• Aucun résultat trouvé

State of Substance Near the Melting Point

N/A
N/A
Protected

Academic year: 2021

Partager "State of Substance Near the Melting Point"

Copied!
16
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1952

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331509

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at State of Substance Near the Melting Point

Bartenev, G. M.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=921d9964-9244-4628-920b-17d618f8c068 https://publications-cnrc.canada.ca/fra/voir/objet/?id=921d9964-9244-4628-920b-17d618f8c068

(2)

T i t l e :

NATIONAL

RESEARCH

C O U N C I L O F CANADA

T e e h n i e a l T r a n s l a t i o n TT-314 The s t a t e of s u b s t a n c e n e a r t h e m e l t i n g p o i n t , ( 0 s o s t o y a n f i v e s h c h e s t v a v b l f z i t o e h k l p l a v l e n i y a

1

By: G ,

M,

Bartenev Reference: Zhur, E k s p e r , T e o r e t , F i z , ,

-

20: 218-223, 1950. T r a n s l a t e d by: E s t h e r Rabkin

(3)

THE STATE OF SUBSTANCE NEAR ..- THE MELTING - .--- POINT R e l a t i o n s h i p s ape ~ b t ~ i n e d which d e s c r i b e

the. c r y s t a l l i n e - l i q u i d s t a t e and t h e ano- malous phenomena n e a r t h e m e l t i n g p o i n t s . A comparison of t h e o r y w i t h experinlent i s

g i v e n

..

1. The problem r e g a r d i n g t h e s t a t e o f s u b s t a n c e n e a r t h e m e l t i n g p o i n t has been i n v e s t i g a t e d v e r y l i t t l e , Accord- i n g t o t h e g e n e ~ a a l c o n c e p t s of t h e phase t h e o r y , t h e i n t e r - s e c t i o n of t h e thermodynamic s u r f a c e s

*

( p , T ) o f t h e l i q u i d and s o l i d p h a s e s does n o t i n t r o d u c e any s p e c i a l f e a t u r e s i n t o t h e s t a t e o f s u b s t a n c e n e a r t h e m e l t i n g p o i n t s . Thus, t h e s p e c i f i c h e a t cp, c a l c u l a t e d by t h e thermodynamic f o r m u l a c~ = -T (

b

$/

T ' ) ~ , h a s a c c o r d i n g t o t h e s e c o n c e p t s a smooth temperat,ilre c o u r s e up t o t h e m e l t i n g p o i n t ; a t t h e a c t u a l m e l t i n g p o i n t cp g o e s t o i n f i n i t y . However, i n e x p e r f m e n t s n e a r t h e m e l t f n g p o i n t s o f p u r e s u b s t a n c e s a n o m a l i e s a r e o b s e r v e d i n t h e s p e c i f i c h e a t , i n t h e t h e r m a l e x p a n s i o n c o e f f i c i e n t and i n o t h e r p h y s f e a l v a l u e s . For t h e e x p l a n a t i o n o f t h e s e phenomena, Brody (1) proposed t h a t near" t h e m e l t i n g p o i n t s , owing t o t h e f a c t t h a t t h e c h e m i c a l p o t e n t i a l s o f b o t h p h a s e s become v e r y c l o s e t o - g e t h e r , f l u c t u a t i o n s a r e p o s s i b l e w i t h a t r a n s i t i o n o f t h e s u b s t a n c e from t h e s o l i d i n t o t h e l f q u i d p h a s e . These f l u s - t u a t i o n s c o u l d be c a l l e d phase f l u c t u a t i o n s i n d i ~ e c t a g r e e - ment w i t h t h e t e r m "phase t r a n s i t i o n s " ,

(4)

