• Aucun résultat trouvé

infected   cells   even   upon   forced   expression   of   the   provirus   by   histone   deacetylases  44.  

 

 Contributing  to  the  difficulty  to  the  innate  immune  sensing  of  HIV-­‐1  in  humans,   TRIM5α  blocks  laboratory  strains  very  poorly,  as  assessed  by  single-­‐cycle   infectivity  assays  307.  As  TRIM5α  functions  as  a  PRR,  the  consequence  of  binding   less  efficiently  the  HIV-­‐1  capsid  is  that  the  innate  immune  signaling  is  not   activated  or  very  poorly  stimulated.  In  agreement,  challenging  human  DCs  with   HIV-­‐1  failed  to  show  production  of  inflammatory  cytokines,  in  contrast  of  when   using  restriction-­‐sensitive  viruses  44,265.  However,  HIV-­‐1  strains  derived  from   clinical  isolates  show  variable  susceptibility  to  human  TRIM5α,  as  evidenced  by   comparing  the  infectivities  of  different  gag-­‐proteases  sequences  cloned  in  a  HIV-­‐

1  vector  background  on  control  or  TRIM5-­‐disrupted  cell  lines  307,308.  The   restriction  by  TRIM5α  could  reach  15  fold  with  some  gag  sequences.  

Interestingly,  the  mutants  with  increased  sensitivity  to  TRIM5α  bear  mutations   located  in  epitopes  targeted  by  CTLs,  suggesting  that  they  were  induced  to   escape  the  cellular  immunity  response  308.  

 

 Although   the   clinical   isolates   tested   in   the   previous   studies   seem   to   rely   on   capsid  mutations  for  TRIM5α-­‐acquired  sensitivity,  they  also  carry  different  other   mutations   in   the   matrix,   nucleocapsid   and   protease   sequences.   It   would   be   of   interest  to  investigate  whether  the  strains  that  become  sensitive  to  TRIM5α  do   so   mainly   because   of   the   capsid   mutations   that   would   reveal   an   altered   recognition   by   TRIM5α   and   would   potentially   result   in   a   stronger   induction   of   the  innate  immune  signaling.  

   

1.3  Aims  of  the  thesis    

 TRIM5  is  a  cellular  protein  that  has  dual  roles.  First,  it  acts  as  a  restriction  factor,   blocking  the  reverse-­‐transcription  and  the  nuclear  entry  of  retroviruses  62,200,290-­‐

292,309.  Second,  it  functions  as  a  signaling  molecule  that  stimulates  the  MAPK-­‐  and   NFκB-­‐  dependent  innate  immune  pathways  and  is  essential  to  the  LPS-­‐mediated   antiviral   state  265.  The  second  role  of  TRIM5  is  accentuated  when  it  recognizes   the  retroviral  capsid  of  a  mature  virion,  acting  as  a  PRR  265.  The  link  between  the   two   roles   has   been   suggested   by   our   previous   study  265.   Conversely,   another   study   suggested   that   the   E3   ligase   function   of   TRIM5Cyp   is   not   required   for   restriction  288.   An   important   difference   between   the   two   studies   resides   in   the   fact  that  the  second  team  used  a  feline  kidney  epithelial  cell  line  (CRFK),  which   expresses  a  TRIM5  orthologue.  As  it  was  shown  that  TRIM5  is  able  to  homo-­‐  and   hetero-­‐dimerize  310,  likely  via  the  coiled-­‐coil  domain,  it  would  not  be  surprising   that  the  TRIM5Cyp  with  the  RING  and  B-­‐box  deletions  could  associate  with  the   feline  TRIM5.  This  binding  could  allow  TRIM5Cyp  to  use  the  N-­‐terminal  domains   of  the  feline  orthologue  to  induce  the  appropriate  signaling  cascade.  

