• Aucun résultat trouvé

The  structures  of  the  HIV-­‐1  virion  and  genome

eradicated  as  HIV-­‐1  has  rarely  been  totally  cleared  from  an  individual  55,56  and  a   vaccine  is  still  missing.  

 

 The  reasons  why  the  search  for  an  effective  vaccine  has  been  unsuccessful  until   now   could   be   in   part   the   inability   of   the   immune   system   to   detect   a   dormant   virus   and   inherent   to   the   tropism   of   the   virus   that   targets   to   destruction   the   immune   cells   themselves  44.   Another   important   point   that   could   explain   the   failure   of   the   immune   system   to   detect   HIV-­‐1   and   mount   a   robust   response   is   that  this  virus  does  not  productively  infect  the  DCs  that  are  antigen-­‐presenting   cells   (APCs),   that   prime   the   immune   effectors   to   kill   infected   cells.   Yet   the   antigen  from  these  cells  is  being  presented.  It  seems  likely  that  the  APC  needs  to   be   activated   for   the   priming   of   effector   T   cells   to   be   efficient,   an   unproductive   infection  leading  to  no  immune  activation  will  fail  to  fulfill  this  prerequisite  44.    

 The   innate   immunity   actors   and   consequences   of   their   activation   will   be   introduced  further  below.  

   

1.1.7  The  structures  of  the  HIV-­‐1  virion  and  genome    

 The   HIV-­‐1  gag   orf   codes   for   a   precursor   polyprotein   of   55   kDa   in   size,   called   Pr55gag,  which  is  cleaved  within  the  virion  into  the  MA,  the  CA,  the  NC  proteins   and  p6  that  is  involved  in  viral  budding  57.  

HIV-­‐1  membrane  form  a  spherical  particle  that  has  a  diameter  of  approximately   110   nanometers   (figure   4).   The   virion   contains   a   conical-­‐shaped   CA   protein   complex  that  is  composed  of  216  hexamers  and  12  pentamers,  linked  between   them  by  the  C-­‐terminal  domains  of  CA  58,59(figure  4).  

The  viral  particle  core  is  enclosed  by  a  layer  of  MA  proteins,  in  turn  surrounded   by  a  lipid  bilayer  coming  from  previous  infection  events.    

 

 The  MA  protein  form  hexameric  higher-­‐order  complexes,  which  encapsulate  the   viral  core.  These  complexes  interact  with  different  virion  components  and  seem  

to   be   essential   for   various   processes.   The   well   demonstrated   bindings   include   the   interaction   with   envelope   bilayer   through   myristoylated   motifs,   a   process   essential   for   virion   assembly   at   the   plasma   membrane  57.   The   MA   interacts   as   well  with  phosphatidiylinositol-­‐4,5-­‐bisphosphate,  leading  to  the  targeting  of  the   myristoyl  tails  to  the  plasma  membrane  and    helping  the  MA  to  bind  to  the  viral   genome  60,61.   Although   subject   to   controversy,   MA   was   reported   to   bind   to   the   inner   domain   of   gp41,   stabilizing   the   interaction   of   the   envelope   into   the   assembling   virion  57.   Additionally,   the   Pr55gag-­‐derived   protein   was   shown   to   interact  with  the  reverse-­‐transcription  and  pre-­‐integration  complexes  (RTC  and   PIC,  respectively),  suggesting  a  role  of  the  MA  complex  in  the  early  viral  life-­‐cycle   steps.  

 

 The  CA  protein  is  divided  into  two  structural  domains.  The  N-­‐terminal  domain   stabilizes  the  structure  of  the  virion  and  is  in  the  outer  layer  of  the  viral  core.  The   C-­‐terminal  domain  faces  the  inner  space  containing  the  genome  and  contributes   to  link  the  hexameric  and  pentameric  rings  together.  The  hexameric  lattice  of  CA   interacts   with   different   cellular   factors.   Its   binding   to   the   restriction   factor   TRIM5  inhibits  both  reverse-­‐transcription  and  further  pre-­‐integration  steps  (see   below).   As   it   will   be   further   discussed   later,   the   CA   interacts   with   endogenous   Cyclophilin  A.  

When  Cyclophilin  A  is  part  of  a  TRIM5  orthologue  protein,  HIV-­‐1  is  bound  and   strongly   restricted   62.   The   restriction   mediated   by   the   TRIM5   protein   and   orthologues  will  be  discussed  in  more  detail  in  the  next  sections.  