Brody d i d n o t g i v e a s a t i s f a c t o r y c a l c u l a t i o n o f t h e p h a s e f l u c t u a t i o n s n e a r t h e m e l t i n g p o i n t , and t h e c a l c u l a t i o n o f ~ r e n k e l ' ~ ) i n t h i s d i r e c t i o n i s based on a method g i v i n g r e s u l t s which, u n f o r t u n a t e l y , c a n n o t be v e r i f i ed by d i r e c t ex- p e r i m e n t . T h e r e f o r e , i n t h e work of F r e n k e l no comparison o f t h e o r y w i t h experiment i s g i v e n . The e x p e r i m e n t a l f a c t s s u b s t a n t i a t e t h e i d e a t h a t n e a r t h e m e l t i n g p o i n t a s u b s t a n c e i s found i n a p a r t i c u l a r c r y s t a l l i n e - l i q u i d s t a t e . There e x i s t two methods o f t h e o r e t i c a l c o n s i d e r a t i o n o f t h e problem r e g a r d i n g t h e s t , a t e o f a s u b s t a n c e n e a r t h e m e l t i n g p o i n t , One of t h e s e , t h e m o l e c u l a r - k i n e t i c method, s t e m s from

s t a t i s t i c a l thermodynamics and c a n be reduced t o a c o m p u t a t i o n w i t h t h e h e l p of a s t a t i s t i c a l i n t e g r a l o f t h e thermodynamic p o t e n t i a l

4

( p , T ) o f t h e system. T h i s s o l u t i o n e n c o u n t e r s con-

s i d e r a b l e d i f f i c u l t f e s ,

The o t h e r , t h e semi- thermodynamic method o f s o l u t i o n , stems from t h e p h a s e t h e o r y and p h a s e f l u c t u a t i o n s , I n t h i s p a p e r we have s e l e c t e d t h e second method of a p p r o a c h t o t h e s o l u t i o n of t h e problem o f t h e s t a t e o f s u b s t a n c e n e a r t h e m e l t i n g p o i n t , 2 , L e t be t h e a v e r a g e s t a t i s t i c a l q u a n t i t y of t h e l i q u i d p h a s e n e a r t h e m e l t i n g p o i n t f o r a n e q u i l i b r i u m s t a t e , Then, from t h e a s s u m p t i o n s r e g a r d i n g t h e a d d i t i v i t y of

ii

and t h e a d d i t f v f t y of t h e thermodynamic p o t e n t i a l

d?

( p , T ) of t h e s y s t e m one c a n f i n d t h e dependence o f

ii

on t e m p e r a t u r e and p r e s s u r e . I n f a c t , i f

P

( m ) i s t h e d i s t r i b u t i o n f u n c t i o n of t h e p h a s e f l u c t u a t f o n s , t h e n t h e f i r s t a s s u m p t i o n can be e x p r e s s e d i n t h e f o l l o w i n g manner:

(5)

where M f s t h e mass of t h e system, m i s t h e i n s t a n t a n e o u s q u a n t i t y

o f t h e l i q u i d phase, The d i s t r f b u t f o n f u n c t i o n f' i s a f u n c t i o n not o n l y of m, b u t a l s o of t h e parameter M, Vie w f l l prove t h i s , Transforming (1) by an i n t e g r a t i o n by a r t s and t a k i n g i n t o ac-

E

count t h e c o n d i t i o n of n o r m a l i z a t i o n

\

p d m = 1, we o b t a i n t h e J f o l l o w i n g f u n c t i o n a l e q u a t i o n s : 0

M

1 ~ ( 0 )

-

p

(rn) d m = c o n s t . and

p

( m )

= a g / b m

A s o l u t i o n of t h e f u n c t i o n a l e q u a t i o n i s t h e f u n c t i o n :

p=g(m/~).

From here ( r n ) =

l , q g

( ; I = t v c

i

1

F u r t h e r , it should be t a k e n i n t o account t h a t one and t h e same q u a n t i t y m of l i q u i d phase may be l o c a l i z e d i n t h e system by a number of methods, t h e sane a s i n gaseous s t a t i s t i c s each m a c ~ o s t a t e can be r e a l i z e d by a m u l t i p l i c i t y of m i c r o s t a t e s ,

Henceforth, we w f l l c o n s i d e r o n l y systems which a r e found i n a n e q u i l f b ~ f u m s t a t e , For a system placed i n a t h e r m o s t a t under t h e c o n d i t i o n t h a t p = c o n s t , and found i n t h e e q u i l i b r i u m , t h e p r o b a b i l i t y of t h e o r i g i n a t i o n by one of t h e methods of t h e l i q u i d phase i n t h e q u a n t i t y m i s p r o p o r t i o n a l t o t h e Boltzmann f a c t o r .