 

 The   first   aim   of   my   thesis   was   to   investigate   further   the   requirement   of   the   induction  of  the  innate  immune  signaling  by  TRIM5  for  its  retroviral  restriction   function.   I   analyzed   the   conservation   of   the   innate   immune   inducer   feature   of   TRIM5   in   primate   and   murine   orthologues,   as   well   as   designed   particular   deletion   and   point   mutants   to   identify   the   domains   required   for   this   feature.   I   next   used   strong   and   weak   inducers   of   the   innate   immune   promoters   to   fuse   them   with   an   HIV-­‐1   CA-­‐binding   domain   and   evaluated   their   ability   to   restrict   HIV-­‐1.  The  ability  of  murine  TRIM5  orthologues  to  restrict  retroviruses  was  also   investigated.  

 

 Human  TRIM5α  can  restrict  some  HIV-­‐1  strains  from  clinical  isolates.  However,   it   is   not   clear   if   the   mutations   in   the   capsid   sequence   exclusively   dictate   the   restriction   phenotype   or   if   substitutions   in   other   sites   of   the   gag-­‐protease   sequences  can  contribute.  

 

The  second  aim  of  my  thesis  was  to  determine  if  the  mutations  in  the  capsid  of   HIV-­‐1   strains   that   were   restricted   in   human   cell   lines   could   recapitulate   the   sensitivity  to  TRIM5α.  

 

 

Chapter  2  

 

THE  ROLE  OF  THE  MURINE  TRIM5  ORTHOLOGUES  IN  INNATE  IMMUNITY  AND   IN  RETROVIRAL  RESTRICTION  

  Introduction  

 

 Component  of  the  innate  immune  response,  TRIM5α  is  activated  upon  TLR4   engagement  and  is  required  for  the  establishment  of  the  LPS-­‐mediated  antiviral   state  265.  

 

 Another  stimuli  leading  to  the  activation  of  the  TRIM5-­‐dependent  innate   immune  signaling  is  the  hexameric  capsid  lattice  of  a  restriction-­‐sensitive   retrovirus  that  is  directly  recognized  by  a  specific  TRIM5  orthologue  265,  which   thus  functions  as  a  PRR.  

 

 The  retroviral  restriction  mediated  by  TRIM5  is  still  an  incompletely   characterized  mechanism.  Nevertheless,  it  is  known  that  TRIM5-­‐sensitive   retroviruses  are  blocked  prior  to  reverse-­‐transciption  194,195,200,202,277.  However,   the  use  of  a  proteasome  inhibitor  from  one  part,  and  artificial  constructs  

consisting  of  fusions  of  different  TRIM  proteins  to  the  HIV-­‐1  binding-­‐Cyclophilin   A  domain  from  another  part,  lead  to  the  discovery  that  capsid-­‐dependent  

restriction  by  a  given  TRIM5-­‐like  protein  additionally  happens  in  a  second  step   of  the  viral  life  cycle,  after  the  completion  of  reverse-­‐transcription  and  before   integration  102,290-­‐293.  

 

 The  blockade  to  the  reverse-­‐transcription  involves  the  accelerated  uncoating  of   the  retroviral  capsid,  as  shown  with  assays  that  examine  the  fate  of  pelletable   capsid  complexes  in  TRIM5-­‐expressing  cells  275,311.  A  link  between  the  loss  of   particulate  capsid  and  the  ability  to  restrict  the  reverse-­‐transcription  step  was   shown  recently.  Indeed,  some  rhesus  TRIM5α  variants  carrying  mutations  in  the   RING  finger  domain  lost  the  capacity  to  induce  the  degradation  of  capsid  upon  

entry  into  the  cell  312.  This  inability  to  accelerate  the  uncoating  of  the  retroviral   capsid  correlated  with  the  loss  of  a  reverse-­‐transcription  blockade,  but  not  of  the   second  step  before  nuclear  entry.  These  findings  suggest  that  the  promotion  of   premature  uncoating  of  the  capsid  is  important  for  the  first  step  of  TRIM5-­‐

mediated  restriction.  

