• Aucun résultat trouvé

Schéma PALM définitif de l’application

CHAPITRE 18. SCHÉMA PALM DÉFINITIF DE L’APPLICATION

Figure 68 – Schéma PALM final

Figure 69 – Chronogramme du lancement des différents modules de PESHMELBA avec les flags de synchronisation.

Bibliographie

Abbott, M., Bathurst, J., Cunge, J., O’Connell, P., and Rasmussen, J. (1986). An introduction to the european hydrological system — systeme hydrologique europeen, “she”, 2 : Structure of a physically-based, distributed modelling system. Journal of

Hydrology, 87(1) :61 – 77.

Adamiade, V. (2004). Influence d‘un fossé sur les écoulements rapides au sein d‘un versant. PhD thesis.

Beven, K. J. and Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1) :43–69.

Branger, F. (2007a). River1d : module simplifié d’écoulement en rivière. documentation du module dans la plateforme liquid. Technical report, Cemagref.

Branger, F. (2007b). Use of a modelling framework for representing the influence of landscape management practices on water and pesticides contamination. Application

to the Fontaine du Theil experimental catchment. PhD thesis, Université Joseph-

Fourier - Grenoble I.

Branger, F., Braud, I., Viallet, P., and Debionne, S. (2008). Modelling the influence of landscape management practices on the hydrology of a small agricultural catch- ment. In Proceedings of the 8th International Conference on HydroSciences and Engineering, pages 586–594.

Braud (2006). Inclusion of a net lateral flux in the saturated zone in the frer1d (fast 1d richards equation resolution) module. Technical report, CEMAGREF.

Braud, I., Varado, N., and Olioso, A. (2005). Comparison of root water uptake modules using either the surface energy balance or potential transpiration. Journal of Hydrology, 301(1–4) :267 – 286.

Buis, S., Piacentini, A., and Déclat, D. (2006). PALM : a computational framework for assembling high-performance computing applications. Concurrency and Computa- tion : Practice and Experience, 18(2) :231–245.

Calvet, R. (2005). Les pesticides dans le sol : conséquences agronomiques et environne- mentales. Référence scientifique. Editions France Agricole.

Camporese, M., Paniconi, C., Putti, M., and Orlandini, M. (2010). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resources Research, 46(2). Carluer, N. (1998). Vers une modélisation hydrologique adaptée à l’évaluation des

pollutions diffuses : prise en compte du réseau anthropique. Adaptation au bassin

versant de Naizin (Morbihan). PhD thesis.

Deardorff, J. W. (1978). Efficient prediction of ground surface temperature and mois- ture, with inclusion of a layer of vegetation. Journal of Gephysical Resources, 83(C4) :1889–1903.

Dehotin, J. (2007). Prise en compte de l’hétérogénéité des surfaces continentales dans la modélisation hydrologique spatialisée. Application sur le haut-bassin de la Saône. PhD thesis, Institut National Polytechnique de Grenoble, France, Europe.

Djabelkhir, K. (2015). Computer modeling of pesticide fate at hillslope scale within a

hydrological modeling framework taking into account macroporosity. PhD thesis,

Université Grenoble Alpes.

Dollinger, J., Dagès, C., Negro, S., Bailly, J.-S., and Voltz, M. (2016). Variability of glyphosate and diuron sorption capacities of ditch beds determined using new indicator-based methods. Science of The Total Environment, 573 :716 – 726. Feddes, R. A., Kowalik, P. J. (Piotr J.), j. a., and Zaradny, H, j. a. (1978). Simulation of

field water use and crop yield. Wageningen : Pudoc for the Centre for Agricultural Publishing and Documentation.

Fouilloux, A. and Piacentini, A. (1999). The PALM project : MPMD paradigm for an oceanic data assimilation software. In Euro-Par’99 Parallel Processing : 5th International Euro-Par Conference Toulouse, France, August 31 - September 3, 1999 Proceedings, pages 1423–1430. Springer Berlin Heidelberg, Berlin, Heidelberg. Freundlich, H. (1909). Kapillarchemie, eine Darstellung der Chemie der Kolloide und

verwandter Gebiete, von Dr. Herbert Freundlich,... akademische Verlagsgesellschaft. Gardner, R, W. (1958). Some steady-state solutions of the unsaturated moisture

flow equation with application to evaporation from a water table. Soil Science, 85 :228–232.

Gassmann, M., Stamm, C., Olsson, O., Lange, J., Kümmerer, K., and Weiler, M. (2013). Model-based estimation of pesticides and transformation products and

their export pathways in a headwater catchment. Hydrology and Earth System Sciences, 17 :5213–5228.

Gatel, L., Lauvernet, C., Carluer, N., Weill, S., Tournebize, J., and Paniconi, C. (2018). Global evaluation and sensitivity analysis of a physically based flow and reac- tive transport model on a laboratory experiment. Environmental Modelling and Software.

Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos, Transactions

American Geophysical Union, 14(1) :446–460.

Huygen, J., Van Dam, J., Kroes, J., and Wesseling, J. (1997). SWAP 2.0 : input and

output manual. Wageningen Agricultural University.