(6)

where

A $

i s t h e d e v i a t i o n of t h e thermodynamic p o t e n t i a l of t h e system from t h e o r i g i n a l p u r e l y c r y s t a l l i n e s t a t e , The v a l u e d rf, may be expressed i n t h e f o l l o w i n g form:

where4 2,

d

a r e t h e chemical o r t h e s p e c i f i c p o t e n t i a l s of t h e l i q u i d and t h e s o l i d pimses,

6

i s t h e s u r f a c e t e n s i o n on k t h e boundary o f t h e d i v i s i o n of t h e p h a s e s ; i s t h e number of t h e s e c t i o n s ( i n i t i a t o r s ) of t h e l i q u i d phase c o n s i s t i n g k of j atoms o r molecules, S i s t h e v a l u e of t h e s u r f a c e of j t h e d i v i s i o n of t h e phase corresponding t o t h e s e c t f o n a of t h e l i q u i d phase, k i s t h e index corresponding t o one of t h e p o s s i b l e s t a t i s t i c a l d i s t r i b u t i o n s i n t h e system of t h e l i q u i d phase i n t h e q.~ a n t i t y rn,

A t t h e m e l t i n g p o i n t t h e d i f f e r e n c e of t h e chemical poten- t i a l s become z e r o , As we g e t f u r t h e r away from t h e p o f n t of m e l t i n g , t h e d i f f e r e n c e of t h e chemical p o t e n t f a l s i n c r e a s e s w i t h o u t l i m i t ( a t t h e b e g i n n i n g a c c o r d i n g t o a l i n e a r r e l a t f o n -

s h i p ) , As r a g a r d s t h e s u r f a c e t e n s i o n , t h e n i n g e n e r a l i t changes v e r y l i t t l e w i t h a change i n temperature and f t does n o t go over t o z e r o a t t h e m e l t i n g p o i n t , I n a d d i t i o n , t h e s u r f a c e t e n s i o n on t h e boundary s o l i d - m e l t i s a f a i r l y s m a l l v a l u e q . From h e r e i t f o l l o w s t h a t s u f f i c i e n t l y f a r from t h e m e l t i n g p o i n t a t m ) 0, t h e second term i n e x p r e s s i o n ( 4 ) may

be n e g l e c t e d . A t m = 0 , t h i s term becomes 0 ,

his

c o n d i t i o n f o l l o w s from t h e f a c t t h a t t h e d i f f e r e n c e i n t h e d e n s i t i e s of b o t h phases i s s m a l l , and t h a t b o t h phases c o n s i s t of p a r t i c l e s of one k i n d .

(7)

Henceforth, we w i l l s o l v e t h e problem f o r t h e

temperature r e g i o n vhere t h i s assumption h o l d s , I n s t e a d of ( 3 ) and ( 4 ) we w i l l w r i t e t h e approximate e x p r e s s i o n f o r t h e p r o b a b i l i t y q(m) :

d m )

-e

-

~ ( P ~ - P ~ ) / ~ T (5

1

I n t h i s form t h e p r o b a b i l i t y q(m) of t h e l o e a l i z a t i o n of t h e f f x e d q u a n t i t y m of t h e l i q u i d phase i s t h e same f o r any of the methods mentioned e a r l i e r . Something s i m i l a r e x i s t s i n gaseous s t a t i s t i c s when, by n e g l e c t i n g t h e In- t e r a c t i o n of t h e p a r t i c l e s , t h e p r o b a b i l i t y of any group i s assumed a p r i o r i t o be t h e same, However, i n our c a s e a c a l c u l a t i o n of t h e p r o b a b i l i t y of t h e s t a t e cannot be c a r r f ed o u t by a n e l e m e n t a r y method,