 

 The  domains  of  TRIM5  that  are  required  for  restriction  are  still  a  matter  of   debate.  Notably,  comparison  of  the  restriction  by  rhesus  TRIM5α  and  owl   monkey  TRIM5Cyp  showed  that  they  require  different  domains  depending  on   the  orthologue  examined  288.  In  that  study,  TRIM5α  required  the  RING  finger  and   B-­‐box  domains  for  retroviral  restriction,  whereas  TRIM5Cyp  with  a  deletion  of   the  two  N-­‐terminal  domains  was  still  competent  for  the  blockade.  However,   these  data  did  not  discriminate  between  the  two  steps  of  TRIM5-­‐mediated   blockade.  It  is  therefore  possible  that  TRIM5Cyp  versions  without  the  RF  and   Bbox  domains  could  only  block  one  of  the  steps  of  the  viral  life  cycle  but  not  the   other  one.  

The  requirements  of  the  Bbox  for  higher-­‐order  multimerization  250,252,313  and   that  of  the  CC  for  the  dimerization  253,257,314  of  TRIM5α  suggests  a  model  in  which   restriction  needs  a  higher-­‐order  assembly  on  top  of  the  lower-­‐order  

multimerization.  In  the  case  of  TRIM5Cyp,  the  Linker  2  (L2)  region  could  account   for  the  assembly  of  mutlimers  in  higher-­‐order  complexes  315,  explaining  why  the   RF  and  the  Bbox  domains  are,  in  this  case,  dispensable  for  restriction.  

The  dimerization  to  which  the  CC  contributes  was  shown  to  be  essential  for  the   retroviral  restriction  via  TRIM5  316.  In  agreement  with  this  finding,  the  deletion   of  the  CC  domain  in  rhesus  or  human  TRIM5α  precluded  its  ability  to  block  HIV-­‐1   and  N-­‐MLV  infections,  respectively  254,272.  

We  and  others  showed  that  some  of  the  RF  domain  functions  from  TRIM5  and   TRIM5Cyp  are  required  for  the  inhibition  of  a  restriction-­‐sensitive  retrovirus  at   least  at  one  of  the  steps  of  the  viral  life  cycle  200,265,272,288,312.  

 

 The  B-­‐box,  the  CC  and  the  L2  region  all  contribute  to  the  assembly  of  TRIM5   complexes  into  cytosolic  concentrations  termed  cytoplasmic  bodies  (CBs)  315,317.  

The  overexpression  of  TRIM5  proteins  was  found  to  induce  their  localization  and   concentration  into  CBs  200,257.  The  ability  of  a  TRIM5  to  form  CBs  upon  transient   expression  in  the  absence  of  restriction-­‐sensitive  viruses  was  shown  not  to  be   required  for  retroviral  blockade  286,318.  However,  another  team  showed  that   rhesus  TRIM5α  associated  with  HIV-­‐1  virions  in  structures  similar  to  CBs  290.  In   fact,  Sastri  and  Campbell  proposed  that  it  is  the  ability  to  induce  CBs  around  the   retroviral  particle  that  dictates  the  capacity  to  restrict  a  specific  retrovirus,  and   that  the  preexisting  CBs  reflects  this  tendency  of  TRIM5  to  form  protein  

aggregates  around  the  viral  core  319.    

 In  our  previous  report,  we  found  that  TRIM5  activates  AP-­‐1  and  NFκB  pathways  

265,  in  a  RING-­‐dependent  manner.  

This  chapter  aims  to  investigate  the  importance  of  the  signaling-­‐inducing   function  of  TRIM5  for  its  restriction  activity.  

 

2.1  The  link  between  the  two  functions  of  TRIM5:  induction  of  the  innate   immune  signaling  and  retroviral  restriction.  

