• Aucun résultat trouvé

d.fgai

N/A
N/A
Protected

Academic year: 2022

Partager "d.fgai"

Copied!
24
0
0

Texte intégral

(1)

5

th of April, 2012

Large spaes of matries with

bounded rank

D r

Clément de Seguins Pazzis

Lyée Sainte-Geneviève, Versailles, Frane

Université de Versailles-Saint-Quentin-en-Yvelines

dsp.profgmail.om

http://dsp.prod.free.fr/reherhe.html

(2)

I. Historial results.

II. Flanders's method.

III. Proof of the generalized Atkinson-Lloyd

theorem.

IV. Appliation to an invertibility preserver

problem.

(3)

K

denotes an arbitrary (ommutative) eld (possibly nite),

n

and

p

two positive integers

with

n ≥ p

,

M n,p ( K )

the vetor spae of matries

with

n

rows,

p

olumns and entries in

K

, and

M n ( K ) := M n,n ( K )

.

Two linear subspaes

V

and

W

of

M n,p ( K )

are

equivalent when

∃(P, Q) ∈ GL n ( K ) × GL p ( K )

suh that

W = P V Q

.

The upper rank of a subset

V

of

M n,p ( K )

is

rk(V ) := max

rk M | M ∈ V .

Problem : given an integer

r > 0

with

r < n

and

r < p

, lassify the linear subspaes of

M n,p ( K )

with upper rank

r

.

For small values of

r

, the solution is known

(Shur:

r = 1

; Atkinson:

2 ≤ r ≤ 3

). For general

values, no fully enompassing answer is known.

(4)

with upper rank

r

.

(ii) Classify those subspaes with a dimension

lose to the maximal one.

(5)

A. Maximal dimension

Theorem 1 (Flanders, 1962). Let

r ∈ [[1, p − 1]]

and

V

be a linear subspae of

M n ( K )

with

rk(V ) = r

. Then:

(a)

dim V ≤ rn

;

(b) If

dim V = rn

and

n > p

, then

V

is equivalent

to

h

C 1 · · · C r [0] n × ( p r )

i | C 1 , . . . , C r ∈ M n, 1 ( K )

() If

dim V = rn

and

n = p

, then

V

or

V T

is

equivalent to

h

C 1 · · · C r [0] n × (n r)

i | C 1 , . . . , C r ∈ M n, 1 ( K )

(6)

The ase

# K > r

:

H. Flanders, On spaes of linear transformations with

bounded rank, J. Lond. Math. So. 37 (1962) 10-16.

The ase

n = p

and

r = n − 1

for an arbitrary

eld (extended to ane subspaes):

J. Dieudonné, Sur une généralisation du groupe orthogonal

à quatre variables, Arh. Math. 1 (1949) 282-287.

The more general ase:

R. Meshulam, On the maximal rank in a subspae of

matries, Quart. J. Math. Oxford (2) 36 (1985) 225-229.

The more general ase extended to ane

subspaes:

C. de Seguins Pazzis, The ane preservers of non-singular

matries, Arh. Math. 95 (2010) 333-342.

(7)

The naive onjeture: a subspae

V

with upper

rank

r

may be extended to one with the maximal

dimension

nr

. Equivalently, if

n > p

, then the

matries of

V

vanish on some ommon

(p − r)

-dimensional subspae of

K p

(if

n = p

, then

this should hold for

V

or for

V T

).

True for

r = 1

(Shur)! False in general!

Notation 1. Given

(s, t) ∈ [[0, n]] × [[0, p]]

, one

denes

R(s, t)

as the set of all

n × p

matries of

the form

[?] s × t [?] s × ( p t ) [?] (n s) × t [0] (n s) × (p t)

 .

(8)

Note that

rk R(s, t)

≤ s + t

, and equality holds

whenever

s + t ≤ p

.

In partiular, if

r ≥ 1

, then

R(1, r − 1)

is a

ounter-example to the above onjeture, with

dimension

n(r − 1) + (p − r + 1) = nr − (n − p + r − 1)

(in

partiular:

nr − (r − 1)

if

n = p

).

Atkinson and LLoyd ask: an we lassify spaes

V

with upper rank

r

and

nr − (n − p + r − 1) ≤ dim V ≤ nr

?

