• Aucun résultat trouvé

pathways  151,153,154.  

 

 Highlighting   the   role   of   the   sensing   of   viral   DNA   during   immunity   to   retroviruses,  HIV-­‐1  capsid  binds  the  cellular  cyclophilin  A  and  CPSF6  as  cofactors   to   escape   to   recognition   of   the   reverse-­‐transcription   products   by   as   yet   unidentified  cytosolic  sensors  that  would  otherwise  restrict  replication  in  a  type   I  IFN-­‐dependent  manner  155.  

 

1.2.2  The  innate  immune  pathways    

Two  important  routes  that  PRRs  use  to  activate  the  innate  immune  response  are   via  the  AP-­‐1-­‐  and  the  NFκB-­‐  mediated  signaling  (figure  5).  The  activation  of  the   MAPK-­‐dependent   pathway   is   initiated   with   the   stimulation   of   different   MAPK   kinase   kinases   (MAP3Ks)   and   continues   with   a   cascade   of   subsequent   phosphorylations   of   a   target   MAPK   kinase   (MAP2K)   that   will   in   turn   act   on   a   specific   MAPK   115.   Three   routes   of   the   MAPK   signaling   pathway   have   been   extensively  studied  and  are  involved  in  one  or  both  of  the  pro-­‐inflammatory  and   anti-­‐inflammatory   processes   during   the   immune   response:   the   extracellular   signal-­‐regulated   kinase   (ERK),   Jun   N-­‐terminal   Kinase   (JNK)   and   protein   of   38   kDa  (p38)  pathways  (figure  7).  The  corresponding  studies  are  mainly  based  on   the  effect  of  the  stimulation  of  TLRs.  

 

 The  ERK1  and  ERK2  branch  involves  the  activation,  upon  engagement  of  a  TLR,   of  the  tumor  progression  locus  2  (TPL2)  156.  This  MAP3K  in  turns  activate  MAPK   kinase1   (MKK1)   and   MKK2.   This   pathway   leads   to   the   production   of   from   one   side  the  pro-­‐inflammatory  cytokines  tumor  TNF-­‐α  and  interleukin  1  beta  (IL-­‐1β),   from   the   other   side   the   anti-­‐inflammatory   IL-­‐10  115,157,158.   ERK1   and   ERK2   additionally   have   a   repressive   action   on   the   expression   of   IL-­‐12   and   the   two   antiviral  proteins  IFNβ  and  inducible  nitric  oxide  synthase  (iNOS)  158,159.  

 

 The   stimulation   of   the   complex   formed   by   the   MAP3K   TAK1   and   Tab2/Tab3,   results  in  the  phosphorylation  of  the  components  of  three  main  pathways.  The  

first  route  involves  the  activation  if  the  IKK  complex,  leading  to  the  enhancement   of  the  ERK1/2-­‐  and  NFκB-­‐  mediated  pathways.  The  targeting  of,  from  one  side   MKK4  and  7,  from  another  side  MKK3  and  6,  will  result  in  the  up-­‐regulation  of   JNK-­‐  and  p38-­‐  stimulated  genes,  respectively  115.  

 

   JNK-­‐mediated   signaling   was   shown   to   contribute   in   myeloid   cells   to   the   establishment  of  the  acute  inflammatory  M1  macrophage  phenotype  160.  

 

   The  p38  MAPK  isoform  alpha  (p38α),  for  his  part,  has  dual  roles.  Depending  on   the   cell   line   and   the   type   of   induced-­‐damage   examined,   p38α   enhances   or   decreases  the  inflammatory  response  115,161,162.  

 

 The   ERK1/2   MAPKs   phosphorylate   the   nuclear   transcription   factors   c-­‐AMP   response-­‐element   binding   protein   (CREB),   cMyc   and   cFos.   The   latter   protein   associates   with   one   of   the   targets   of   JNK,   cJun,   to   form   one   type   of   activator   protein-­‐   1   (AP-­‐1)   transcription   complex.   Alternatively,   cJun   can   homodimerize   or  associates  with  the  ATF2  transcription  factor  that  is  phosphorylated  by  p38  

115.      