 

In  the  present  study,  we  found  that  the  innate  immune  signaling  function  of   TRIM5  is  conserved  among  mammals,  as  revealed  by  the  examination  of  simian,   feline  and  murine  orthologues.  

The  requirements  of  the  different  domains  for  the  signaling  feature  of  TRIM5   were  found  to  diverge  from  one  orthologue  to  the  other.      

In  order  to  confirm  the  involvement  of  the  innate  immune  signaling  in  TRIM5-­‐

mediated  retroviral  restriction,  we  fused  strong  and  weak  AP-­‐1  and  NFκB   inducers  to  an  HIV-­‐1  binding-­‐CypA  domain  and  examined  the  ability  of  these   artificial  proteins  to  restrict  HIV-­‐1.  We  found  that  only  the  strong  inducers  of  the   AP-­‐1  pathway  could  elicit  retroviral  restriction.  

 

 The  following  data  are  unpublished  results.  I  performed  all  the  experiments   except  the  immunofluorescence  imaging  and  the  cloning  of  some  primate  TRIM5   orthologues  into  the  pcDNA3.1(-­‐)  expression  vector.  

   

   

 

 

Retroviral restriction by non-human orthologues of TRIM5 correlates with the ability to activate AP-1 and NF-κB

Josefina Lascano1, Pradeep Uchil2, Walther Mothes2 and Jeremy Luban3

Unpublished  

     

1Department  of  Microbiology  and  Molecular  Medicine,  University  of  Geneva,  1  Rue  Michel  Servet,  

CH-­‐1211  Geneva  4,  Switzerland  

2Section   of   Microbial   Pathogenesis,   Yale   University   School   of   Medicine,   New   Haven,   CT   06536,   USA  

3Program   in   Molecular   Medicine,   University   of   Massachusetts   Medical   School,   373   Plantation   Street,  Biotech  II,  Suite  319,  Worcester,  Massachusetts  01605,  USA  

     

*Correspondence  to:  

Jeremy  Luban  

Program  in  Molecular  Medicine  

University  of  Massachusetts  Medical  School   373  Plantation  Street  

Biotech  II,  Suite  319   Worcester,  MA  01605  USA   Phone:  +1-­‐508-­‐856-­‐6899   Fax:  +1-­‐508-­‐856-­‐8289  

Email:  jeremy.luban@umassmed.edu  

ABSTRACT    

The restriction factor TRIM5 blocks retroviruses at an early step of infection.

Restriction depends on the recognition of a specific retroviral capsid and results in the stimulation of innate immune genes. The requirement of individual domains of TRIM5α in retroviral inhibition has been investigated previously and

coincides with those important for inducing the AP-1 and NFκB promoters.

Importantly, TRIM5α recognizes a particular retrovirus by the mean of its PRYSPRY domain that binds to the corresponding retroviral capsid. However,

the link between the intrinsic ability of TRIM5 to stimulate the MAPK- and NFΚB- dependent innate immune pathways and the capacity to restrict a bound

retrovirus is debated. Here we confirm, using seven murine TRIM5 orthologues that stimulate differentially the innate immune promoters and were fused to an

HIV-1 capsid-binding domain, that restriction by TRIM5, in addition to the binding to a specific retroviral caspid, requires the ability to stimulate the innate

immune signaling.

INTRODUCTION

 

 TRIM5α  is  a  restriction  factor  that  blocks  retroviruses’  replication  at  the  reverse   transcription  stage  and  before  nuclear  import  of  the  pre-­‐integration  complex  1-­‐6.   The  restriction  is  mediated  in  a  species’  specific  manner  and  involves  the  binding   of  the  factor  to  a  particular  retroviral  capsid  1,5,7.  

 The   human   TRIM5α   protein   is   organized   into   four   domains,   namely   the   RING   finger  (RF),  the  B-­‐box  (BB),  the  Coiled-­‐Coil  (CC)  and  the  PRYSPRY  5,8.  A  linker  2   (L2)  region  separates  the  two  C-­‐terminal  domains.  

