• Aucun résultat trouvé

Ondes d’interface avec tension superficielle Introduction aux instabilit´es

Introduction aux instabilit´es

Afin notamment de pr´eparer l’´etude, qui sera faite en TD6, de ph´enom`enes d’instabilit´es, et d’autre part de s’initier `a l’´etude de ph´enom`enes diphasiques7, nous d´eveloppons un mod`ele `a un seul fluide pesant des ondes `a l’interface entre deux fluides. Nous ´etudions donc la dynamique d’une interface entre un liquide, typiquement de l’eau, et un gaz, typiquement de l’air, comme repr´esent´ee sur la figure3.1. On utilise le mod`ele des fluides parfaits incompressibles, dans le cas d’´ecoulements potentiels. Le gaz est suppos´e « non pesant », donc en pratique il sera isobare et les ´ecoulements qui pourraient y avoir lieu ne joueront aucun rˆole.

3.3.1 Principes de l’analyse lin´eaire de stabilit´e

On suppose que l’´etendue de liquide a une profondeur h, et on consid`ere des modes lin´eaires de perturbation, ou « modes normaux », de cette surface libre correspondant `a une position de la surface libre :

z = h + ζ avec ζ = ζ(x,t) = Re[A exp(ikx) exp(σt)] . (3.17)

Ces modes sont en fait des modes de Fourier en x : ce passage en modes de Fourier est judicieux, et permettra des calculs relativement « simples », parce que la configuration de base du syst`eme est ind´ependante de x. Cette proportionnalit´e en ´ecriture complexe `a A exp(ikx + σt) doit ˆetre v´erifi´ee par tous les champs du mode normal, par exemple le potentiel de l’´ecoulement du mode consid´er´e est de la forme

φ = φ(x,z,t) = RenA f (z) exp(ikx + σt)o. (3.18)

Ainsi tous les champs ont le mˆeme type de d´ependance en x et t, coordonn´ees d’invariance de la configuration de base. Dans les formules (3.17) et (3.18), A est l’amplitude complexe du mode consid´er´e, suppos´ee petite. Le nombre d’onde k du mode, ´egal `a 2π/λ avec λ la p´eriode spatiale, est un param`etre g´eom´etrique que l’on se donne, et que l’on va faire varier. Enfin σ est un nombre complexe que l’on veut calculer, fonction de k (et des param`etres de contrˆole du syst`eme) et qui va caract´eriser la r´eponse du syst`eme `a ce mode de perturbation. L’adjectif « lin´eaire » signifie que l’on va lin´eariser les ´equations de la m´ecanique des fluides `a l’ordre A, en n´egligeant tous les termes non lin´eaires d’ordre A2. Ainsi chaque mode (3.17) est une petite perturbation de la

configuration de base, au repos, et nous menons une « analyse lin´eaire de stabilit´e » de cette configuration de base.

La signification pr´ecise de cette analyse se comprend en raisonnant en terme de r´eponse du syst`eme `

a de petites perturbations initiales quelconques. Une condition initiale quelconque, engendr´ee par toutes sortes de « bruits », pourrait en effet, par transform´ee de Fourier, s’´ecrire

ζ(x,t = 0) = Ren X

k

A(k) exp(ikx)o. (3.19)

Par lin´earit´e, la solution aux temps courts serait alors ζ(x,t) = Ren X

k

A(k) exp(ikx + σ(k)t) o, (3.20)

superposition des solutions pour chaque mode normal...

6. Cf. le probl`eme3.3sur les instabilit´es de Kelvin-Helmholtz et Rayleigh-Taylor. 7. `A ce stade la lecture du chapitre2devient indispensable.

3.3 Ondes d’interface avec tension superficielle - Introduction aux instabilit´es 49 p p′ n g x z z = h + ζ

Fig. 3.1 – Sch´ema de principe de la configuration bidimensionnelle ´etudi´ee pour le calcul d’ondes `a l’interface entre deux fluides.

Revenant au cas d’un seul mode normal (3.17), (3.18), pour simplifier, il faut bien r´ealiser que A et σ sont des variables complexes,

A = |A| exp(i arg A) , σ = σr+ iσi . (3.21)

Du fait que

Re[A exp(ikx + σt)] = |A| cos(kx + σit + arg A) exp(σrt) , (3.22)

trois cas sont `a distinguer, concernant le caract`ere amplifi´e ou non des modes :

• soit σr > 0, auquel cas on a affaire `a un mode amplifi´e; la configuration de base est

instable ;

• soit σr= 0, auquel cas on a affaire `a un mode neutre ; la configuration de base est margi-

nalement stable vis-`a-vis de ce mode ;

• soit σr < 0, auquel cas on a affaire `a un mode amorti ; la configuration de base est stable

vis-`a-vis de ce mode.

