• Aucun résultat trouvé

Diploma thesis presentation

N/A
N/A
Protected

Academic year: 2021

Partager "Diploma thesis presentation"

Copied!
49
0
0

Texte intégral

(1)

Modeling of a pilot installation for the

CO

2

-reactive absorption with amine solvent for

power plant flue gases

Diploma thesis presentation

(2)

Diploma thesis presentation

09.11.09 2

Global warming context February 1993

(3)

Diploma thesis presentation 09.11.09 3

Table of content

1. Introduction 2. Objectives 3. Modeling basis 4. Model description 5. Simulation results 6. Process improvements

(4)
(5)

Diploma thesis presentation

09.11.09 5

1. Introduction

• Importance of coal for electricity generation in the near-future

• Environmental concerns => Energy efficiency

=> biomass

=> Carbon Capture and Storage (CCS)

(6)

Diploma thesis presentation

09.11.09 6

1. Introduction

CO2-Capture

(7)

Diploma thesis presentation

09.11.09 7

1. Introduction

(8)
(9)

Diploma thesis presentation

09.11.09 9

2. Objectives

Background: Pilot installation

• Post-combustion capture for an existing coal-fired power-plant

• 5000 Nm³ flue gas per hour / 1 ton CO2 per hour

• Two operation trains

(10)

Diploma thesis presentation

09.11.09 10

2. Objectives Objectives:

• Development of a simulation model for the pilot capture installation

• Identification of clue parameters

• Optimization of the developed model • Simulation of process improvements

(11)
(12)

Diploma thesis presentation

09.11.09 12

3. Modeling basis

Thermodynamical equilibrium model

=> No mass transfer limitations => No reaction kinetics limitations

In the practice:

• mass transfer limitations occur

• packing efficiency can be calculated • packing efficiency reaches about 15 %

(13)

Diploma thesis presentation

09.11.09 13

3. Modeling basis

Reaction kinetics with MEA

• Pseudo-first order reaction with fast kinetics • Reaction only occurs in the liquid film

(14)
(15)

Diploma thesis presentation

09.11.09 15

4. Model description

(16)

Diploma thesis presentation

09.11.09 16

4. Model description

Model main characteristics • Flue gas flow: 2500 Nm³/h

• 90% CO2-recovery rate

• captured CO2: 566 kg/h

(17)
(18)

Diploma thesis presentation

09.11.09 18

5. Simulation results

Optimization of the base case

• 5.1 Lean solvent flow

• 5.2 Lean solvent concentration

• 5.3 Lean solvent inlet temperature in the absorber • 5.4 Stripper pressure

(19)

Diploma thesis presentation

09.11.09 19

(20)

Diploma thesis presentation

09.11.09 20

5. Simulation results

5.1 Optimization of the lean solvent flow

3,50 3,70 3,90 4,10 4,30 4,50 10,50 11,50 12,50 13,50 14,50 15,50 Lean solvent massflow (m³/h)

T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50,00 60,00 70,00 80,00 90,00 100,00 C O 2 -R e c o v e ry ( % )

4 absorber stages 3 absorber stages CO2-Recovery

(21)

Diploma thesis presentation

09.11.09 21

5. Simulation results

3 contributions to the thermal energy consumption : • Solvent heating-up • Desorption enthalpy • Stripping steam Stripping Heating-up 3,50 3,70 3,90 4,10 4,30 4,50 10,50 11,50 12,50 13,50 14,50 15,50

Lean solvent massflow (m³/h)

T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 )

4 absorber stages 3 absorber stages

Stripping Heating-up

(22)

Diploma thesis presentation

09.11.09 22

5. Simulation results

5.2 Optimization of the lean solvent concentration

3,20 3,40 3,60 3,80 4,00 4,20 0,27 0,29 0,31 0,33 0,35 0,37 M EA-LEAN concentration (wt-%) T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50 60 70 80 90 100 C O 2 R e c o v e ry ( % )

(23)