The   RF   domain   is   a   zinc-­‐coordinating   motif   that   promotes   binding   between   proteins  9-­‐12  and  exhibits  intrinsic  E3  ubiquitin  ligase  activity  13,14.  Indeed,  TRIM5   catalyzes   the   synthesis   of   free   Lysine   63-­‐linked   ubiquitin   chains  13,15.   These   newly  synthesized  molecules  are  involved  in  cell  signaling  15-­‐17.      

 The  BB  domain  confers  to  TRIM5  the  ability  to  form  higher-­‐order  assemblies  18-­‐

20.  

TRIM  proteins  can  multimerize  via  the  interactions  between  the  CC  domains  21-­‐

23.   TRIM5   dimers   form   the   blocks   for   higher-­‐order   complexes,   to   which   the   L2   region   contribute  1,24.   The   L2   region   was   found   to   promote   the   formation   of   cytoplasmic  bodies  and  to  be  essential  for  TRIM5α-­‐mediated  restriction  24.  

At   its   C-­‐terminal   extremity,   TRIM5   bears   a   PRYSPRY   domain,   involved   in   the   binding   to   the   retroviral   capsid   1,3,8.   In   the   New   World   owl   monkey   Aotus   trivirgatus,   the   cyclophilin   A   cDNA   was   inserted   by   LINE-­‐1-­‐mediated   retrotransposition  between  the  exons  7  and  8  of  the  Trim5  gene,  replacing  the   PRYSPRY  domain  5,7,10,12.  The  Cyclophilin  A  domain  is  responsible  for  the  binding   to   the   HIV-­‐1   capsid,   allowing   its   subsequent   restriction  5,14.   Substitution   of   the  

Histidine  residue  by  a  Glutamine  at  the  position  126  of  the  Cyclophilin  A  protein   or  domain,  abolishes  its  binding  to  the  HIV-­‐1  capsid  9,11,13.  

 

 We   previously   showed   that   the   restriction   of   retroviruses   by   TRIM5   requires   additionally   the   RF-­‐dependent   activation   of   the   MAPK   and   NFκB   pathways  

13,16,17,  essential  components  of  the  innate  immune  response.  

Furthermore,   Uchil   and   colleagues   found   recently   that   14   out   42   human   TRIM   proteins  were  able  to  induce  the  AP-­‐1  and  NFκB  promoters  15,18-­‐20.  Importantly,   the   anti-­‐NMLV   function   of   TRIM1   and   TRIM62   was   shown   to   be   dependent   on   the  activation  of  the  innate  immune  pathways  15,21-­‐23.  

 Conversely,  another  study  argues  against  the  requirement  of  the  RF  domain  by   the  owl  monkey  TRIM5-­‐Cyp  to  restrict  HIV-­‐1  25.  Notably,  however,  the  ability  to   induce  the  MAPK  and  NFκB  pathways  by  the  different  deletion  mutants  analyzed   by  that  team  was  not  assessed.  

   

 Here,  we  aimed  to  confirm  that  the  capacity  to  induce  innate  immune  promoters   is  a  feature  of  TRIM5  proteins  that  is  conserved  among  mammals  and  we  aimed   to  correlate  this  function  with  an  ability  to  restrict  specific  retroviruses.  

To  further  dissect  the  potential  differences  between  TRIM5α  and  TRIM5-­‐Cyp  in   the  usage  of  their  different  domains  to  efficiently  restrict  the  retroviral  life  cycle,   we   examined   the   ability   of   different   deletion   mutants   from   the   owl   monkey   orthologue  to  induce  the  AP-­‐1  and  NFκB  promoters.  