 

incorporation of pentamers in the mature capsid, which in turn dictates the lattice curvature. Despite limited evidence from previous solution NMR studies that the N- and C-terminal domains do not appear to interact with one another in the full-length capsid protein,17the overall magnitude and time scale of the relative motions between the domains are unknown, and the conformational space sampled by the domains has not yet been characterized.

Here we explore the conformational space sampled by the monomeric and dimeric species of the wild-type, full-length HIV-1 capsid protein, CAFL (Figure 2), using experimental NMR residual dipolar couplings (RDCs) and small- and wide-angle solution X-ray scattering (SAXS/WAXS) data in an

To date, attempts to study the full-length capsid protein by conventional solution NMR methods have been hampered by severe resonance line-broadening of the backbone resonances of the linker residues, as well as of residues at the dimer interface as a consequence of a dynamic monomer/dimer exchange. Although such localized line broadening is an impediment for traditional NMR structure determination, it can be circumvented, providing that a limited number of RDCs can be measured within each domain of the full-length capsid protein and the structures of the individual domains in the full-length capsid and the isolated domain constructs are the same.

Under these conditions, the individual domains of a multi-domain protein/macromolecular assembly can be treated as rigid bodies for ensemble simulated annealing calculations in which RDCs arising from steric alignment provide both shape and orientational information,18,19while the SAXS/WAXS data provide complementary restraints on size and shape.20,21This hybrid approach is much less time-consuming than conven-tional methods of NMR structure determination20and can be readily transferred to other multidomain proteins.

MATERIALS AND METHODS

Protein Expression and Purification. All full-length HIV-1 capsid constructs, the wild-type (CAFL, residues 1−231, plasmid pNL4-3), the disulde-linked mutant (CAFLV181C), and the monomeric mutant (CAFLW184/M185A), as well as the four C-terminal domain constructs, CA144−231and CA146−231and the corresponding disul de-linked-linked mutants (CA144−231V181C and CA146−231V181C ) (see Figure 2), were subcloned in a pET-11a vector and expressed in BL21-CodonPlus (DE3)-RIPL competent cells (Agilent Technologies). Point mutations Figure 1. HIV-1 capsid assembly. The capsid protein (top right)

comprises N- (green) and C-terminal (red) domains.10During capsid assembly, the N-terminal domains form pentameric7(middle right) and hexameric11(bottom right) rings (with the N-terminal domains shown in blue and green, respectively, and the C-terminal domains shown in red in both oligomers). A model of the fully assembled capsid (left) comprises adjacent hexamers connected to each other via C-terminal domain dimers, and exactly 12 pentamers are required to close the cone.7

Figure 2.Summary of capsid constructs used in the current work. The delineation of the N- and C-terminal domains and the location of point mutations in the various constructs are shown. The dimerization states of the constructs under the experimental conditions used for NMR and SAXS/WAXS measurements are also indicated.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja406246z|J. Am. Chem. Soc.2013, 135, 1613316147 16134

tecture do incorporate such machinery and thus might form the basis for learning mechanisms that could account for our data [ J. E. Hummel and K. J.

Holyoak,Psychol. Rev.104,427 (1997)]. Our goal is not to deny the importance of neural networks but rather to try to characterize what properties the right sort of neural network architecture must have.

25. Supported in part by an Amherst College Faculty Re-search Grant to P.M.V. We thank L. Bonatti, M. Brent, S.

Carey, J. Dalalakis, P. Gordon, B. Partee, V. Valian, and Z.

Zvolenszky for helpful discussion, and P. Marcus and F.

Scherer for their assistance in construction of the test apparatus. We also thank Bell Labs for making available to the public the speech synthesizer that we used to create our stimuli. Some subjects in experiment 1 were tested at Amherst College; all other subjects were test-ed at New York University. The parents of all partici-pants gave informed consent.

11 September 1998; accepted 16 November 1998

Assembly and Analysis of Conical Models for the HIV-1

Core

Barbie K. Ganser,* Su Li,* Victor Y. Klishko, John T. Finch, Wesley I. Sundquist†