Theorem 2 (Atkinson and Lloyd, 1980).

Let

r ∈ [[1, n − 1]]

et

V

be a linear subspae of

M n ( K )

with

rk(V ) = r

.

Assume that

# K > r

and

dim V ≥ nr − r + 1

.

Then:

(a) Either

V

is the subspae of a linear subspae

W

of

M n ( K )

with

rk(W ) = r

and

dim W = nr

;

(b) Or

V

is equivalent to

R(1, r − 1)

or

R(r − 1, 1)

.

(9)

bounded rank, Quart. J. Math. Oxford (2), 31 (1980)

253-262.

The ase

n > p

:

L.B. Beasley, Null spaes of spaes of matries of bounded

rank, in Current Trends in Matrix Theory 45-50, Elsevier,

1987.

What about small nite elds?

An extension of Atkinson-Lloyd to an arbitrary

eld was deemed problemati: ounter-example

for

F 2

: the spae of all upper-triangular matries with zero trae:

(

a c d

0 b e

0 0 a + b

| a, b, c, d, e ∈ F 2

)

ts into neither of the above ategories.

(10)

Theorem 3 (de Seguins Pazzis, 2010). Atkinson

and Lloyd's theorem holds for an arbitrary eld,

exept when

n = 3

,

r = 2

,

# K = 2

and

dim V = 5

,

in whih ase the above ounter-example is the

only exeption up to equivalene.

C. de Seguins Pazzis, The lassiation of large spaes of

matries with bounded rank, arXiv:

http://arxiv.org/abs/1004.0298

Beasley's results are also suessfully extended to

an arbitrary eld (no exeption!).

(11)

To simplify things, we take

n = p

.

A. The original method.

Let

V

a linear subspae of

M n ( K )

with

rk(V ) = r ∈ [[1, n − 1]]

. One may assume that

V

ontains

J r :=

I r [0] r × (n r) [0] ( n r ) × r [0] ( n r ) × ( n r )

 .

In that ase, we split every matrix of

V

with the

same blok sizes:

M =

A(M ) C (M ) B (M ) D(M )

 .

Assume that

# K > r

and let

M ∈ V

. Now, given

an indeterminate

t

, ompute the

(n − r) × (n − r)

matrix

P (t)

of all

(r + 1) × (r + 1)

minors of

J r + tM

where one takes all the rst

r

rows and

olumns:

(12)

→ P (t)

is a polynomial of

t

with oeients in

M n − r ( K )

and degree

≤ r

;

→ P (t)

vanishes everywhere on

K

, therefore

P (t) = 0

;

Its oeient before

t r

is

D(M )

; thus

D(M ) = 0 ;

Consequently, its oeient before

t r 1

is

−B (M )C (M )

; thus

B (M )C (M ) = 0.

From

∀M ∈ V, B(M )C (M ) = 0

, one easily proves

that

dim B (V ) + dim C (V ) ≤ r(n − r)

(e.g.

B (V ) × C (V )

is totally isotropi for the

non-degenerate quadrati form

(B, C ) 7→ tr(BC )

).

Therefore:

dim V ≤ dim A(V ) + dim B (V ) + dim C (V ) ≤ nr.

(13)

Assume now

dim V = nr

. Then (rank theorem)

V

ontains, for every invertible

P ∈ M n ( K )

,

M P :=

P [0] r × ( n r ) [0] ( n r ) × r [0] ( n r ) × ( n r )

 .

With the above method, one replaes

J r

with

M P

and nds:

∀M ∈ V, B (M )P 1 C (M ) = 0.

Then varying

P

yields:

∀M ∈ V, B(M ) = 0

or

C (M ) = 0.

One easily onludes: either

B (V ) = {0}

or

C (V ) = {0}

. This yields the Flanders theorem.

(14)

Same starting point, assumptions (exept on the

ardinality of

K

) and notations. Also, instead of

assuming that

V

ontains

J r

, we simply assume

that it ontains

Q [0] r × ( n r ) [0] ( n r ) × r [0] ( n r ) × ( n r )

for some invertible

Q ∈ M r ( K )

.

We take an arbitrary matrix of

M n ( K )

M 0 =

P C (M 0 ) B (M 0 ) D(M 0 )

 .