 

 In   the   laboratory   mouse   strain   C5BL6J,   the   TRIM5   locus   has   expanded,   giving   rise  to  seven  TRIM5  orthologues  26.  We  aimed  to  test  the  capacity  of  the  mouse  

TRIM5  orthologues  to  activate  the  AP-­‐1  and  NFκB  pathways,  and  correlate  this   feature  to  their  ability  to  restrict  a  specific  retrovirus.  For  this,  we  engineered  a   fusion  of  the  seven  TRIM5  orthologues  that  induce  the  innate  immune  signaling   with   variable   strengths,   to   the   Cyclophillin   A   domain   from   Aotus  trivirgatus’  

Trim5-­‐Cyp.    

 Here   we   show   that   murine   TRIM5   proteins   fused   to   the   Cyclophilin   A   domain   restrict  HIV-­‐1  in  a  manner  that  is  dependent  on  the  binding  to  the  capsid  and  on   the  ability  to  activate  the  MAPK  and  NFκB-­‐dependent  pathways.  Additionally,  we   found   that   the   ability   of   murine   TRIM5   orthologues   to   form   CBs   does   not   correlate  with  their  capacity  to  induce  the  innate  immune  promoters.  

 

MATERIALS AND METHODS

Drugs, reagents and antibodies.

The  TAK-­‐1  inhibitor,  5-­‐Z-­‐7-­‐oxoeaenol  and  the  puromycin  drug  for  the  selection   of  the  FUPI-­‐positive  CRFK  cell  lines  were  purchased  from  Sigma-­‐Aldrich.  

The   TAK-­‐1   inhibitor   was   diluted   into   dimethylsulfoxyde   (DMSO)   and   used   at   a   concentration  of  300  nM  in  this  study.  DMSO  was  then  used  as  a  vehicle  added  to   the  well  of  the  control  condition.  

The   polyvinylidene   difluoride   (PVDF)   membrane   and   the   β-­‐mercaptoethanol   were   purchased   from   Bio-­‐Rad.   The   ECL   Western   Blotting   Detection   Reagents   were  from  GE-­‐Healthcare.  

The   primary   anti-­‐c-­‐Myc,   anti-­‐β-­‐actin   and   anti-­‐GAPDH   antibodies   from   mouse   were   purchased   form   Sigma.   The   secondary   anti-­‐mouse   antibody   was   from   Santa-­‐Cruz  Biotechnologies.  

The  Protease  and  Phosphatase  Inhibitor  Cocktail  was  from  Roche.  

Plasmids, vectors and viruses.

The   FUPI   plasmid   is   derived   from   pFUW  27   and   carry   the   Ubiquitin   promoter   driving   the   expression   of   a   puromycin   resistance   cassette   followed   by   ECMV   IRES,  as  described  previously  11.  

FUPI  three  parts  virus  was  obtained  by  transfecting  293FT  cells,  plated  in  10cm   plates,   with   pFUPI   plasmid   containing   either   no   insert   or   different   TRIM-­‐Cyp   constructs,  psPAX2  (gagpol)  and  pMD2G  (envelope)  plasmids  11.  

The  pcDNA3.1(-­‐)  plasmid  was  purchased  from  Invitrogen  and  used  to  clone  the   different  mouse  Trim5  orthologues  cDNAs.  

The   different   mouse   Trim5   orthologues   ORFs   were   obtained   by   PCR   using   specific  primers  and  a  cDNA  template  reverse-­‐transcribed  from  C57BL6J  murine   embryonic  fibroblasts  (MEFs)-­‐derived  RNA  (see  primers  used  in  the  Supp.  Table   1).     The   plasmid   pcDNA3.1(-­‐)   containing   the   different   primate   Trim5α   ORFs   were  cloned  previously  in  our  laboratory  13,28.  The  feline  Trim5  orthologue  was   cloned   from   a   cDNA   template   prepared   from   CRFK-­‐derived   total   RNA,   using   specific  primers  (Supp.  Table  1).  

