• Aucun résultat trouvé

function  as  PRR  them  selves,  showing  the  way  by  which  the  innate  immunity  can   be  self-­‐amplified.  

 

1.2.1  The  Pattern-­‐recognition  receptors    

 

 Four   main   families   of   PRR   are   associated   with   detection   of   foreign   material   within  a  cell:  one  group  of  membrane-­‐associated  receptors  and  three  classes  of   cytoplasmic  PRRs.  

Toll-­‐like  receptors    

 

 A  first  group  of  PRRs  is  composed  of  proteins  with  a  transmembrane  domain,  an   extracellular   leucine   rich   repeat   (LRR)   region   that   recognizes   specific   PAMPs,   and   an   intracellular   module   containing   a   TLR/IL-­‐1R   (TIR)   domain   that   allows   them  to  interact  with  adaptors  molecules  for  the  signal  transduction  118.  

 

 With   ten   functional   members   in   humans,   the   Toll-­‐like   receptor   (TLR)   family   recognizes   a   wide   variety   of   PAMPs.   Using   different   adaptor   molecules,   TLRs   bind   to   many   types   of   molecules   including   lipids,   lipoproteins,   proteins   and   nucleic  acids.  The  members  of  this  family  of  receptors  are  located  at  different  cell   compartments.  Whereas  TLRs  1,  2,  4,  5,  6  and  10  are  found  at  the  cell  surface,   TLRs  3,  7,  8,  and  9  are  located  in  endosomes  114,119  (figure  6).  TLR2  is  found  in   the  form  of  a  dimer,  either  with  TLR1,  TLR6  or  TLR10  mainly  detecting  PAMPs   from   Bacteria   and   fungi   114,120,121.   When   complexed   with   TLR1,   the   dimer   recognizes   the   triacetylated   lipoproteins,   peptidoglycans   and   lipopolysaccharides  122,  as  reviewed  by  Kawai  and  Akira  114.  

The  dimer  composed  of  TLR2  and  6  is  responsible  for  the  detection  of  diacylated   lipoproteins  123.   The   specific   molecules   recognized   by   TLR2-­‐TLR10   have   not   been  discovered  yet  120,121.  The  other  cell  surface-­‐associated  PRRs,  TLR4  and  5,   were   found   to   bind   to   lipopolysaccharides   (LPS)   and   flagellin  124,   respectively     (reviewed  in  125).  

 

 Within   the   endosomal   compartment,   TLRs   are   responsible   for   the   sensing   of   foreign  nucleic  acids.  TLR3  was  discovered  to  be  activated  by  a  dsDNA  synthetic   oligonucleotide,  the  polyinosinic:polycytidylic  acid  (poly  I:C)  114.  Whereas  TLR7   and   8   recognizes   ssRNA,   TLR9   binds   viral   DNA.   TLR7   and   9   are   located   in   the   endoplasmic  reticulum  (ER)  under  resting  conditions,  but  they  translocate  into   the   endosomal   compartment   upon   a   first   TLR-­‐   mediated   stimulation,   for   example  when  TLR4  binds  to  LPS  126.  

 

 A   common   feature   that   adaptor   molecules   used   by   all   TLRs   share   is   a   TIR   domain  that  allows  TIR-­‐TIR  interactions  with  the  corresponding  receptor  114,127-­‐

131.   These   signal   transducers   include   myeloid   differentiation   primary   response   gene  88  (MyD88),  TIR  domain-­‐containing  adaptor  protein  (TIRAP),  TIR  domain-­‐

containing   adapter-­‐inducing   IFNβ   (TRIF)   and   TIR   domain-­‐containing   adapter   molecule  (TRAM).  Whereas  TIRAP  directs  MyD88  towards  TLR2,  TRAM  targets   TRIF  to  TLR4.  Both  interactions  of  MyD88  and  TRIF  with  a  corresponding  TLR   dimer  will  result  in  the  expression  of  inflammatory  cytokines  114,132,133.  The  TRIF-­‐

TRAM-­‐TLR  complex  induces  additionally  the  production  of  Type  I  IFN  132.  Most   TLRs  activate  signaling  leading  to  the  production  of  inflammatory  cytokines  via   either  the  MyD88-­‐  or  the  TRIF-­‐mediated  pathways.  

