• Aucun résultat trouvé

Immunodeficiency  Syndrome  (AIDS)  22.  

In  the  next  section,  I  will  introduce  the  general  retroviral  structure.  

 

1.1.3  The  general  structure  of  retroviruses    

 It   all   starts   with   the   viral   RNA.   The   positive   single-­‐stranded   RNA   genome   is   composed  of  different  regulatory  sequences  and  open  reading  frames  (ORFs)  12   (figure  2),  and  has  a  5’  cap  and  a  poly  A  tail.  

The   regulatory   elements   are   located   at   the   extremities   of   the   viral   RNA   and   consist   of   repeated   (R)   sequences,   a   unique   5’   sequence   (U5)   containing   a   cis-­‐

acting  attachement  (att)  site,  a  unique  3’  sequence  (U3),  the  primer  binding  site   (PBS),   the   psi   (packaging   signal)   element   (ψ)   and   a   polypurine   tract   (PPT)  12   (figure  2).  

 

 The   R   regions   are   redundant   in   sequence   and   are   found   after   the   m7G5’ppp5’Gmp   cap,   which   mimics   the   eukaryotic   mRNA   5’cap.   The   U5   sequence  is  immediately  downstream  of  the  5’  R  sequence  and  contains  the  att   sequence  that  is  involved  in  proviral  integration.  These  regions  are  followed  by   the  PBS  where  the  specific  tRNA  primer  hybridizes  and  starts  the  transcription   of  the  minus-­‐strand  DNA  (-­‐sDNA).  The  next  sequence  in  the  RNA  genome  is  the  ψ   region  recapitulating  most  of  the  sequences  required  for  viral  genome  packaging   into   the   viral   particles.   A   major   splice   donor   site,   that   gives   rise   to   different   subgenomic   mRNAs,   often   closely   follows   this   element.   Subgenomic   RNAs   are   different   mRNA   species   created   when   reverse   transcription   jumps   on   the   template  in  the  3’  to  5’  orientation.  The  resulting  mRNAs  have  variable  5’  regions   overlapping   with   the   template   strands   at   different   levels   but   the   same   3’  

sequence.  The  generation  of  various  mRNAs  allows  condensing  a  high  amount  of   information  12.  

 

 The   PPT,   positioned   at   the   3’   end   of   the   viral   genome,   consists   of   a   row   of   purines   Adenine   and   Guanosine,   required   for   the   initiation   of   the   +sDNA   transcription.  

Finally,   the   U3   region   preceding   the   polyA   tail   contains   another   att   site   and   in   addition  a  set  of  cis-­‐regulatory  sequences  essential  for  viral  gene  expression.  

Given  that  the  synthesis  of  the  viral  DNA  involves  a  duplication  of  the  extremities   of  the  RNA  templates  with  a  subsequent  transfer  of  the  U5  and  U3  regions,  the   two  ends  in  the  resulting  dsDNA  are  identical  and  these  are  called  Long  Terminal   Repeats  (LTRs)  12.  

   

The  provirus  is  integrated  and  found  in  the  host  genome  with  the  flanking  LTRs  

5.   When   the   provirus   is   transcribed,   the   5’   U3   region   is   not   taken   into   account   and  the  synthesis  proceeds  until  the  R  to  U5  boundary.  In  this  way,  the  resulting   viral   RNA   has   the   same   genomic   organization   as   the   template   from   viral   particles.  

 

 The  viral  proteins  are  encoded  by  three  ORFs,  namely  the  group  antigen  (gag),   the   polymerase   (pol)   and   the   envelope   (env).   These   genes   code   for   precursos   that  once  cleaved  will  give  rise  to  more  than  one  protein.    

The  gag   ORF   codes   for   the   matrix   (MA),   the   capsid   (CA)   and   the   nucleocapsid   (NC)  12.  

The  pol  gene  products  are  the  protease  (PR),  the  reverse-­‐transcriptase  (RT),  the   integrase  (IN)  and,  in  some  cases,  a  dUTPase.  