I n f a c t , l e t 4 ( m ) d r n be t h e p r o b a b i l i t y t h a t i n g e n e r a l a m e t a s t a b l e phase can be d e t e c t e d i n a q u a n t i t y

from

m t o m

*

dm. T h i s w i l l be t h e l a r g e r t h e g r e a t e r t h e number of ways by which t h i s s t a t e can be r e a l i z e d . I f we could con-

s i d e r t h a t a l l t h e elementary p r o b a b i l i t i e s q(m) a r e inde-

pendent, t h e n t h e above-mentioned p r o b a b i l i t y , a p p a r e n t l y , would be p r o p o r t i o n a l t o t h e p r o b a b i l i t y q(m) and t o t h e number of arrangements, However, we have no r i g h t t o make

such a n assumption, s i n c e we do n o t d e a l ' w i t h a g a s , Hence, i n o r d e r t o o b t a i n a c o r r e c t e x p r e s s i o n f o r P (m), f t i s n e c e s s a r y t o f i n d a more compJex dependence on q(m), which i n a g e n e r a l form we w i l l e x p r e s s a s f o l l o w s :

4

(mb = F

(8)

The f u n c t i o n F, i n p a r t i c u l a r , should be s u c h t h a t f ( m ) would s a t i s f y c o n d i t i o n ( 2 ) , I f we t a k e i n t o c o n s i d e r a t f o n

e x p r e s s i o n ( 5 ) f o r q ( m ) , t h l s w i l l l e a d t o a s o l u t i o n o f t h e form: p (m) = f ( z ) , vlhere f i s an a r b i t r a r y f u n c t l o n o f t h e

I

i n d e p e n d e n t v a r i a b l e z = exp

(

-

@ 2

-e?1

p

)

Here k

T

i s a n a r b i t r a r y c o n s t a n t i n d e p e n d e n t o f

rn

and I;?* S i n c e , a c c o r d i n g t o o u r a s s u m p t i o n , w e d e a l w f t h t h e t e m p e r a t u r e r e g i o n where t h e p r o b a b i l i t y of phase f l u c t u a t i o n s i s s m a l l , hence z w i l l b e a s m a l l v a l u e . I n a d d i t i o n , a s we g e t away f u r t h e r from t h e m e l t i n g p o i n t ,

z

a p p r o a c h e s z e r o , Hence, i f we expand t h e f u ~ l c t l o n f i n t o a s e r i e s w i t h ~ e s p e c t t o z and i f we l i m i t o u r s e l v e s t o t h e l i n e a r t e r m of t h e s e r i e s a e w i l l o b t a i n , by k e e p i n g i n mfnd t h a t f ( 0 ) = 0 ; a d i s t r i b u - t i o n f u n c t i o n o f t h e f o l l o w i n g form: S u b s t i t u t i n g t h l s e x p r e s s i o n i n t o formula ( 1 ) we f i n d t h e r e l a t i o n s h i p f o r m i d e n o t i n g x

=,u(O2 -

Q = I / ' ~ T : m =

M ( ;

+ 1 - e A ) (71 3 , Gachkovskii and S t r e l k o v i n v e s t i g a t e d t h e t h e r m a l expansf on of a z i n c m o n o c r y s t a l n e a r t h e m s l t f n g p o i n t , They have found an anomalous i n c r e a s e i n t h e c o e f f i c i e n t s of l i n e a r e x p a n s i o n o Using r e l a t i o n s h i p ( 7 ) i t i s p o s s i b l e t o c a l c u l a t e t h e anomalous p a r t of t h e v o l u m e t r i c t h e r m a l c o e f f i c i e n t of e x p a n s i o n by t h e f o r m u l a :

-

he

v a l u e o f p m a y n a t u r a l l y depend on p and T , b u t a s a comparison w i t h experiment shows t h i s dependence i s v e r y weak, and i n t h e r e -

(9)

v2

-

v 1

1

C( anomalous =

--

-

v1

where V2 and V 1 a r e t h e s p e c i f i c volumes o f t h e l i q u i d and s o l i d p h a s e s , and t h e n t o compare i t w i t h e x p e r i m e n t , It i s of i n t e r e s t t o e x p l a i n f i r s t of a l l f o r what t e m p e r a t u r e r e - g i o n our s e l e c t i o n of t h e d i s t r i b u t i o n f u n c t i o n ( 6 ) i s jus- t i f i e d , I n F i g . 1 t h e r e s u l t s a r e g i v e n ( t h e p o i n t s and c u r v e 1) f o r t h e c o e f f i c i e n t of t h e volume e x p a n s i o n & n e a r t h e m e l t - i n g t e m p e r a t u r e of z i n c c a l c u l a t e d from t he e x p e r i m e n t a l d a t a ( 4 ) o f S t r e l k o v and Gachkovskii The d o t t e d e x t r a p o l a t e d s t r a i g h t l i n e 3 g i v e s

o(,

-

t h e nortmal p o r t i on of t h e e x p a n s i o n c o e f f i c i e n t

.

