• Aucun résultat trouvé

oncolytic  properties  29.  

 

 The   AIDS-­‐causing   HIV-­‐1   belongs   to   the   genius   of   lentiviruses   and   is   characterized   by   a   conical   shape   of   the   core   of   the   mature   virion.   Members   of   this  group  carry  this  name  because  of  the  long  asymptomatic  phase  preceeding   the   first   symptoms   12.   HIV-­‐1   expresses   six   accessory   proteins   that   will   be   discussed  below.  These  gene  products  control  transcription,  gene  expression  and   assembly  and  counteract  restriction  factors  encoded  by  the  host  12.  The  primer   used  by  lentiviruses  is  the  tRNALys3.  

 

 In   latin   Spuma   means   foam.   The   members   of   the   Spumaviruses   produce   vacuolization   of   cells,   hence   resulting   in   a   foamy-­‐like   histological   aspect.   The   human   foamy   virus   is   a   well-­‐studied   member   of   this   group.     The   pol   gene   products  arise  from  a  splice  transcript.  Unlike  other  retroviruses,  this  genius  of   viruses   is   characterized   by   virions   that   carry   high   amounts   of   reverse-­‐

transcribed   DNA.   Accessory   proteins   shared   by   the   members   of   this   group   include  a  transcriptional  transactivator.  The  primer  used  is  generally  tRNALys  12.    

1.1.6  The  Acquired  Immunodeficiency  Syndrome  (AIDS)    

   The  AIDS  is  a  severe  disease  affecting  more  than  35  millions  of  people  around   the  world,  as  published  by  the  UNAIDS  report  on  the  global  AIDS  epidemics  2013  

30.    

 In  the  early  1980s,  young  men  with  typical  immunodeficiency  symptoms  were   hospitalized  in  Los  Angeles,  New  York  and  California  31,32.  

 

 As   mentioned   previously,   biochemical   and   genetic   tools   for   studying   retroviruses   existed   in   that   decade   and   they   were   used   by   Researchers   at   the   Institut  Pasteur  and  in  the  United  States  to  characterize  the  virus  extracted  from   CD4+  T  cells  coming  from  AIDS  patients.  Barré-­‐Sinoussi  and  colleagues  isolated   and   described   a   virus   that   was   able   experimentally   to   infect   T   lymphocytes  

extracted  from  cord  blood  22  and  called  it  Lymphoadenopathy  Associated  Virus   (LAV).  

 

 The  team  of  Robert  Gallo,  had  suspected  that  the  causing  agent  of  AIDS  was  of   retroviral  origin  and  possessed  T-­‐cell  tropism  but  at  that  time  attributed  it  to  the   human   tumor   retrovirus   HTLV-­‐I  33.   The   virus   was   later   called   HTLV-­‐III   by   the   same  team.  

In  1986,  the  virus  was  finally  named  the  Human  Immunodeficiency  Virus  (HIV),   in  reference  to  the  disease  it  produced  34.  

 

 Transmission   of   HIV-­‐1   from   one   person   to   another   happens   during   sexual   intercourse,   injecting   with   contaminated   needles,   or   by   blood   transfusion  35.   Mother  to  child  transmission  during  delivery  or  after  breast-­‐feeding  is  another   important  route  of  spreading  35.  

The   first   events   of   HIV-­‐1   infection   seem   to   implicate   a   local   spreading   within   cells  residing  in  the  mucosa  and  in  the  epithelium,  such  as  dendritic  cells  (DCs),   CD4+  T  cells  and  macrophages  36-­‐38.  Primary  infected  cells  subsequently  migrate   to  the  lymphoid  organs  and  seed  the  virus  by  direct  cell-­‐to-­‐cell  contact  or  by  the   release  of  newly  produced  cell-­‐free  viruses,  which  enter  new  cells  39.  

 

 When   HIV-­‐1   gp120/gp41   glycoproteins   interact   with   the   lectin   receptor   DC-­‐

SIGN   at   the   surface   of   DCs,   the   virus   can   be   either   endocytosed   and   degraded   within  lysosomes  or  by  targeting  to  the  proteasome  40,41.  Another  route  for  entry   into   DCs   is   mediated   by   a   host-­‐derived   glycosphingolipid   present   in   the   virion   envelope   that   binds   to   an   unknown   receptor,   with   SIGLEC-­‐1   being   a   potential   candidate  42.   This   interaction   allows   the   virus   to   escape   degradation   and   join   immunological   synapses,   from   where   new   target   CD4+   T   cells   can   be   reached  

12,43,44.    

 During  the  acute  phase  of  infection,  a  large  fraction  of  CD4+  T  cells  are  infected   and  high  amounts  of  virions  are  synthesized  and  released  from  cells  39.  As  CD8+  

T  cells  fight  against  the  pathogen  and  high  doses  of  type  I  interferon  (IFN)  and   cytokines   are   released,   infected   individuals   commonly   experience   flu-­‐like  

symptoms  45-­‐47.  The  immune  response  mediated  by  cytotoxic  T  cells  and  B  cells   producing  antibodies  permits  to  moderately  recover  the  level  CD4+  T  cells  for  a   few  weeks  47.  At  that  point,  HIV-­‐1  already  integrated  into  the  host  chromosomes   and  latent  reservoirs  starts  to  be  established,  and  infected  individuals  can  have  a   total  absence  of  HIV-­‐1-­‐related  symptoms  for  nearly  ten  years  47.  Unfortunately,   in   the   meantime,   the   virus   continues   to   replicate   and   spread   via   the   various   lymphoid  organs.  