 

 Finally,  the  precursor  synthesized  from  the  env  gene  is  cleaved  into  the  surface   envelope  protein  (SU)  and  the  transmembrane  envelope  protein  (TM)  12.  

 

 Once  processed  from  their  precursors  the  viral  proteins  form  the  mature  virion,   which  is  able  to  infect  susceptible  cells  that  express  the  appropriate  receptors.  

The  viral  core  of  a  mature  viral  particle  consists  in  the  diploid  RNA  genome  that   interacts   with   the   NC,   creating   a   condensation,   surrounded   by   the   CA   protein   complex.  The  matrix  protein  that  covers  this  core  is  surrounded  on  top  by  a  host-­‐

derived  lipid  bilayer  and  the  included  SU  and  TM  proteins  12    

 The  viral  core  contains  as  well  the  pol-­‐derived  proteins  that  will  be  used  for  a   novel  round  of  replication,  namely  the  PR,  the  RT  and  the  IN  12.  

   

 

Figure   2:   Schematic   view   of   the   proviral   genome   structure   of   retroviruses.   The   retrovirus   proviral   DNA  is  composed  of  untranslated  regions  that  flank  the  ORFs  for  gag,  pro,  pol,  env  and  in  some  cases  that  of   accessory   genes.   The   flanking   LTRs   contain   U3   and   U5   regions,   as   well   as   a   repeat   sequence   (R).   The   5’  

region  of  the  retroviral  genome  is  followed  by  a  PBS  and  a  psi  encapsidation  signal.  Adjacent  to  the  last  ORF,   the  viral  RNA  contain  a  PPT.  ORF:  open-­‐reading  frame;  LTR:  log  terminal  repeats;  U3  and  U5:  unique  regions   3  and  5,  respectively;  att:  attachemetn  site;  PBS:  primer  binding  site;  PPT:  poly-­‐purine  tract.  Adapted  from   Fouty  and  Solodushko,  2011  23  .  

 

1.1.4  The  reverse-­‐transcription  process.  

 Once  the  retroviral  genome  enters  the  cell,  the  diploid  single-­‐stranded  genome   that   is   still   bound   to   the   nucleocapsid   (NC)   protein,   constituting   the   viral   core,   starts  the  process  of  reverse  transcription  24,25.  

 

 For   reverse   transcription   to   take   place,   important   elements   contained   in   the   viral  particles  are  required.  The  central  component  is  the  reverse  transcriptase   enzyme,   which   catalyzes   four   different   reactions:   RNA-­‐dependent   and   DNA-­‐

dependent  DNA  polymerization,  DNA  strand  separation  via  its  helicase  function   and   the   hydrolysis   of   the   RNA   fragments   on   RNA-­‐DNA   heteroduplexes  26.   The   viral   core   carries   additionally   a   specific   collection   of   transfer   RNA   (tRNA)  

!"# !"#

molecules,  different  cellular  messenger  RNAs  (mRNAs)  from  previously  infected   cells  and  some  ribosomal  RNA  (5S  and  7S)  26.  

 

 Reverse  transcription  starts  when  the  3’  region  of  a  specific  tRNA  is  used  as  a   primer  that  anneals  with  the  PBS  within  the  5’  region  of  the  viral  RNA  genome   (figure   3).   DNA   synthesis   continues   until   the   5’   extremity   of   the   RNA   strain   is   reached,  resulting  in  a  short  DNA  strand  called  the  minus  strand  strong  stop  DNA   (–ssDNA)  27.  