The theoretical c u r v e may be c a l c u l a t e d from t h e e x p r e s s i o n

O(

= o(

*

o( a n ,

* e r e o( an i s determined by f o r m u l a ( 8 ) . The t h e o r e t i c a l

c u r v e c a l c u l a t e d a t / = 1 0 0 1 0 g i s given i n t h e same f i g i r e a s number 2 , I t shows a s a t i s f a c t o r y a g r e e m e n t w i t h t h e ex-

p e r i m e n t a l dependence up t o t e m p e r a t u r e s of 2-3O b e f o r e t h e m e l t i n g p o i n t , c o r r e s p o n d i n g t o 4 1 9 . ~ ~ ~ . A c a l c u l a t i o n by formula ( 7 ) a t t h e above v a l u e o f / g f v e s a t 3' b e f o r e t h e m e l t i n g p o i n t t h e q u a n t i t y of l i q u i d p h a s e of a p p r o x i m a t e l y o n l y 1$, I n ~ i g . 2 t h e r e s u l t s a r e o i v e n ( 5 b f t h e i n v e s t i g a t i o n of t h e s p e c i f i c h e a t of t i n n e a r t h e m e l t i n g p o i n t , c o r r e s p o n d i n g t o 2 3 1 , ~ ~ ~ . The s m a l l maximum a t 166O, a p p a r e n t l y , c a n be ex- p l a i n e d by a t r a n s f o r m a t i o n o c c u r r i n g i n t h e s o l i d phase, and we do n o t have t o t a k e i t i n t o a c c o u n t ,

(10)

The t o t a l s p e c i f i c h e a t i s e q u a l t o t h e sum of t h e normal p o r t i o n of t h e s p e c i f i c h e a t , which a t h i g h t e m p e r a t u r e s has a l i n e a r c o u r s e , and t h e anomalous p o r t i o n of t h e s p e c i f i c h e a t , which can be c a l c u l a t e d by t h e f o l l o v ~ i n g formula:

C~ (anomalous) = (+)p ( 9

where i s t h e s p e c i f i c h e a t of t h e s o l i d a t c o n s t a n t p r e s s u r e ( e q u a l t o 14.0 ~ a l / ~ )

.

Taking i n t o account t h e normal p o r t i o n of t h e s p e c i f i c h e a t , whl.ch i n F i g . 2 i s shown by a d o t t e d e x t r a p o l s t e d s t r a i g h t l i n e , we w i l l o b t a i n t h e c a l c u l a t e d r e l a t i o n s h i p i n t h e form of cupve 2 ,

This r e l a t i o n s h i p corresponds t o t h e value/(*= 3 0 1 0 - l ~

8

4. Vie w i l l e x p l a i n t h e p h y s i c a l meaning of t h e c o n s t a n t e n t e r i n g i n t o t h e d i s t r i b u t i o n f u n c t i o n ( 6 ) , For t h i s purpose we w i l l s e p a r a t e t h e sub-system, t h e mass of which i s e q u a l t o p

,

and we w i l l c o n s i d e r t h e meaning of t h e d i s t r i b u t i o n f u n c t i o n a s a p p l i e d t o t h e sub-system, t a k i n g i n t o account t h a t now t h e d i s - t r i b u t l o n f u n c t i o n r e l a t e s t o t h e phase f l u c t u a t i o n s i n which p a r t i c i p a t e only t h e molecules of t h e sub-system, I f we assume t h a t M