The genome of the human immunodeficiency virus (HIV) is packaged within an unusual conical core particle located at the center of the infectious virion. The core is composed of a complex of the NC (nucleocapsid) protein and genomic RNA, surrounded by a shell of the CA (capsid) protein. A method was developed for assembling cones in vitro using pure recombinant HIV-1 CA-NC fusion proteins and RNA templates. These synthetic cores are capped at both ends and appear similar in size and morphology to authentic viral cores. It is proposed that both viral and synthetic cores are organized on conical hexagonal lattices, which by Euler’s theorem requires quantization of their cone angles. Electron microscopic analyses revealed that the cone angles of synthetic cores were indeed quantized into the five allowed angles. The viral core and most synthetic cones exhibited cone angles of approximately 19 degrees (the narrowest of the allowed angles). These observations suggest that the core of HIV is organized on the principles of a fullerene cone, in analogy to structures recently observed for elemental carbon. essen-tial roles in viral assembly: the NH2-terminal MA (matrix) region binds the membrane, the CA and NC condense about the viral RNA to form an unusual conical structure at the cen-ter of the virus (the “core”). The incen-terior of

the core is composed of an RNA/NC cylin-ders in the presence of RNA (5). Building on this, we screened for conditions that would mod-els for the viral core have suggested that the genomic RNA dimer dictates the cone mor-phology (8). The protein construct included both the CA and NC domains of HIV-1 Gag, because viral core morphology can be Lake City, UT 84132, USA. J. T. Finch, Structural Studies Division, UK. Medical Research Council

preparations of virions and synthetic cores were identical, and the two objects are shown at the same magnification.

RE P O R T S

1 JANUARY 1999 VOL 283 SCIENCE www.sciencemag.org 80

#"

 The  gag-­‐pol  polyprotein  is  cleaved  into  the  PR,  RT  and  IN.  The  PR  is  essential  to   mediate  the  processing  of  the  gag  and  gag-­‐pol  precursors.  The  catalytic  site  of  PR   contains  an  aspartic  acid  (Asp)  that  is  shared  by  a  whole  family  of  proteases.  The   enzyme  active  form  starts  to  appear  after  the  cleavage  at  the  N  terminus  of  the   PR  within  the  gag-­‐pol  and  reaches  a  maximum  level  after  the  cleavage  at  the  C   terminus,   a   process   that   happens   under   acidic   conditions.   Indeed,   artificially   extending  the  N  terminal  domain  of  PR  renders  the  virions  unable  to  infect  65.    

 Upon  maturation,  the  RT  is  found  in  the  form  of  a  heterodimer,  composed  of  the   two  subunits  p66  and  p51  of  560  and  440  amino  acids,  respectively.  The  former   subunit   carries   the   catalytic   domains   of   the   polymerase   and   the   RNase   H   activities  28.  

 

 The   polymerase   catalyzes   the   initiation   of   reverse-­‐transcription   and   the   elongation  of  the  resulting  transcripts,  whereas  the  endonuclease  mediates  the   gradual   and   subsequent   degradation   of   the   viral   RNA   templates.   Recently,   the   crystal   structures   of   the   RT   complexed   with   RNA-­‐DNA   and   DNA-­‐DNA   duplexes   has  been  solved  and  allows  the  understanding  of  how  RT-­‐inhibitors  work  66,67.    

 The  mature  form  of  HIV-­‐1  IN  is  a  dimer  that  is  composed  of  two  catalytic  core   domains  (CCD),  via  an  interaction  between  the  N-­‐terminal  domain  (NTD)  and  the   C-­‐terminal   domain   (CTD).   The   active   site   of   the   CCD   carries   Asp   and   glutamic   acid   (Glu)   that   are   both   electronegative   residues.   Upon   interaction   with   viral   cDNA,   two   IN   dimers   come   in   contact,   forming   a   tetramer   68,69.   The   Pre-­‐

integration  complex  (PIC)  that  contains  IN,  binds  to  nuclear  pore  proteins  as  the   Nup153,  Nup160,  RANBP2  and  TNPO3,  which  allows  it  to  be  imported  into  the   nucleus  70-­‐74.  Once  there,  the  PIC  targets  the  host  genome  via  the  interaction  of  IN   with  LEDGF/p75  that  possess  a  chromatin-­‐binding  domain  75.  