 

 At  the  terminal  stage,  the  disease  causes  a  high  destruction  of  the  CD4+  T  cells,   which   decrease   below   200   cells   per   mm3   of   blood,   leading   to   immune   suppression   and   the   subsequent   unavoidable   infection   by   opportunistic   pathogens  as  Candida  albicans  and  Pneumocystis  jirovesii  48.  

 

 The   AIDS   pandemic   is   likely   to   have   originated   in   central   Africa   as   a   result   of   cross-­‐species   transmission   of   a   chimpanzee   lentivirus   to   humans.   Studies   of   sequence   homology   between   SIVcpz   and   HIV-­‐1   have   shown   that   the   human   lentivirus  is  derived  from  the  simian  one  49.  The  second  type  of  HIV,  named  HIV-­‐

2,   is   less   pathogenic   and   transmissible   and   thus   less   frequently   leads   to   AIDS.  

Although  the  two  viruses  have  a  similar  genome  organization,  they  are  derived   from  different  SIV  strains  49.  Whereas  HIV-­‐1  comes  from  the  SIVcpz,  HIV-­‐2  arose   from  a  zoonosis  with  the  sootey  mangabey  monkey,  Cercocebus  atys.  Instead  of   the   Vpu   accessory   protein,   HIV-­‐2   possesses   Vpx,   which   counteracts   a   block   to   reverse   transcription   within   DCs   and   macrophages  50.   Additionally,   HIV-­‐1   and   HIV-­‐2  highly  diverge  from  their  env  sequence.  In  fact,  it  was  observed  that  there   is  already  25%  of  divergence  of  the  gag,  pol  and  env  sequences  within  the  strains   of  each  type,  as  reviewed  by  Reeves  and  Doms  51.  

   

A  combination  of  nucleoside  or  non-­‐nucleoside  reverse-­‐transciptases  inhibitors   and   protease   inhibitors   constitute   an   aggressive   therapy   for   maintaining   the   virus  load  at  a  low  level  52,53.  The  highly  active  antiretroviral  therapy  (HAART)   allowed   the   life   expectancy   of   individuals   to   reach   nearly   normal   life   spans  54.   Thanks   to   these   combined   anti-­‐retroviral   therapies   and   efforts   employed   in   prevention  education,  new  infections  have  diminished  of  near  30%  compared  to  

2001   (UNAIDS   report,   2013).   However,   the   pathogen   is   still   far   from   being   eradicated  as  HIV-­‐1  has  rarely  been  totally  cleared  from  an  individual  55,56  and  a   vaccine  is  still  missing.  

 

 The  reasons  why  the  search  for  an  effective  vaccine  has  been  unsuccessful  until   now   could   be   in   part   the   inability   of   the   immune   system   to   detect   a   dormant   virus   and   inherent   to   the   tropism   of   the   virus   that   targets   to   destruction   the   immune   cells   themselves  44.   Another   important   point   that   could   explain   the   failure   of   the   immune   system   to   detect   HIV-­‐1   and   mount   a   robust   response   is   that  this  virus  does  not  productively  infect  the  DCs  that  are  antigen-­‐presenting   cells   (APCs),   that   prime   the   immune   effectors   to   kill   infected   cells.   Yet   the   antigen  from  these  cells  is  being  presented.  It  seems  likely  that  the  APC  needs  to   be   activated   for   the   priming   of   effector   T   cells   to   be   efficient,   an   unproductive   infection  leading  to  no  immune  activation  will  fail  to  fulfill  this  prerequisite  44.    

 The   innate   immunity   actors   and   consequences   of   their   activation   will   be   introduced  further  below.  

   

1.1.7  The  structures  of  the  HIV-­‐1  virion  and  genome    

 The   HIV-­‐1  gag   orf   codes   for   a   precursor   polyprotein   of   55   kDa   in   size,   called   Pr55gag,  which  is  cleaved  within  the  virion  into  the  MA,  the  CA,  the  NC  proteins   and  p6  that  is  involved  in  viral  budding  57.  

HIV-­‐1  membrane  form  a  spherical  particle  that  has  a  diameter  of  approximately   110   nanometers   (figure   4).   The   virion   contains   a   conical-­‐shaped   CA   protein   complex  that  is  composed  of  216  hexamers  and  12  pentamers,  linked  between   them  by  the  C-­‐terminal  domains  of  CA  58,59(figure  4).  

The  viral  particle  core  is  enclosed  by  a  layer  of  MA  proteins,  in  turn  surrounded   by  a  lipid  bilayer  coming  from  previous  infection  events.    

 

 The  MA  protein  form  hexameric  higher-­‐order  complexes,  which  encapsulate  the   viral  core.  These  complexes  interact  with  different  virion  components  and  seem