=/u,

we can say t h a t t h e d i s t r i b u t i m f u n c t i o n ( 6 ) goes o v e r i n t o t h e elementary p r o b a b i l i t y of t r a n s i t i o n q(m), e o r r e s - ponding t o t h e p r o b a b i l i t y of t r a n s i t i o n i n t o a l i q u i d s t a t e by a s i n g l e method, T h i s means t h a t t h e sub-system e i t h e r complete- l y goes over i n t o a l i q u i d s t a t e o r does n o t go over a t a l l , Any p a r t i a l t r a n s i t i o n o f t h e sub-system i n t o a l i q u i d s t a t e

This v a l u e i s l e s s t h a n f o r t h e c a s e of z i n c , a p p a r e n t l y , owing t o t h e e f f e c t of s m a l l i m p u r i t i e s p r e s e n t i n t h e t i n i n v e s t i g a t e d .

(11)

m y be r e a l i z e d by more t h a n one method and, hence, should be excluded from t h e a n a l y s i s , On t h e c o n t r a r y , t h e t r a n s i t i o n of t h e sub-system/(* a s a w h o l e i n t o a l i q u i d s t a t e may be r e - p r e s e n t e d as a t r a n s i t i o n by one method. T h e r e f o r e , no por-

t i o n of t h e sub-system,hcan go over i n t o a l i q u i d s t a t e I n - dependently of i t s o t h e r p o r t i o n s ,

Thus, t h e s u b - s y s t e m / c c r e p r e s e n t s a c e r t a i n c r i t i c a l molecular complex i n d i c a t i n g , a p p a r e n t l y , a t r a n s i t i o n w i t h a d e c r e a s e i n t h e number of p a r t i c l e s from t h e macro- t o t h e

mi crosystems.

A s f a r a s we know, an approximate e v a l u a t i o n of t h i s ( 2 1

molecular complex was f f rst given by F r e n k e l This cor- responded t o a n o r d e r of hundreds of atoms. According t o t h e e x p e r i m e n t a l d a t a g i v e n i n F i g . 2 , from t h e anomalous s l o p e of t h e s p e c i f i c h e a t of t i n n e a r t h e m e l t i n g p o i n t it i s p o s s i b l e t o e v a l u a t e approximately t h i s complex by u s i n g t h e F r e n k e l formula Thi s v a l u e i s of t h e o r d e r of 0,5010 3 atoms of t i n , while a c c o r d i n g t o our d a t a t h e value o f , w

3

should correspond t o 1.5.10 atoms of t i n . However, t h i s

3 v a l u e f o r z i n c corresponds t o 9.10 atoms. 5. As one of t h e r e s u l t s we w i l l c o n s i d e r t h e problem r e g a r d i n g t h e c e n t e r s of m e l t i n g and c r y s t a l l i z a t i o n . By t h e c e n t e r s of m e l t i n g o r , i n g e n e r a l , by t h e c e n t e r s of phase t r a n s i t i o n s , we w i l l t a k e i t t o mean t h e p o i n t s ( o r s m a l l r e g i o n s ) where f l u c t u a t i n g phase t r a n s i t i o n s o r i g i n a t e , and from h e r e t h i s t r a n s i t i o n proceeds f u r t h e r , Any p o i n t of a

(12)

From the considerations of the physical meaning of ,.tc

,'

follows the assurance that if a given point is a center of melting, then the points found in its vicinity, enclosed in a small volume equal to the volume of the critical molecular

complex,^^,

cannot be at the same time independent centers of melting, Hence, in a crystal of mass

M

the maximum number of independent centers of melting existing at the same time cannot be larger than the number n =

M

/

P

,

where n is the number of all the molecular complexes entering into the crystal,

We will consider the probability of melting of the total crystal as a whole, For this purpose we will substitute

rn

=

M

into the distribution function (6). VJe obtain:

?(M)

= c(e' M(C2- P1)/k~) l b (10)

This expression, owing to the large value of n, is much larger than the probability q ( h l ) ~ e - " ( P 2

- fi)/kT

<

1, corresponding to the probability of phase transitions by

a

single method, *om this we can conclude that the melting of the total crystal may be accomplished by a multiplicity of methods, We will con-

sider the two possible extreme methods of phase transitions during the melting of the total crystal: 1) a transttion with the formation of

n

centers of melting, and 2) a transition with the formation of one center of melting.