However,   TLR4   is   an   exception   because   it   requires   both   pathways   to   induce   expression  of  the  corresponding  genes  134-­‐137.  

 

 The   cell   possesses   many   means   to   perform   signal   transduction,   by   post-­‐

translational  modifications.  

For   example,   the   phosphorylation   of   different   oligoaminoacid   substrates,   by   protein   kinases,   produces   conformational   changes   in   the   molecules,   allowing   them  to  interact  with  other  proteins  and  activate  signaling  pathways  138.  

 

 Another  post-­‐translational  modification  involves  the  addition  of  monoubiquitin   or   polyubiquitin   (polyUb)   chains   to   target   proteins.   The   best-­‐studied   types   of   ubiquitin   chains   are   the   ones   that   are   linked   via   lysine   (K)   48   and   K63   of  

ubiquitin,   leading   to   targeting   of   the   modified   protein   to   the   proteasome   or   to   signal  transduction  complexes,  respectively  139.  

 

 As  review  by  Schulman  and  Harper  140,  the  mechanism  of  protein  ubiquitynation   starts   with   an   ubiquitin-­‐activating   enzyme   (E1),   which   bind   to   two   ubiquitin   (Ub)   molecules   via   thioester   bonds.   In   the   next   step,   an   ubiquitin-­‐conjugating   enzyme   (E2)   recognizes   the   E1-­‐Ub   complex   and   takes   over   one   of   the   Ub   molecules.   Finally,   an   E3   Ub-­‐ligase   enzyme   bound   to   a   specific   substrate   interacts  with  the  E2,  facilitating  the  catalysis  of  the  ubiquitination  of  the  target   protein.  

 

 The   MyD88-­‐induced   signaling   requires   the   cooperation   of   the   IL-­‐1   receptor-­‐

associated  kinases  (IRAK)  1,  2,  4  and  M  that  interact  with  tumor  necrosis  factor   (TNF)  receptor  associated  factor  6  (TRAF6),  which  ubiquitylates  them  with  K63-­‐

linked  polyubiquitin  chains  in  addition  to  autoubiquitinate  itself  114.  PolyU  chains   interact   with,   from   one   part   TAK-­‐1   binding   protein   2   (Tab2)   and   3   and   from   another  part  with  the  inhibitor  of  nuclear  factor  kappa-­‐B  (NFΚB)  kinase  gamma   (IKKγ),  leading  eventually  to  the  activation  of  mitogen-­‐activated  protein  kinase   (MAPK)-­‐   and   NFKB-­‐dependent   pathways,   which   will   be   described   later.   The   engagement  of  TLR7  and  9  can  additionally  stimulate  TRAF3  in  cooperation  with   TRAF6,  in  the  MyD88  pathway  and  lead  to  the  activation  of  IRF7  141.  Finally,  in   some  immune  cells,  TLRs  use  the  MyD88-­‐IRAK4  pathway  to  stimulate  IRF5  142.    

 The   TRIF-­‐dependent   pathway   involves   the   initial   activation   of   the   Tab2-­‐Tab3-­‐

TAK1  complex  by  the  cooperation  of  TRAF6  and  the  kinase  receptor-­‐interacting   protein  1  (RIP1)  114.  TRIF  dimerization  can  alternatively  activate  TRAF3  and  the   TBK1-­‐IKKγ  kinases  leading  to  the  IFN-­‐regulatory  factor  3  (IRF3)  activation  and   the  subsequent  production  of  IFNβ.  

 

Figure  6:  Simplified  scheme  of  the  role  of  Toll-­‐like  receptors  in  the  innate  immune  signaling.  TLR1,  2,   4,  5,  6  and  10  are  shown  at  the  cell  surface.  TLRs  3  and  7-­‐9  are  depicted  on  endosomal  vesicles.  The  PAMPs   that  stimulates  each  PRR  is  indicated  adjacent  to  the  rectangles  that  symbolize  the  extracellular  leucine  rich   repeat  (LRR)  domains  of  the  TLRs.  Sensing  of  the  different  PAMPs  activate  the  innate  immune  cascades  AP-­‐

1,   NF-­‐κB,   IRF3,   IRF7   and/or   IRF5,   leading   to   the   production   of   type   I   IFN   and   inflammatory   cytokines.  