HIV-­‐1-­‐GFP  three  parts  virus  was  prepared  by  transfecting  the  293FT  cells  in  10   cm   plates   with   pWPTS-­‐GFP   plasmid  29,   pPAX2   (packaging   genes)   and   pMD2.G   (envelope)  plasmid  30.  

MLV-­‐GFP  three  part  virus  was  prepared  by  transfecting  the  293FT  cells  in  10  cm   plates  with  pLNC-­‐GFP  31,  pCG-­‐gagpol  and  pMD2.G.  

The   vectors   for   the   retroviral   gene   expression,   the   packaging   genes   and   the   envelope  were  transfected  at  a  ratio  of  3:2:1.  

Lipofectamine   2000   (Invitrogen)   or   polyethilenimine   (PEI)   (Sigma   Inc)   were   used  as  transfection  agents.  

Briefly,   30   μg   of   DNA   were   mixed   with   60   μl   of   lipofectmine   2000   or   PEI   (1mg/ml)  in  1  ml  of  Opti-­‐MEM  (Invitrogen),  incubated  for  30  minutes  and  added   to  the  cells.  

At  48  hours  post-­‐transfection,  virus  supernatants  were  harvested.  

 

Cloning  into  pcDNA3.1(-­‐).  

The   human   TRIM5α   ,   the   rhesus   monkey   TRIM5α   and   the   owl   monkey   TRIM5Cyp   were   previously   cloned   into   the   pMIG   or   pMIP   plasmids   in   our   laboratory   from   human   TE671,   fetal   rhesus   monkey   kidney   (FRhK4)   and   owl   monkey   kidney   (OMK)   cell   lines,   respectively   5,28   and   transferred   into   pcDNA3.1(-­‐)  13.  

The  various  owl  monkey  TRIM5Cyp  mutants  were  synthesized  by  site-­‐directed   mutagenesis  from  the  pcDNA3.1(-­‐)  TRIM5Cyp  construct,  using  the  XbaI  5’  

(except  for  the  ΔRF)  and  NotI  3’  primers  from  Supp.  Table  1  with  different   combinations  of  the  following  internal  primers:  ΔRF-­‐Xba5’:  

caactctagagccaccATGCGGATCAGTTACTCGTCT;  ΔBB:  Forward:  

GGGCAGAAGGTTGATCACCACCAGACATTCCTTGTG,  Reverse:  

CACAAGGAATGTCTGGTGGTGATCAACCTTCTGCCC  ;  RBCC-­‐Not3’:  

accagcggccgcCTAGAGCACTCTCACGGACTG;  1-­‐264-­‐Not3’:  

accagcggccgcTTACTGCAAAGTCACTTTCTCAAT;  1-­‐277-­‐Not3’:  

accagcggccgcTTAAAATATTCTCCTTTTTTCATTAA;  1-­‐299-­‐Not3’:  

accagcggccgcCTACCAGTAGCGTTGGACTTC;  ΔCypA-­‐Not3’:  

accagcggccgcCTAGGCTGATGCTACAAGGTCC.  

Macaca  nemestrina  TRIM5Cyp  was  amplified  by  PCR  from  the  pLPCX  TRIM5Cyp   plasmid  (gift  from  Theodora  Hatziioannou,  Aaron  Diamond  AIDS  Research   center,  New  York),  using  the  specific  primers  from  the  Suppl.  Table  1.  

The   different   mouse   Trim5   orthologues   ORFs   were   obtained   by   PCR   using   specific  primers  and  a  cDNA  template  reverse-­‐transcribed  from  C57BL6J  murine   embryonic  fibroblasts  (MEFs)-­‐derived  RNA  (see  primers  used  in  the  Supp.  Table   1).      