 The   different   AP-­‐1   transcription   factor   complexes   are   involved   in   different   contrary   processes   such   as   cell   proliferation   and   apoptosis,   inflammatory   potentiation  and  modulation  163.  These  opposite  effects  are  mediated  in  part  by   differential   combinations   of   transcription   factors   that   will   form   heterodimers   with  different  target  genes.  Consistently,  the  binding  of  cJun  with  cFos  or  ATF2   will  result  in  cell  growth  or  neuronal  apoptosis,  respectively  164.  An  alternative   way  to  direct  AP-­‐1  in  one  or  another  pathway  is  by  the  expression  of  JNK  targets   that   antagonize   the   action   of   cJun-­‐containing   complexes,   as   it   seems   to   be   the   case   for   JunB,   in   the   context   of   cJun-­‐promoted   cell   growth  165,166.   The   AP-­‐1   transcritption   factors   additionally   activate   a   plethora   of   target   genes   that   are   involved  in  the  innate  immune  response  and  the  inflammatory  process.  Dimers   of  Jun  and  Fos  can  cooperate  with  the  nuclear  factor  of  activated  T  cells  (NFAT)   to  activate  the  expression  of  cytokines  as  IL-­‐2,  IL-­‐3,  IL-­‐4,  IL-­‐5  and  IL-­‐13,  that  of   molecules  playing  a  role  in  humoral  immunity  such  as  CD25,  as  well  as  that  of  

the   inducer   of   inflammatory   prostaglandins,   cyclooxygenase   2   (COX2)   167.   Additionally,   AP-­‐1   stimulates   the   expression   of   the   type   I   IFN,   alone   or   in   combination   with   other   transcription   factors   such   as   signal   transducers   and   activators  of  transcription  4  (STAT4)  168-­‐170.  Inflammatory  cytokines  in  turn  up-­‐

regulate  the  MAPK-­‐dependent  pathway  163.    

 As   Type   I   IFN   production   induces,   among   other   pathways,   AP-­‐1-­‐mediated   signaling   and   the   expression   of   ISGs,   it   constitutes   the   second   wave   of   innate   immune   activation   and   the   MAPK-­‐mediated   pathway   is   thus   an   early   response   component.   Similarly,   NFκB   activity   is   stimulated   by   inflammatory   cytokines,   including  IFNβ  171-­‐173,  to  induce  successively  the  expression  of  genes  involved  in   the  innate  immune  response.  

 

 The   NFκB   family   of   transcription   factors   is   composed   of   six   members,   namely   p50,   p52,   RelA,   RelB,   c-­‐Rel   and   v-­‐Rel  172.   Similar   to   the   AP-­‐1   family,   these   proteins  associate  in  different  combinations  of  homo-­‐  or  hetero-­‐dimers.  All  the   NFκB  proteins  are  composed  of  an  N-­‐terminal  Rel-­‐homology  domain  (RHD)  that   allows   them   to   bind   to   DNA   as   well   as   to   dimerize,   and   a   nuclear-­‐localization   signal   (NLS)   that   directs   them   to   the   nucleus   when   free   from   the   inhibitor.  

Except   for   p50   and   p52,   the   other   NFκB   members   carry   a   C-­‐terminal   transcription   activation   domain   (TAD)   that   allows   them   to   stimulate   the   synthesis   of   gene   transcripts.   For   this   reason,   p50   and   p52   need   to   heterodimerize  with  other  proteins  as  RelA  or  RelB  to  act  as  transactivators  174-­‐

176.   When   found   in   a   homodimeric   form,   p50   and   p52   act   as   transcriptional   repressors  173.  

 

 In  most  unstimulated  cells,  the  NFκB  complexes  are  bound  to  inhibitor  proteins   called  inhibitors  of  κB  (IκB)  and  reside  in  the  cytoplasm.  Upon  activation  of  the   upstream  kinases  IκB  kinases  (IKKs),  IκB  is  phosphorylated  then  degraded  and   the  NFκB  transcription  complex  can  enter  the  nucleus  to  bind  particular  sites  in   the  promoter  of  specific  genes  177.  