Adapted  from  Van  Duin  et  al.,  2006  143.    

The  cytosolic  PRRs    

Upon  entry  of  a  pathogen  within  the  cell,  different  types  of  cytosolic  PRRs  sense   PAMPs.   The   retinoic   acid   inducible   gene   1   (RIG-­‐1)-­‐   like   family   of   receptors     (RLR)   recognizes   viral   RNA   molecules   in   different   conformations  144.   Another   well-­‐studied   family   of   receptors   is   the   NOD-­‐like   group   (NLR),   recognizing   bacterial  products  such  as  peptidoglycans  and  flagellin  145.  

 

 These  two  first  families  of  receptors  activate  the  innate  immune  system  by  the   stimulation   of   the   MAPK-­‐   and   NFκB-­‐dependent   pathways  145-­‐149.   Additionally,   RLRs  are  able  to  activate  IRF  3  and/or  7,  similar  to  TLRs  148,150.  Some  cytosolic   DNA-­‐sensors   were   identified   recently,   such   as   stimulator   of   IFN   genes   protein   (STING),  IFNγ-­‐induced  protein  16  (IFI16),  the  cyclic  GMP-­‐AMP  synthase  (cGAS)   and   the   DNA   helicases   DDX41   and   DHX9/DHX36  151-­‐154.   These   proteins   mostly  

!"#$%&

'()(*+(&,-./(0&

1#2341#25&

1#2341#25&

12678&

9:7$&

signal   by   activating   differentially   the   IRF3-­‐,   IRF7-­‐   and/or   NFKB-­‐dependent   pathways  151,153,154.  

 

 Highlighting   the   role   of   the   sensing   of   viral   DNA   during   immunity   to   retroviruses,  HIV-­‐1  capsid  binds  the  cellular  cyclophilin  A  and  CPSF6  as  cofactors   to   escape   to   recognition   of   the   reverse-­‐transcription   products   by   as   yet   unidentified  cytosolic  sensors  that  would  otherwise  restrict  replication  in  a  type   I  IFN-­‐dependent  manner  155.  

 

1.2.2  The  innate  immune  pathways    

Two  important  routes  that  PRRs  use  to  activate  the  innate  immune  response  are   via  the  AP-­‐1-­‐  and  the  NFκB-­‐  mediated  signaling  (figure  5).  The  activation  of  the   MAPK-­‐dependent   pathway   is   initiated   with   the   stimulation   of   different   MAPK   kinase   kinases   (MAP3Ks)   and   continues   with   a   cascade   of   subsequent   phosphorylations   of   a   target   MAPK   kinase   (MAP2K)   that   will   in   turn   act   on   a   specific   MAPK   115.   Three   routes   of   the   MAPK   signaling   pathway   have   been   extensively  studied  and  are  involved  in  one  or  both  of  the  pro-­‐inflammatory  and   anti-­‐inflammatory   processes   during   the   immune   response:   the   extracellular   signal-­‐regulated   kinase   (ERK),   Jun   N-­‐terminal   Kinase   (JNK)   and   protein   of   38   kDa  (p38)  pathways  (figure  7).  The  corresponding  studies  are  mainly  based  on   the  effect  of  the  stimulation  of  TLRs.  

 

 The  ERK1  and  ERK2  branch  involves  the  activation,  upon  engagement  of  a  TLR,   of  the  tumor  progression  locus  2  (TPL2)  156.  This  MAP3K  in  turns  activate  MAPK   kinase1   (MKK1)   and   MKK2.   This   pathway   leads   to   the   production   of   from   one   side  the  pro-­‐inflammatory  cytokines  tumor  TNF-­‐α  and  interleukin  1  beta  (IL-­‐1β),   from   the   other   side   the   anti-­‐inflammatory   IL-­‐10  115,157,158.   ERK1   and   ERK2   additionally   have   a   repressive   action   on   the   expression   of   IL-­‐12   and   the   two   antiviral  proteins  IFNβ  and  inducible  nitric  oxide  synthase  (iNOS)  158,159.  

 

 The   stimulation   of   the   complex   formed   by   the   MAP3K   TAK1   and   Tab2/Tab3,   results  in  the  phosphorylation  of  the  components  of  three  main  pathways.  The