Diploma thesis presentation

09.11.09 23

5. Simulation results

5.3 Optimization of the lean-solvent inlet temperature in the absorber 3,50 3,70 3,90 4,10 4,30 4,50 30 35 40 45 M EA-LEAN Temperature (°C) T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50 60 70 80 90 100 C O 2 -r e c o v e ry ( % )

(24)

Diploma thesis presentation

09.11.09 24

5. Simulation results

5.4 Optimization of the stripper pressure

3,50 3,70 3,90 4,10 4,30 4,50 1,2 1,4 1,6 1,8 2,0 2,2

Stripper pressure (bar)

T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50 60 70 80 90 100 C O 2 R e c o v e ry ( % )

(25)

Diploma thesis presentation

12.06.09 25

5. Simulation results

5.5 Optimization of the temperature approach at the lean-rich heat exchanger

3,50 3,70 3,90 4,10 4,30 4,50 5 6 7 8 9 10 11 12 13 LRHeatX DeltaT (°C) T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50 60 70 80 90 100 C O 2 -r e c o v e ry ( % )

(26)

Diploma thesis presentation

09.11.09 26

(27)
(28)

Diploma thesis presentation

09.11.09 28

6. Process modifications

• 6.1 Lean vapor compression • 6.2 Absorber intercooling

(29)

Diploma thesis presentation

09.11.09 29

6. Process modifications

6.1 Influence of the flash pressure by the LVC

- 25 % Thermal energy consumption - 18 % Exergy consumption 2,80 3,00 3,20 3,40 3,60 3,80 1,1 1,5 1,9 2,3

Flash pressure (bara)

T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50 60 70 80 90 100 C O 2 R e c o v e ry ( % )

(30)

Diploma thesis presentation

09.11.09 30

6. Process modifications

6.2 Influence of intercooler position

- 6 % Thermal energy consumption 3,50 3,70 3,90 4,10 4,30 4,50 No inte rcoo ling 1;2 2;3 3;4 prec oolin g T h e rm a l e n e rg y c o n s u m p ti o n ( G J /t o n C O 2 ) 50 60 70 80 90 100

(31)
(32)

Diploma thesis presentation

09.11.09 32

7. Conclusion and perspectives

• Simulation model => coherent results in comparison with the experiments on the Castor pilot

• Reduction of the thermal energy consumption by 29% achievable (IC + LVC)

• Reduction of the process exergy consumption reaches 19,5%

(33)

Diploma thesis presentation

09.11.09 33

7. Perspectives: PhD Thesis

• The subject is subdivided into 2 main subjects:

1. Modeling and optimal conception of the CO2

capture process

2. Study of the solvent degradation phenomena The final purpose is to propose optimal operating

(34)

Diploma thesis presentation

09.11.09 34

7. Perspectives: PhD Thesis Objectives of the Modeling:

• Optimisation of the existing process

• Proposition of new process improvements

• Test of those process improvements thanks to the simulation and selection of the best ones

• Utilization of the model in parallel with test campains on

(35)

Diploma thesis presentation

09.11.09 35

7. Perspectives: PhD Thesis

Objectives of the degradation study:

• Construction of a test installation for the study of solvent degradation phenomena

• Study of classical solvents

• Study of newly developed solvents and of degradation inhibitors

(36)

Diploma thesis presentation

09.11.09 36

7. Perspectives: PhD Thesis Degradation consequences: • Process operating cost:

- Solvent make-up

- Removal and disposal of degradation products - 4-10% of the total operating costs!

• Process performances

- Solvent loading capacity decreases - Viscosity increases

• Capital cost

(37)

Diploma thesis presentation

09.11.09 37

7. Perspectives: PhD Thesis

Importance of testing solvents on small scale installations before using them in larger scale pilots!