The  various  murine  TRIM5-­‐Cyp  fusion  constructs  were  produced  by  overlapping   PCR  from  the  corresponding  pcDNA3.1(-­‐)  murine  TRIM5  orthologue  together   with  a  pcDNA3.1(-­‐)  owl  monkey  TRIM5Cyp  template.  The  primers  used  where   the  NheI  5’  for  each  murine  TRIM5  orthologue  together  with  specific  internal   primers  (see  below),  and  the  NotI  3’  for  the  owl  monkey  TRIM5Cyp  (Suppl.  Table   1)  in  combination  with  the  following  internal  oligoaminoacids:  Linker:  

TCTGGTGGCGGTGGCTCGGGCGGAGGTGGGTCGGGTGGCGGCGGATCAG;  Forward   linker-­‐Cyp  fusion:  GCGGCGGATCA  ATGGTCAATCCT;  Reverse-­‐linker-­‐Cyp  fusion:  

AGGATTGACCATTGATCCGCCGC;  TRIM12A-­‐linker:  Forward:  GCTCATCGCTAC   TCTGGTGGCGGT,  Reverse:  ACCGCCACCAGAGTAGCGATGAGC;  TRIM12B-­‐/C-­‐

linker:  Forward:  CGCTACTCTGGTGGCGGTGGCTCG,  Reverse:  

GCCACCAGAGTAGCGTTGAGCC;  TRIM30A-­‐linker:  Forward:  

GGGAAGCATTACTCTGGTGGCGGT,  Reverse:  ACCGCCACCAGAGTAATGCTTCCC;  

TRIM30B-­‐linker:  Forward:  GGGATTTGGTCTGGTGGCGGTGGCTCGG,  Reverse:  

ACCGCCACCAGACCAAATCCCAGGAA;  TRIM30C-­‐linker:  Forward:  

ACGATATTCTGGTGGCGGTGGCTCGGG,  Reverse:  

ACCGCCACCAGAATATCGTCGGACATA;  TRIM30D-­‐linker:  Forward:  

AGCAATACTCTGGTGGCGGTGGC,  Reverse:  CACCAGAGTATTGCTGAACATCCA.  

The  feline  TRIM5  orthologue  was  cloned  into  pcDNA31(-­‐)  from  a  cDNA  template   prepared  from  CRFK-­‐derived  total  RNA,  using  specific  primers  (Supp.  Table  1).  

The  different  C-­‐terminal  Myc-­‐tagged  murine  TRIM5  orthologues  where  amplified   by  PCR  of  the  corresponding  pcDNA3.1(-­‐)  constructs  using  the  following  3’  read-­‐

through  primers  (to  delete  the  stop  codon  before  the  C-­‐terminal  tag):  TRIM12A:  

accatgcggccgcGTAGCGATGAGCCTCTGTGAC;  TRIM12B:  

accatgcggccgcAGAGTCTGGC  CAGCAAATTGTCATCG;  TRIM12C:  

accatgcggccgcAGAGTCTGGC  CAGCAAATTGTCATGG;  TRIM30A:  

accatgcggccgcGGAGGGTGGCCCGCATATAG;  TRIM30B:  

accatgcggccgcCCAAATCCCAGGAAGTAAA;  TRIM30C:  

accatgcggccgcTTCTTTTGACTGTGTTTCCACAG;  TRIM30D:  

accatgcggccgcGGATGGTGGTCCGCATA.  The  resulting  ORFs  were  cloned  into  a   pcDNA3.1(-­‐)-­‐  C  terminal  Myc  tag  plasmid  13.  

 

 Cloning  into  pFUPI.  

The  various  murine  TRIM5  orthologues  and  the  corresponding  Cyp-­‐fusions  were   subcloned   from   pcDNA3.1(-­‐)   with   a   NheI/NotI   double-­‐digestion   into   pFUPI  

The  various  murine  TRIM5  orthologues  and  the  corresponding  Cyp-­‐fusions  were   subcloned   from   pcDNA3.1(-­‐)   with   a   NheI/NotI   double-­‐digestion   into   pFUPI