 

 The   lipid   host-­‐derived   membrane   contains   bound  env   glycoprotein   gp41   via   non-­‐covalent  interactions.  The  TM  protein  gp41  interacts  further  with  the  other   env-­‐derived  glycoprotein,  namely  gp120,  which  is  in  this  way  connected  to  the   virion   membrane   and   yet   exposed   to   the   surface   (SU   protein),   as   reviewed   by  

Wilen  and  colleagues  76.  Heterodimers  of  gp41  and  gp120  form  further  trimers   that  are  the  working  module  for  viral  fusion  77.  Gp120  interacts  with  the  specific   CD4   receptor   strongly   expressed   on   the   CD4+   T   cells   via   mainly   one   of   its   five   variable  loops  (VL1-­‐5),  VL3.  This  binding  operates  a  conformational  change  that   allows  gp120  to  bind  one  of  two  co-­‐receptors  depending  on  the  cell  type.  CCR5   co-­‐receptor   is   expressed   on   memory   CD4+   T   cells,   Dendritic   Cells   (DCs)   and   macrophages.   CXCR4   co-­‐receptor   is   expressed   on   naïve   and   memory   CD4+   T   cells.   The   aforementioned   conformational   change   allows   additionally   the   gp41   monomer   to   expose   the   hydrophobic   domain   called   the   fusion   peptide,   representing  the  first  step  of  the  fusion  between  viral  and  host  membranes  76.    

 The  HIV-­‐1  genome  additionally  codes  for  regulatory  and  accessory  proteins.  As   reviewed   by   Karn   and   Stoltzfus  78,   the   two   regulatory   proteins   are   tat   and   rev   that   are   required   for   proper   HIV-­‐1   provirus   transcription   and   export   of   the   resulting  mRNAs  from  the  nucleus  to  the  cytoplasm,  respectively.  

 

Additional  accessory  proteins  of  HIV-­‐1  are  dispensable  for  the  viral  replication   but  assist  in  the  evasion  from  innate  and  adaptive  immunity.  These  are  vif,  vpr,   vpu  and  nef.  Vif    and  vpr  both  interact  with  cellular  targets  and  cullin  complexes   to   direct   host   defense   factors   to   the   proteasome  79.   Vpu   and   Nef   regulate   the   abundance   of   the   cell   surface   molecules   as   CD4.   Nef   additionally   targets   other   molecules   expressed   at   the   plasma   membrane,   as   the   CD3   receptor   and   Major   Histocompatibility  Complex  (MHC)  Class  I  molecules  79.  

 

 The  structure  of  the  HIV-­‐1  genome  is  similar  to  that  of  other  retroviruses  in  that   it   consists   of   two   flanking   LTRs   with   the   previously   mentioned   conserved   elements   and   a   central   coding   region   (figure   5).   HIV-­‐1   expresses   one   primary   transcript   that   is   either   translated   into   a   gag   precursor   (Pr55gag),   a   gag-­‐pol   precursor,   or   single/multiply   spliced  78.   Depending   on   the   splice   site   used,   the   single  splicing  will  result  in  the  production  of  vif,  vpr  or  vpu-­‐env  transcripts.  Two   different  double-­‐splicing  events  will  result  in  the  generation  of  the  tat  transcript   and  that  of  the  bicistronic  rev  and  nef    78.  

 

Figure  5:  Structures  of  the  HIV-­‐1  genome  and  virion.  A)  The  HIV-­‐1  genome  is  composed  of  two  flanking   LTRs   containing   typcial   retroviral   regulatory   sequences,   and   different   ORFs   coding   for   gag-­‐pol,   env,   the   regulatory  proteins  rev  and  tat,  and  the  accessory  proteins  vif,  vpr,  vpu  and  nef.  The  rev-­‐responsive  element   (RRE,  light  blue  box)  is  depicted  below  the  env  ORF  (green  box).  B)  The  structure  of  the  HIV-­‐1  mature  virion   is  depicted  with  the  cleaved  viral  products,  which  are  indicated  with  arrows.  A)  and  B)  from  Sakuma  et  al,   2012  80.  

 

1.1.8  The  HIV-­‐1  life  cycle    

 

 The  first  step  of  the  HIV-­‐1  replication  cycle  is  the  viral  particle  fusion  with  the   plasma  membrane  of  a  susceptible  cell  that  expresses  specific  receptors.  Upon   the  binding  of  gp120  to  the  CD4  receptor  of  an  immune  cell  such  as  a  

lymphocyte,  it  further  interacts  with  a  specific  seven  transmembrane  domain  G   protein-­‐coupled  coreceptor  depending  on  the  virus  tropism.  Generally,  CCR5-­‐

tropic  virus  dominate  the  first  phase  of  the  infection,  and  gradually  the  tropism   of  some  strains  can  change  to  reach  up  to  50%  of  viral  particles  that  use  the   alternative  CXCR4  co-­‐receptor  81,82.  Additionally,  some  strains  of  HIV-­‐1  are  able   to  use  other  coreceptors  as  CCR2b,  CCR3,  CCR8  and  the  orphan  receptors  V28,   STRL33  and  GPR15  83.  

 

!"

#"