Dans le cas σr > 0, σr est le taux de croissance temporel du mode amplifi´e ; dans le cas

σr< 0,−σrest le taux d’amortissement temporel du mode amorti. Dans le premier cas, le mode

amplifi´e par l’instabilit´e est une petite perturbation qui devient une grande perturbation : ce ph´enom`ene, illustr´e par exemple sur les figures3.5 et3.6, est l’essence mˆeme d’une instabilit´e. De mˆeme, trois cas sont `a distinguer concernant le caract`ere propagatif ou non des modes :

• soit σi > 0, auquel cas on pose σi = ω et le mode consid´er´e est une onde gauche se

propageant `a la vitesse de phase−ω/k ;

• soit σi = 0, auquel cas le mode consid´er´e est non propagatif ;

• soit σi < 0, auquel cas on pose σi = −ω et le mode consid´er´e est une onde droite se

propageant `a la vitesse de phase ω/k.

Dans les cas σi6= 0, ω = |σi| est la fr´equence angulaire de l’onde, ´egale `a 2π/T avec T la p´eriode

temporelle de l’onde.

Les cas o`u les modes les plus « dangereux », de σr > 0 maximum, correspondent `a k 6= 0,

conduisent `a l’´emergence de motifs structur´es de longueur d’onde λ = 2π/k finie, on appelle donc ces instabilit´es structurantes. Au contraire, si les modes les plus « dangereux » correspondent `a k = 0, on appelle les instabilit´es homog`enes.

Cette ´etude se fait effectivement en fonction des param`etres de contrˆole du syst`eme. Lorsque l’on observe un changement des propri´et´es de stabilit´e d’une configuration par variation d’un param`etre de contrˆole, on a une « bifurcation », comme d´ej`a ´evoqu´e dans le compl´ement 1.1.

50 Chapitre 3 Mod`ele du fluide parfait - Applications i.e. nous avons affaire `a des ondes neutres, indiff´erement droites ou gauches, ce qui se comprend puisqu’il n’y a pas de direction privil´egi´ee dans le syst`eme. Des exemples d’instabilit´es conduisant `

a des ondes droites seulement seront donn´es dans le probl`eme 3.3.

3.3.2 Analyse des ondes d’interface

Revenant `a la physique de notre probl`eme, grˆace `a la condition d’incompressibilit´e et `a la condition cin´ematique `a l’interface, qui stipule qu’une particule qui s’y trouve `a un instant donn´e y reste toujours8,

d

dt[z− (h + ζ)] = 0 si z = h + ζ , (3.23)

on montre que le potentiel de l’´ecoulement dans le liquide est donn´e par

φ = φ(x,z,t) = RenA σ

k sinh(kh) exp(ikx + σt) cosh(kz) o

. (3.24)

En prenant en compte l’effet d’une tension de surface γ non nulle, il existe, d’apr`es le chapitre2, un saut de pression `a l’interface donn´e par la loi de Laplace

p− p0 = γ div n , (3.25)

avec n la normale sortante unitaire `a l’interface, prolong´ee de fa¸con r´eguli`ere de part et d’autre de l’interface. On obtient alors, apr`es calcul du champ de pression dans le fluide pesant par un th´eor`eme de Bernoulli, que les valeurs possibles de σ `a k fix´e v´erifient l’´equation caract´eristique

ρσ2 = −ρgk tanh(kh) − γk3tanh(kh) (3.26)

o`u ρ est la densit´e du liquide. Il est normal que l’amplitude A n’apparaisse pas dans cette relation : elle peut ˆetre factoris´ee et sa valeur pr´ecise ne joue pas de rˆole ici, tant qu’elle reste petite9. Ainsi σ est un imaginaire pur, ce qui confirme que l’on a affaire `a des ondes neutres. Posant σ = iω, on obtient la relation de dispersion donnant la vitesse de phase c de l’onde :

c2 = ω k 2 = g ktanh(kh) | {z } terme de gravit´e + γk ρ tanh(kh) | {z } terme capillaire . (3.27)

La fonction ω(k) donn´ee par (3.27) est strictement croissante, ce qui signifie qu’`a fr´equence ω donn´ee ne se propagent que des ondes, indiff´eremment droite ou gauche, de nombre d’onde k bien d´efini.

Pour une interface eau-air le coefficient de tension superficielle γ = 0,074 N/m donc le terme capillaire ne domine que pour des longueurs d’ondes λ = 2π/k plus petites que la longueur capillaire

lc =

r γ

ρg = 2,7 mm , (3.28)

auquel cas on a affaire `a des ondes capillaires. Compte tenu de la petitesse de lc, on a plus

souvent affaire `a des ondes de gravit´e v´erifiant λ  lc et c2 ' g tanh(kh)/k. On m´editera avec

profit les courbes exemples pr´esent´ees en cours.

8. Cf. la premi`ere section du chapitre2.

3.4 Effets de compressibilit´e dans les fluides : ondes sonores 51