The first method of transition is clear from a physical point of view, The second method of phase transitions may be

(13)

of t h e p o s s f b l e c e n t e r s of m e l t i n g u o f l i q u i d phase i s p r o d u c e d .

Then two c a s e s a r e p o s s i b l e : e i t h e r t h e c e n t e r of m e l t i n g will vanfsh, o r i t w i l l develop owing t o t h e t r a n s f e r o f t h e i n d f v f - d u a l atoms o r molecules of t h e c r y s t a l through t h e d f v i s i o n of t h e phases, u n t i l t h e t o t a l c r y s t a l i s d i s s o l v e d . I n g e n e r a l , t h e volume of t h e l i q u i d phase produced may e i t h e r d e c r e a s e o r i n c r e a s e f n a f l u c t u a t i n g manner a s a r e s u l t of t h e c h a r a c t e r i s - t f c mechanism of " e v a p o r a t i o n and condensationt1 of atom3 from t h e s u r f a c e of t h e d i v i s i o n of p h a s e s , Thus, when a c r y s t a l approaches t h e m e l t i n g p o i n t and goes o v e r i t , i t p o s s e s s e s n u c l e i of t h e l i q u i d phase, some of which exceed t h e c r i t i c a l dfmensions,

I f we c o n s i d e r t h e phase f l u c t u a t i o n s i n t h e l i q u i d phase, t h a t i s , i f we approach from t h e s i d e of t h e l i q u i d phase t h e temperature of c r y s t a l l i z a t f o n , t h e n a l l our c o n s i d e r a t i o n s re.- main i n f o r c e , But i n t h e d i s t r i b u t i o n f u n c t i o n ( 6 ) t h e chemi- c a l p o t e n t i a l s T 2 andql should be t r a n s p o s e d , so t h a t t h e metas-. t a b l e phase i s now t h e s o l i d phase, Then, i n t h i s c a s e , we d e a l wf t h c e n t e r s of c r y s t a l l i z a t f on.

Although up u n t i l now w e considered o n l y e q u i l i b r i u m pro- c e s s e s , but t h e i d e a of the c r y s t a l l i z a t i o n c e n t e r s remains in

f o r c e a l s o d u r i n g t h e t r a n s i t i o n t h r o u g h t h e p o i n t of c r y s t a l - l i z a t i o n , i f t h e p r o c e s s d i f f e r s from an e q u i l f b r f u m p r o c e s s

( s u p e r c o o l i n g ) .

O f t h e numerous p o s s i b l e niethods by which t h e l i q u i d phase may become c r y s t a l l i z e d t h e r e a r e two extreme methods:

(14)

a s a minimum a t one c e n t e r of c r y s t a l l i z a t i o n , and a s a maximum a t n c e n t e r s o f c r y s t a l l i z a t i o n e T h i s w i l l g i v e a m o n o c r y s t a l and a n i d e a l p o l y c r y s t a l , r e s p e c t i v e l y A p p a r e n t l y , I t i s pos- s i b l e t o i n c r e a s e t h e p r o b a b i l i t y e i t h e r o f t h e f f r s t o r t h e second c a s e by means o f t h e e x p e r i m e n t a l c o n d i t i o n s , f o r example, by one o r o t h e r methods of c o o l i n g .

Thus, t h e i d e a l p o l y c r y s t a l w i l l g i v e t h e lower boundary o f p o l y d i s p e r s f o n . The dimensions of t h e i n d i v i d u a l s m a l l e r y s - t a l s o f s u c h a p o l y c r y s t a l s h o u l d c o r r e s p o n d t o t h e dimensions o f t h e c r i t i c a l m o l e c u l a r eomplex. C o n c l u s i o n s

-

1, On t h e b a s i s o f t h e g e n e r a l c o n s i d e r a t f o n s a r e l a t f o n - s h i p f s o b t a i n e d d e s c r i b i n g t h e c r y s t a l l i n e - l i q u i d s t a t e o f p u r e s u b s t a n c e s n e a r t h e m e l t i n g p o i n t s , C a l c u l a t i o n shows t h a t i n a z i n c m o n o c r y s t a l 3' b e f o r e t h e m e l t i n g p o i n t , t h e q u a n t i t y o f l f quid p h a s e i s a p p r o x i m a t e l y 1%.