 

 The   IKK   proteins   are   activated   via   two   alternative   pathways,   namely   the   canonical   and   non-­‐canonical   signaling   routes  173.   The   conventional   pathway   is   initiated   with   most   of   the   stimuli   leading   to   NFκB   activation,   such   as   ligand   binding  to  a  TLR  and  the  TNFα  interaction  with  its  receptor.  Upon  recognition  of   TNFα   by   the   TNF   1   receptor   (TNF1R),   the   TNF1R-­‐associated   protein   with   DEATH  domain  (TRADD)  acts  as  a  scaffold  for  the  recruitment  of  Fas-­‐associated   protein  with  DEATH  domain  (FADD)  and  TRAF2  or  TRAF5  173.  

The   E3   ubiquitin-­‐ligase   activity   of   TRAF2   or   TRAF5,   similar   to   that   of   TRAF6,   mediates   the   activation   of   RIP1   by   K63-­‐linked   polyubiquitination   178.   This   protein   modification   allows   RIP1   to   interact   with   the   TAK1   complex   via   Tab2   and  Tab3,  which  subsequently  leads  to  phosphorylation  of  the  IKKβ  component   within  the  IKK  complex  also  formed  by  IKKα  and  IKKγ  (NEMO)  179,180.  In  this  way   activated,   the   IKK   complex   phosphorylates   the   IκB,   targeting   it   to   the   proteasome   and   releasing   the   NFκB   complexes   to   allow   them   to   enter   the   nucleus  and  activate  target  genes  (figure  6).  

 

 In  the  case  of  the  TLR4  signaling  via  MyD88,  the  scaffold  protein  is  TRAM  and   the  activation  of  the  TAK1  complex  involves  TRAF6  173,  as  seen  above  for  the  AP-­‐

1  pathway.  The  TAK1  kinase  is  thus  a  central  component  of  the  innate  immune   response   and   mediates   the   convergence   of   different   stimulated   receptors   as   PRRs  and  cytokine  receptors  to  the  activation  of  the  MAPK  and  NFκB  pathways.  

This  constitutes  a  means  of  producing  cytokines,  antiviral  proteins,  and  negative   feed-­‐back  loops,  all  of  which  are  important  in  the  context  of  infection  and  in  the   setting  and  the  modulation  of  the  inflammation.  

 

 Other  cytokines  from  the  TNF  family,  such  as  CD40L  and  lymphotoxin-­‐β  (LT-­‐β),   activate   the   non-­‐canonical   NFκB   pathway,   via   the   phosphorylation   of   an   IKKα   dimer  by  the  NFκB-­‐inducing  kinase  (NIK)  181.  The  phosphorylated  IKKα  interacts   with  the  p100  NFκB  precursor  and  process  it  into  p52.  The  dimer  composed  of   p52  and  RelB  is  then  competent  to  migrate  into  the  nucleus  and  regulate  gene   expression  181.  

 

 As  reviewed  by  Bonizzi  and  Karin  172,  the  NFκB  transcription  factors  up-­‐regulate   the  expression  of  cytokines,  chemokines,  other  proinflammatory  and/or  antiviral   molecules  as  iNOS,  COX2,  as  well  as  that  of  adhesion  molecules,  essential  for  cell-­‐

to-­‐cell   contacts   during   the   immune   response.   Thus,   similar   to   AP-­‐1,   depending   on  different  combinations  of  transcription  factors,  NFκB-­‐mediated  pathway  can   lead   to   apoptosis   or   survival   and   this   property   allows   these   proteins   to   play   a   role   at   different   stages   of   development   and   survival   of   immune   cells   such   as   neutrophils,  DCs,  natural  killer  (NK)  cells,  T  lymphocytes  and  B  cells  173.  

