el

ec

ti

vi

ty

of

the

fi

ll

ed

m

em

bra

ne

1-Butanol content (wt. %) in feed

ZSM-5

loading:

80 %

40 %

20 %

(11)

Enhanced product

recovery

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

,3

-B

u

ta

n

ed

io

l

p

u

ri

ty

PDMS with 80% ZSM-5 loading

PDMS

42% 64%

Objective purity

(99.5w/w%)

(12)

Impact of ethanol as a

by-product

Selectivity Permeability

1.0E -09 1.0E -08 1.0E -07 1.0E -06 30 40 50 60 70 80 90 100 M em br an e p er m ea bi lit y (c m 2/ s)

Feed concentration of 1 -butanol (wt.%)

ethanol

1-butanol

2,3-butanediol

1 10 100 0 10 20 30 40 50 60 70 80 90 100

without ethanol

with 0.92 wt.% ethanol

Feed concentration of 1 -butanol (wt.%)

M em br an e s el ec tiv ity fo r 1 -b ut an ol o ve r 2 , 3 -b ut an ed io l

(13)

2,3-Butanediol content

in permeate

0.010

0.100

1.000

M

as

s fra

ct

ion

of 2,3

-but

ane

di

ol

i

n

pe

rm

ea

te

Permeate

(83 w/w%)

3 w/w%

(14)

Permeate recycling

(1-point)

Product: 7.95 kg/h (99.5%)

A

3

= 35.9 m

2

A

1

= 49.1 m

2

ΣA=112.6 m

2

A

2

=27.6 m

2

Feed: 360 kg/h (3.0%)

Recycled permeate: 26.0 kg/h (7.81%)

Permeate: 352.1 kg/h (0.82%)

Feed: 360 kg/h (3.0%)

ΣA=101.1 m

2

Product: 6.60 kg/h (99.5%)

Permeate solvent: 353.4 kg/h (1.20%)

1-point

(15)

Permeate recycling

(3-point)

20.7 kg/h (4.5%)

3.4 kg/h (14.5%)

1.2 kg/h (50.1%)

Permeate: 352.0 kg/h (0.79%)

Product: 8.00 kg/h (99.5%) (3-point)

Feed: 360 kg/h (3.0%)

A

3

=33.4

m

2

A

5

=14.6

m

2

A

4

=14.6

m

2

A

2

=22.6

m

2

A

1

= 26.9 m

2

ΣA=112.1

m

2

Permeate III

Permeate II

Permeate I

7.95 kg/h (99.5%)

(

1-point

)

(16)

Permeate recycling and

recovery improvement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 60 70 80 90 100 110

Puri

ty

of

prod

uc

t 2,

3-but

ane

di

ol

With 1-point recycling

Without

(17)

Specific energy demand

of PV and vacuum MD

20

40

60

80

100

120

140

160

pe

ci

fi

c

ene

rgy

de

m

and

for e

nri

chm

ent

(M

J/

kg)

Memebrane distillation

Pervaporation

Drop for 3-point-recycling

Ref: N. Qureshi, M.M. Meagher, R.W. Hutkins,

Recovery of 2,3-butanediol by vacuum

membrane distillation, Sep. Sci. Technol.

29 (1994) 1733-1748.

(18)

Concluding remarks

• ZSM-5 improved the selectivity of the PDMS

membrane. It appears that the optimal ZSM-5

loading is 80 w/w%.

• Permeate recycling enhanced the recovery of

2,3-butanediol, and 1-point recycling is

sufficient.

• The integrated process is more

energy-efficient than the vacuum membrane

distillation.

• Ethanol as an impurity did not significantly

impact on the membrane performance.

(19)

Acknowledgements

• Experimental technicians

– Linda Layton, and Toll Floyd

• SEM technician:

– Dave Kingston

• Financial support

– Agriculture Biomass Innovation Program(ABIP)

Agriculture and Agri-Food Canada (AAFC).

(20)

Future work

• Membrane distillation for enriching butanediol by direct water

removal using more selective distillation membranes.

– Transport mechanism

– Process performance

• Purification of some other bioproducts using ultrafiltration and

nanofiltration membranes.

– Membrane preparation and characterizations

– Membrane/bioproducts interactions

(21)

Références

Documents relatifs

A l’aide d’un tableur, construit les diagrammes représentant la température et les précipitations sur l’ile Heard.. Quelle est l’étendue

On the available data, the Task Group was unable to make an assessment of the health risks of 1-butanol for the general population; however, it was considered unlikely

[r]

Distance entre le satellite et la station de base 36 500 km Gain de l’antenne de réception du satellite 30 dBi Pertes des câbles du transpondeur du satellite ( L feed ) 7.0 dB

[r]

Les élèves disposent d’un paquet de cartes et d’un plateau de jeu A3.. Le jeu nécessite aussi un dé et

Par comparaison entre ce qui est pareil et ce qui est différent, le binôme trouve ce qu’il faut donner à Minibille pour qu’elle ait autant que Maxibille.. Le

This paper advances our understanding of the interactions between nation-state and private transnational modes of governance by analysing the role of national government