We atually do not ompute the matrix of minors

of a general sum

M 0 + M

with

M ∈ V

(too

ompliated!). Rather, we onsider a tower of

linear subspaes of

V

:

V 3 ⊂ V 2 ⊂ V 1 ⊂ V.

(15)

 

 

V 1 := Ker A

V 2 := Ker A ∩ Ker B

V 3 = Ker A ∩ Ker B ∩ Ker C.

The rank theorem shows:

dim V = dim A(V )+dim B (V 1 )+dim C (V 2 )+dim D(V 3 ).

One then omputes the matrix of all the

(r + 1) × (r + 1)

minors of

M 0 + M

whih use the

r

rst rows and olumns, for

M ∈ V 1

: this is

det(P )D(M 0 + M )

− B (M 0 + M ) com(P ) T C (M 0 + M ).

This matrix is

0

, and so is the one for

M = 0

.

Subtrating both equalities yields the

fundamental formula:

B (M ) com(P ) T c(M ) = det(P )D(M )

− B (M ) com(P ) T c(M 0 )

− B (M 0 ) com(P ) T c(M )

(16)

As

P

may be hosen invertible, this yields:

D(V 3 ) = 0.

Taking the polar form of the left-hand side yields,

for every

(M, N ) ∈ V 1 2

:

B (M ) com(P ) T c(N ) + B (N ) com(P ) T c(M ) = 0.

In partiular, for every

(M, N ) ∈ V 1 × V 2

:

B (M ) com(P ) T c(N ) = 0.

In partiular

∀(M, N ) ∈ V 1 × V 2 , B(M )Q 1 C (N ) = 0

, and

therefore

dim B (V 1 ) + dim C (V 2 ) ≤ r(n − r).

This yields

dim V ≤ nr

.

For the ase

dim V = nr

, the proof goes on using

the above formulas ...

(17)

generalized Atkinson-Lloyd

theorem.

We ontinue with the assumptions of the latest

setion. We now assume

dim V > nr − r + 1

.

A. Step 1: showing that

B ( V 1 ) = 0

or

C ( V 2 ) = {0}

.

We show that either there is no non-zero matrix

in

V

of the form

[0] r × n

[?] (n r) × n

or there is no non-zero matrix in

V

of the form

h

[0] n × r [?] n × ( n r ) i

.

Using the above inequalies, we nd

dim A(V ) > r 2 − (r − 1).

(18)

∀P ∈ A(V ), ∀(M, N ) ∈ V 1 × V 2 ,

B (M ) com(P ) T C (N ) = 0.

Lemma 4. One has

B (V 1 ) = {0}

or

C (V 2 ) = {0}

.

Proof. Assume the ontrary holds. Then

span

{com(P ) T | P ∈ A(V )}

does not at

transitively on

K r

. Without loss of generality, one

may then assume that

∀P ∈ A(V ), com(P ) r,r = 0.

This ontradits the Flanders theorem!!

If

B (V 1 ) = {0}

, then for

W := V T

, one has

C (W 2 ) ⊂ B (V 1 ) T = {0}

. No generality is then

lost by assuming that

C (V 2 ) = {0}

. Then

V 2 = V 3 = {0}

.

(19)

We now assume

V 2 = {0}

. In that ase, there is a

linear subspae

W ⊂ M n,r ( K )

and a linear map

ϕ : W → M n,n r ( K )

s.t.

V = h

M ϕ(M )

i | M ∈ W

.

Note that

codim W < r − 1

.

From there, we prove two lemmas.

Lemma 5. One has

∀N ∈ W, Im ϕ(N ) ⊂ Im(N ).

Lemma 6. There exists

C ∈ M r,n − r ( K )

s.t.

∀N ∈ W, ϕ(N ) = N C

.

With the last one, take

P :=

I r −C [0] ( n r ) × r I n r

and hek that any matrix of

V P

has all last

n − r

olumns equal to zero.

(20)

Proof of Lemma 5: Denote by

U

the spae of

matries of

W

with

0

as last olumn. For

M ∈ U

,

write

h

M ϕ(M ) i =

K (M ) [?] (n 1) × (n r) [0] 1 × r ϕ n (K (M )).