 

 

Figure   7:   Simplified   representation   of   the   MAPK   and   NFKB   pathways.   When   an   E3   ligase   (green   hexagone)   such   as   TRAF6   or   TRIM5   synthesizes   poly-­‐ubquitin   chains   (blue   circles,   Ub),   the   TAB2/TAB3/TAK1  complex  gets  activated  and  stimulates  kinases  of  the  p38  and  JNK  family,  resulting  in  the   activation  of  different  complexes  of  AP-­‐1  transcription  factors  (red  and  green  imbricated  shapes).  The  IKK   complex   is   also   activated   by   TAK1   and   results   in   the   stimulation   of   different   NFκB   transcription   factors   (yellow  and  blue  imbricated  shapes).  The  activation  of  ERK1  and  ERK2  is  mediated  via  the  stimulation  of   the  TPL2-­‐dependent  pathway.  

 

!"#$%

&''()$%

*+'()$%

!,-$% !,-.%

!,'(%

&''/)0% &''.)1%

2.34)5)6)7% 89'()$).%

*.% :;% :;% :;%

<''4% <''5%

9*&=%

,">(%?@ABCD@E2FGB%HAD?G@C% 9IJ-%?@ABCD@E2FGB%HAD?G@C%

     

1.2.3  Immunity  to  retroviruses:  restriction  factors    

 

 The  replication  ability  of  retroviruses  in  different  cells  depends  on  many  cellular   factors.   The   first   considered   factor   is   the   entry   of   the   retrovirus   into   the   cell   cytoplasm,   via   recognition   of   the   corresponding   receptor.   For   example,   as   discussed  previously,  HIV-­‐1  entry  requires  the  recognition  of  the  CD4  receptor   and  a  coreceptor,  principally  CXCR4  or  CCR5.  The  subsequent  steps  of  the  viral   life   cycle   exploit   host   proteins   in   a   species-­‐dependent   way   to   proceed,   as   highlighted  by  the  inability  of  HIV-­‐1  to  productively  infect  murine  cell  lines  that   have  been  engineered  to  express  human  CD4  182  and  taking  into  account  that  the   murine   CXCR4   can   be   used   as   a   coreceptor   by   HIV-­‐1  183.   Importantly,   murine   cells  have  a  cyclin  T1  protein,  that  HIV-­‐1  Tat  does  not  bind  because  of  a  species-­‐

specific   polymorphism,   thus   precluding   the   employment   of   this   cofactor   required   for   the   transactivation   of   LTR-­‐directed   expression   184.   When   circumventing   this   post-­‐entry   blocks   by   expression   of   human   Cyclin   T1,   some   murine   cell   lines   proceed   into   viral   gene   transcription,   but   further   steps   are   blocked,  as  mRNA  export  and  processing,  as  well  as  virion  assembly  185,186.  These   blockades   are   rescued   upon   fusion   of   murine   and   human   cells,   showing   that   there  are  factors  exerting  a  positive  effect  on  viral  replication  late  steps  that  are   not  present  in  the  mouse  187.  

 

   Interestingly,   in   contrast   to   fibroblasts,   murine   T   cells   do   not   support   HIV-­‐1   reverse   transcription  183.   The   blockade   of   a   pre-­‐integration   step   of   the   viral   replication   strongly   recalls   other   phenotypes   observed   in   mice   and   primates.  

The  cell  tropism  is  not  only  dictated  by  the  presence  or  the  absence  of  positive   cofactors  in  a  cell.  

   

The   first   indirect   report   of   a   negative   factor   influencing   retroviral   replication   was   in   1957   by   C.   Friend   who   discovered   that   a   genetic   transmissible   trait