Jarvis, N. (1989). A simple empirical model of root water uptake. Journal of Hydrology, 107(1) :57 – 72.

Kraft, P., Vache, K. B., Frede, H.-G., and Breuer, L. (2012). CMF : A hydrological programming language extension for integrated catchment models. Environmental Modelling and Software, 26(6) :828–830.

Lagacherie, P., Rabotin, M., Colin, F., Moussa, R., and Voltz, M. (2010). Geo-mhydas : A landscape discretization tool for distributed hydrological modeling of cultivated areas. 36(8) :1021–1032.

BIBLIOGRAPHIE

Lai, C.-T. and Katul, G. (2000). The dynamic role of root-water uptake in coupling potential to actual transpiration. Advances in Water Resources, 23(4) :427–439. Li, K. Y., Boisvert, J. B., and Jong, R. D. (1999). An exponential root-water-uptake

model. Canadian Journal of Soil Science, 79(2) :333–343.

Li, Z. and Zhang, J. (2001). Calculation of field manning’s roughness coefficient.

Agricultural Water Management, 49(2) :153 – 161.

Margoum, C., Gouy, V., Williams, R., and Smith, J. (2001). Le rôle des fossés agricoles dans la dissipation des produits phytosanitaires. Ingénieries - EAT, 1 :55–65. Martinez, A. (2007). Modélisation numérique d’écoulements en sols saturés/non saturés :

Comparaison de différentes formulations des equations de richards 1d ; introduction à une formulation des equations de richards 2d et 3d. Master’s thesis, Université Bordeaux 1, INRIA.

Miles, J. (1985). The representation of flows to partially penetrating rivers using groundwater flow models. Journal of Hydrology, 82 :341–355.

Morel, T., Duchaine, F., Thévenin, A., Piacentini, A., Kirmse, M., and Quémerais, E. (2013). Coupleur open-palm vesion 4.1.5, manuel utilisateur et de formation. Technical report, CERFACS.

Noilhan, J. and Planton, S. (1989). A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 117(3) :536–549.

Peyrard, X. (2016). Transfert de produits phytosanitaires par les écoulements latéraux en proche surface dans le beaujolais de coteaux : suivi sur parcelle exploitée, expérimentation de travage in situ et modélisation. pages –.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical recipies in Fortran 77. Second edition. The art of scientific computing. Press Syndicate of the University of Cambridge.

Roo, A., , A., Wesseling, C., Jetten, V., and Ritsema, C. (1996). LISEM : A physically- based hydrological and soil erosion model incorporated in a GIS. In In : K. Kovar & H.P. Nachtnebel (eds.), Application of geographic information systems in hydrology and water resources management. Wallingford (UK), IAHS, 1996. IAHS Publ. 235, pp. 395-403.

Ross, P. (2003). Modeling soil water and solute transport - fast, simplified numerical solutions. Agronomy Journal, 95(6) :1352–1361.

Ross, P. (2006). Fast solution of richards’ equation for flexible soil hydraulic property descriptions. Technical report, CSIRO.

Schaap, M. G. and van Genuchten, M. T. (2006). A modified mualem-van genuchten formulation for improved description of the hydraulic conductivity near saturation.

Vadose Zone Journal, 5 :27–34.

Spanoudaki, K., Stamou, A., and Nanou-Giannarou, A. (2009). Development and verification of a 3-d integrated surface water-groundwater model.

Taconet, O., Bernard, R., and Vidal-Madjar, D. (1986). Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. Journal of Applied Meteorology, 25(3) :284–307.

thesis.

Varado, N. (2004). Contribution to the development of a distributed hydrological

modelling. Application to the Donga catchment, in Benin. PhD thesis, Institut

national polytechnique de Grenoble.

Varado, N., Braud, I., and Ross, P. (2006a). Development and assessment of an efficient vadose zone module solving the 1d Richards’ equation and including root extraction by plants. Journal of Hydrology, 323(1-4) :258–275.

Varado, N., Braud, I., Ross, P., and Haverkamp, R. (2006b). Assessment of an efficient numerical solution of the 1d Richards’ equation on bare soil. Journal of Hydrology, 323(1–4) :244 – 257.

Vertessy, R. . . ., Hatton, T. . . ., O’Shaughnessy, P. . . ., and Jayasuriya, M. . . . (1993). Predicting water yield from a mountain ash forest catchment using a terrain

analysis based catchment model. Journal of Hydrology, 150(2-4) :665–700–. Vogel, T. and Císlerová, M. (1998). On the reliability of unsaturated hydraulic conduc-

tivity calculated from the moisture retention curve. Transport in Porous Media, 3 :1–15.

Vogel, T., Van Genuchten, M. T., and Císlerová, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions.

Advances in Water Resources, 24(2) :133–144.

Weill, S. (2007). Modélisation des échanges surface/subsurface á l’échelle de la parcelle

par une approche darcéenne multidomaine. PhD thesis, École Nationale Supérieure

Annexe A