 

 The  next  step  takes  the  advantage  that  the  minus-­‐strand  DNA  contains  a  repeat   (R)   sequence   that   is   present   at   both   viral   genome   termini   and   that   was   introduced  in  the  newly  synthesized  DNA  molecule  by  the  reverse  transcription   of  the  5’  region  of  the  viral  RNA.  This  confers  a  complementarity  of  the  –sDNA   and   the   3’   end   of   the   RNA   genome   that   allows   the   transfer   of   the   small   oligonucleotide   to   that   region,   after   that   the   RNAse   H   function   of   the   RT   has   degraded  the  RNA  to  which  the  newly  synthesized  DNA  is  annealed.  This  marks   the  beginning  of  the  elongation  of  the  –sDNA  chain,  with  an  accompanying  RNA   degradation  accomplished  by  RNAse  H  27.  

 

 During   the   RNA   dependent-­‐DNA   synthesis,   the   ppt   permit   the   RNA   to   escape   degradation  and  this  RNA  fragment  is  then  used  as  a  primer  for  the  plus-­‐strand   DNA  (+sDNA)  polymerization  that  finally  reaches  the  U5  region  of  the  –sDNA.  In   the   mean   time,   the   –sDNA   continues   to   be   polymerized,   with   a   subsequent   gradual  RNA  degradation.  

 

 In   the   following   step,   the   +sDNA   synthesis   proceeds   until   the   level   of   the   PBS   complementarity  is  formed  and  the  RNA  and  tRNA  primers  are  degraded.  When   the  tRNA  is  removed  from  the  +sDNA  a  complementarity  region  is  exposed  and   the   second   strand   transfer   happens   where   the   plus   and   minus   strands   anneal.  

The  resulting  molecule  is  a  circular  DNA  intermediate  27.    

 This  point  of  the  viral  replication  cycle  can  lead  to  a  non-­‐productive  dead-­‐end   DNA  molecule  which  contains  a  single  LTR  or  to  a  productive  DNA  form  flanked  

by   two   LTRs,   resulting   from   the   strand   displacement   of   the   plus   and   minus  

1.1.5  The  classification  of  retroviruses     50end of the viral RNA, exposing the newly syn-thesized minus-strand DNA (see Fig. 1).

The ends of the viral RNA are direct repeats, called R. These repeats act as a bridge that allows the newly synthesized minus-strand DNA to be transferred to the 30end of the viral RNA. Retro-viruses package two copies of the viral RNA

genome; the first (or minus-strand) transfer can involve the R sequence at the 30ends of either of the two RNAs (Panganiban and Fiore 1988; Hu and Temin 1990b; van Wamel and Berkhout 1998; Yu et al. 1998). After this trans-fer, minus-strand synthesis can continue along the length of the genome. As DNA synthesis proceeds, so does RNase H degradation. How-ever, there is a purine-rich sequence in the RNA genome, called the polypurine tract, or ppt, that is resistant to RNase H cleavage and serves as the primer for the initiation of the

R U5 pbs gag pol env ppt U3 R

Figure 1.Conversion of the single-stranded RNA genome of a retrovirus into double-stranded DNA. (A) The RNA genome of a retrovirus (light blue) with a tRNA primer base paired near the 50end. (B) RT has initiated reverse transcription, generating minus-strand DNA (dark blue), and the RNase H activity of RT has degraded the RNA template (dashed line). (C) Minus-strand transfer has occurred between the R sequences at both ends of the genome (see text), allowing minus-strand DNA synthesis to continue (D), accompanied by RNA degradation. A purine-rich sequence (ppt), adjacent to U3, is resistant to RNase H cleavage and serves as the primer for the synthesis of plus-strand DNA (E). Plus-strand synthesis continues until the first 18 nucleotides of the tRNA are copied, allowing RNase H cleavage to remove the tRNA primer. Most retroviruses remove the entire tRNA; the RNase H of HIV-1 RT leaves the rA from the 30end of the tRNA attached to minus-strand DNA. Removal of the tRNA primer sets the stage for the second ( plus-strand) transfer (F); extension of the plus and minus strands leads to the synthesis of the complete double-stranded linear viral DNA (G).

HIV-1 Reverse Transcription

Cite this article asCold Spring Harb Perspect Med2012;2:a006882 3

www.perspectivesinmedicine.org