Note that:

→ codim K (U ) < r − 1 < n − 2

;

if

rk K (M ) = r

, then

ϕ n (K (M )) = 0

.

→ ϕ n : K (U ) → M 1,n r ( K )

is linear.

We dedue that

ϕ n = 0

by using the following

orollary of our extension of Flander's theorem to

ane subspaes:

Corollary 7. Let

V

be a linear subspae of

M n,p ( K )

, with

n ≥ p ≥ r

, and assume that

dim V > rn

. Then

V

is spanned by its matries

of rang

≥ r

, unless

n = p = 2

,

r = 1

and

# K = 2

.

(21)

a linear hyperplane

H

of

V

whih ontains every

rank

≥ r

matries of

V

, and then a parallel

disjoint ane hyperplane

H

, whih then has

dimension

≥ rn

, has upper rank

< r

and is not a

linear subspae of

M n,r ( K )

.

Bak to the proof of Lemma 5: we now have

ϕ n = 0

. This means that for

H = K n 1 × {0}

,

∀M ∈ W, Im M ⊂ H ⇒ Im ϕ(M ) ⊂ H

.

However,

H

may be replaed by any linear

hyperplane of

K n

. The onlusion follows.

Lemma 6 may be extended as some kind of linear

preserver theorem:

Theorem 8 (Representation lemma). Let

m, n, p

be positive integers,

W

be a linear subspae of

M m,n ( K )

with

codim W ≤ m − 2

, and

ϕ : W → M m,p ( K )

be a linear map s.t.

∀M ∈ W, Im ϕ(M ) ⊂ Im M.

(22)

Then there exists

C ∈ M n,p ( K )

s.t.

ϕ : M 7→ M C.

Remarks 1.

The ase

W = M m,p ( K )

is an easy exerise.

One need only assume

p = 1

.

The ondition

codim W ≤ m − 2

is not

optimal. When

# K > 2

and

n ≥ 2

, the best

upper bound is

2m − 3

(work in progress ...).

The proof is a bit too tehnial for a seminar talk

...

(23)

invertibility preserver problem.

The following theorem is the rst appliation of

the Atkinson-Lloyd theorem.

Theorem 9 (de Seguins Pazzis, 2012). Let

V

be

a linear subspae of

M n ( K )

with odimension

≤ n − 2

, and

f : V ֒ → M n ( K )

be a linear

embedding whih is a strong invertibility

preserver. Then, unless

n = 3

,

# K = 2

and

codim V = 1

, there exists

(P, Q) ∈ GL n ( K ) 2

s.t.

∀M, f (M ) = P M Q

or

∀M, f (M ) = P M T Q

If

K

is innite or

f (V ) = V

, then one need only

assume that

f

is a weak invertibility preserver.

This is a grand generalization of the well-known

Dieudonné theorem (ibid). The method is similar,

with the Atkinson-Lloyd theorem as a key

starting point. The above representation theorem

is also a ruial point.

(24)

non-singularity in a large spae of matries, Linear

Algebra Appl. 436-9 (2012), 3507-3530.

Remark 2. In the ase

n > p

, invertibility is naturally replaed with the assumption

rk M = p

i.e.

M

has full rank: similar results

hold (urrently being written).

Références

Documents relatifs

Découvrez les différentes options possibles pour personnaliser au mieux votre lampe selon votre besoin.. Avec plus de 3 000

Dans chaque cas, tracer la section du solide par le plan (IJK)

Dans cette série d’exercices, on cherchera à déterminer la section du solide par un plan quelconque (donc pas nécessairement parallèle à une face) défini par des points situés

• La fréquene des solutions qui permet de synhronisés une ligne de fusiliers de taille 5 ou 6 plus grande que pour les autres solutions. • La fréquene des solutions qui permet

Il débute ensuite sa carrière à Lyon comme responsable administratif &amp; financier pour les entités françaises du groupe de conseil Amaris, pour évoluer sur le poste de

steht: elementltren~ lies:

construct a reflexive sheaf from Y using the Serre construction, and then to describe this sheaf by means of a monad, where the family of monads involved

As an approach to the problem of characterising and classifying Banach spaces in terms of their geometric structure, consideration has been given to the following