2 , The anomalous p o r t i o n o f t h e s p e c i f i c h e a t and t h e anomalous p o r t f on of t h e c o e f f i c f a n t o f vo1umetrj.c e x p a n s i o n n e a r t h e p o i n t o f m e l t i n g i s c a l c u l a t e d from t h e above r e l a - t i o n s h i p . A comparison of t h e e x p e r i m e n t a l d a t a w i t h t h a t

c a l c u l a t e d f o r z i n c and t i n g i v e s s a t i s f a c t o r y a g r e e m e n t ,

3, The c o n s t a n t p L , which e n t e r s i n t o t h e t h e o r e t f c a l formulae and c a n be d e t e r m i n e d from e x p e r i m e n t , i s a c c o r d i n g t o t h e p h y s i c a l meaning t h a t c r i t i c a l m o l e c u l a r complex which i n d i c a t e s a t r a n s i t i o n w i t h a d e c r e a s e i n t h e number o f p a r -

(15)

o f t h e p h a s e t o t h e m i c r o p r o p e r t i e s o f t h e i n d i v i d u a l m o l e c u l e s , The dfmensf ons o f t h e c r f t i c a l m o l e c u l a r complex a r e 9,000

atoms f o r z i n c and 1 , 5 0 0 atoms f o r t i n .

4, The maximum number of i n d e p e n d e n t c e n t e r s o f m e l t i n g o r c r y a t a l l i z a t f o n which c a n be produced s i m u l t a n e o u v l y in a s y s t e m i.5 e q u a l t o t h e number of' t h e c r i t i c a l m o l e c u l a r corn-=

p l e x e s c o n s t i t u t i n g t h e s y s t e m , The i d e a l p o l y c r y s t a l c o r r e s - ponds t o t h e e a s e when i n t h e l i q u i d phase t h i s maxfmum quan- t i t y of c r y s t a l l i z a t i o n c e n t e r s c a n be produced s i m u l t a n e o u s l y , Hence, t h e v a l u e , u i n d i c a t e s t h e lower l i m i t of t h e p o l g d i a p e r s f on

/

o f p o l y c r y s t a l l f n e m a t e r i a l .

I n s t i t u t e of F i n e Chemical Technology Received 2 9 t h September, 1949

L i t e r a t u r e .. .

1,

E,

Brody, Phys, Z s , , 2 3 , 1 9 7 , 1 9 2 2 ; J o u r n , Chem, P h y s , , 7 , 972, 1 9 3 9 ,

-

2 , Yao I . E'renkel, Z h u r o E k s p e r , T e o r e t F i z . , ,

-

9, 952, 1 9 3 9 , 3 ,

V t

Gachkovskii and

P o

S t r e l k o v , Z h u r , E k s p e r , T e o r e t F f z , , 7, 532, 1937. 4 , G o B a r t e n e v , Zhur, F f z , Khim,,

--

23, 1075, 1949.

(16)

Fig.

I.

The volumetric coefficient of expansion of zinc near the melting point.

Fig. 2. The specific heat of tin near the melting point.

Figure

Fig.  I.  The volumetric coefficient of expansion  of zinc near the melting point.

Références

Documents relatifs

Critical behaviour of the thermal conductivity near the Curie point of

NAC point as a Lifshitz point [9] implies the first order character of the N-C transition as a result of the tilt fluctuations in the nematic phase; furthermore the N-C

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

— Measurements on the elastic constants of an iron single crystal are made by an ultrasonic differential path pulse echo method in the 5-8 megahertz range over the 300-1160

In table I the data available in the literature on the atomic specific heat for both the solid and liquid states of 8 rare earth metals for the temperature range close

1) At the melting point the resonance signal drops to an unmeasurable small value in a very limited temperature interval. Line broadening by diffusion could not be

In this paper we wish to present first some prelimi- nary measurements of the Rayleigh linewidth in SF 6 along the critical isochore and then to interpret measurements of the

We propose a cell-centred symmetric scheme which combines the advantages of MPFA (multi point flux approximation) schemes such as the L or the O scheme and of hybrid schemes: it may