- Toxicity of the degradation products

- Viscosity, foaming, fouling,…

- Solvent make-up rate

- Removal and disposal of the degradation products - Corrosion

(38)

38 7. Perspectives: PhD Thesis

Different reactor types

Goff G., 2005 Lepaumier H., 2008 4 x 100 ml 10 ml 500 ml Davis et al., 2005

Diploma thesis presentation 09.11.09

(39)

Diploma thesis presentation

09.11.09 39

(40)

Diploma thesis presentation

09.11.09 40

Back-up slides

• Reaction kinetics is fast and neglectible in comparizon to mass transfer limitations

(41)

Diploma thesis presentation

09.11.09 41

Back-up slide

• Number of absorber stages / Mass transfer limitations

90,00 92,00 94,00 96,00 98,00 100,00 2 3 4 5

Number of equilibrium stages in the absorber

C O 2 -r e m o v a l (% ) Ns, real = H/HETP

packing = Ns, ideal/Ns, real Castor packing:

H = 17m

HETP ~ 0,55 m

New Pilot plant packing: H = 9m

HETP ~ 0,3 m

=> NS, real ~ 30

(42)

Diploma thesis presentation 09.11.09 42 Back-up slide • Henry ‘s law: PCO2 = KH CO2/Solvent . xCO2 • Temperature dependence : CO2 + MEA <=> CO2, abs.

K’ = xCO2, abs. / PCO2 . [MEA] => K = xCO2 / PCO2

KH

CO2/Solvent = 1/K • Van’t Hoff:

(43)

Diploma thesis presentation

09.11.09 43

Back-up slide

• With -  H /R = C and HCO2/Solvent = 1/K

• If P increases, then T also increases and KH increases

since  H is negative (exothermic absorption)

• => The CO2 partial pressure increases and the

regeneration is easier 1 1 ( ) ( ) exp ( ) H H ref ref k T k T C T T           

(44)

Diploma thesis presentation

09.11.09 44

Back-up slide

• Influence of the solvent mass flow

0,20 0,25 0,30 0,35 0,40 0,45 0,50 10,50 11,50 12,50 13,50

Lean solvent massflow (m³/h)

S o lv e n t lo a d in g (k m o l C O 2 /k m o l M E A )

(45)

Diploma thesis presentation

09.11.09 45

Back-up slide

• Influence of the MEA-concentration

0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,27 0,29 0,31 0,33 0,35 0,37

M EA-LEAN concentration (wt-fraction)

L o a d in g (k m o l C O 2 /k m o l M E A )

(46)

Diploma thesis presentation

09.11.09 46

Back-up slide

• Exergy calculation

Exergy = Thermal energy * Carnot efficiency

Carnot efficiency : 1 C H T T    Flash-pressure Thermal energy consumption Normalized Compressor duty Normalized Blower Duty Normalized Pump duty

bar GJ/ton CO2 GJ/ton CO2 GJ/ton CO2 GJ/ton CO2

2,3 1,316 - 0,057 0,006

1,90 1,225 0,025 0,057 0,006

1,50 1,118 0,056 0,057 0,006

(47)

Diploma thesis presentation 09.11.09 47 Back-up slide Exergy consumption 1,0 1,2 1,4 1,6 1,8 2,0 1,1 1,5 1,9 2,3

Flash pressure (bara)

E x e rg y ( G J /t o n C O 2 ) Exergy consumption

(48)

Diploma thesis presentation

09.11.09 48

Back-up slide

• Absorber profile when Intercooling 1 2 3 4 45 50 55 60 65 70 Temperature (°C) S ta g e n u m b e r Precooling 1;2 2;3 3;4 No intercooling

(49)

Diploma thesis presentation

09.11.09 49

Back-up slide

Precursor model analysis

• Thermal energy consumption : 600 MWth by a flue gas

flow of 700 m³/s (500 ton CO2 h-1  0,15 ton CO2 s-1 )

=> 0,6 MWth / 0,15 ton CO2 s-1 => ~ 4GJ/ton CO

2

• Heat exchanger :

Q = 2,8 m³s-1 . 4180 Jkg-1K-1 . 10°K . 1100 kg m-3

Références

Documents relatifs

[r]

[r]

[r]

[r]

[r]

[r]

Line and keyboard command functions include carriage return, line feed, incremental cursor positioning, line/local, half/full intensity field, blink field, underline

La d´ erivabilit´ e sur R de l’argument sinus hyperbolique implique alors par produit puis composition celle de