• Aucun résultat trouvé

Limit identification

Dans le document Discr´ etisations des (Page 91-98)

To finish the proof of our theorem we have to show that there exists only one process that can be the weak limit of the family{Xε(t)}t≥0 asε↓0. We prove this with the help of Strook-Varadhan martingale identification theorem. We start with the following lemma : Lemma 4.7.1 (cf. [32], Lemma 13, p. 260) For any γ ∈(0,1), M ∈N, ψ: (Rd)M →R+ The second term above is equal to

**

The first term of the right hand side of (4.24) may be rewritten in the form ME

The last integral above is of orderε. SinceME[Vi(ρ)] = 0 we may estimate as we already did in the previous section :

Ent(εγT−2)

Lemma 4.7.2 Under the assumptions of Lemma 10, for any ε >0 we have To finish the proof of the lemma we are left with the proof of the fact that the terms III andIV in (4.25) are of magnitudeo(εγ). Once again we may find aV−∞,0-measurable random variable Ψ such thatIII may be rewritten in the form

**

1

Continue this way and we get that (4.27) is equal 1

sinceE[Vi(ρ)] = 0. The first term above may be estimated with help of Lemma 4.5.1. We have 5QkΨY5LqkC2 for any q ∈ [1,2), k ∈ N, the constant C >0 depending only on q

This ends the proof of Lemma 4.7.2 !

Lemma 4.7.3 For any γ ∈(0,1) and 0< γ( < γ there exists a constant C >0 such that get ii)−iv) by Schwartz inequality. But v) is obvious. To prove i) we have to find an appropriate estimate from above of the term

ε4

and this is exactly the result of Lemma 15 of [32] ! Now let f ∈C0(Rd). Let ψ be as in Lemma 11 and let tm =s+mεγ. From the Taylor expansion formula we have

ME[(f(Xε(t))−f(Xε(s)))Ψ] = /

m:s<tm<t

ME{@[Xε(tm+1)−Xε(tm)],(∇f)(Xε(tm))AΨ}+ 1

2 /

m:s<tm<t

ME{@[Xε(tm+1)−Xε(tm)]⊗[Xε(tm+1)−Xε(tm)],(∇ ⊗ ∇f)(Xε(tm))AΨ}+ 1

6 /

m:s<tm<t

ME{@[Xε(tm+1)−Xε(tm)]⊗[Xε(tm+1)−Xε(tm)]⊗[Xε(tm+1)−Xε(tm)], (∇ ⊗ ∇ ⊗ ∇f)(Xεm))AΨ},

where θm is a point in the segment [Xε(tm),Xε(tm+1)]. The first term of the sum above is estimated with help of Lemma 4.7.1 by the term of magnitude o(εγ). The third one, by H¨older inequality and Lemma 4.7.3, may be estimated from above byCε2!. Choosing carefullyγ ∈(0,1) andγ( ∈(0, γ) we get again the term of magnitude o(εγ). The second term we may rewrite in the form

1 2

/

m:s<tm<t

ME{@[Xε(tm+1)−Xε(tm)]⊗[Xε(tm+1)−Xε(tm)]−Dε,(∇ ⊗ ∇f)(Xε(tm))AΨ}+ 1

2 /

m:s<tm<t

ME{@Dε,(∇ ⊗ ∇f)(Xε(tm))AΨ}, where

Dε=ME[[Xε(tm+1)−Xε(tm)]⊗[Xε(tm+1)−Xε(tm)]].

And this, by Lemma 4.7.2, up to the terms of ordero(εγ) is equal to : 1

2 /

m:s<tm<t

 /d

i,j=1

εγDijME[∂ij2f(Xε(tm))Ψ] +o(εγ)

. (4.30)

Thus we get that the limit of the family of processes {Xε(t)}t≥0 as ε ↓ 0 must have the lawµ on the spaceC([0,+∞),Rd) such that for any f ∈C0(Rd),

f(x(t))−1 2

/d

i,j=1

Dij

@ t

0

ij2f(x(ρ))dρ, t≥0

is a martingale underµ. By the theorem of Strook and Varadhan (see e.g. [46]) it may be identified as a diffusion with the covariance matrixD= [Dij]. This is the end of the proof

of our theorem !

[1] R. J. Adler. The geometry of random fields. John Wiley & Sons Ltd., Chichester, 1981. Wiley Series in Probability and Mathematical Statistics.

[2] R. J. Adler. An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Institute of Mathematical Statistics, Hayward, CA, 1990.

[3] L. Ahlfors and L. Bers. Riemann’s mapping theorem for variable metrics. Ann. of Math. (2), 72 :385–404, 1960.

[4] V. Arnol(d. Chapitres suppl´ementaires de la th´eorie des ´equations diff´erentielles or-dinaires. “Mir”, Moscow, 1984. Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition.

[5] V. I. Arnol(d. Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR Ser. Mat., 25 :21–86, 1961.

[6] E. Behrends and B. Fiedler. Periods of discretized linear Anosov maps. Ergodic Theory Dynam. Systems, 18(2) :331–341, 1998.

[7] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics : Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication.

[8] B. Bollob´as. Random graphs, volume 73 of Cambridge Studies in Advanced Mathe-matics. Cambridge University Press, Cambridge, second edition, 2001.

[9] A. Boyarsky. Computer orbits.Comput. Math. Appl. Ser. A, 12(10) :1057–1064, 1986.

[10] R. A. Carmona and L. Xu. Homogenization for time-dependent two-dimensional incompressible Gaussian flows. Ann. Appl. Probab., 7(1) :265–279, 1997.

[11] S. S. Chern, P. Hartman, and A. Wintner. On isothermic coordinates. Comment.

Math. Helv., 28 :301–309, 1954.

[12] L. Dara. Singularit´es g´en´eriques des ´equations diff´erentielles multiformes. Bol. Soc.

Brasil. Mat., 6(2) :95–128, 1975.

[13] A. A. Davydov. The normal form of a differential equation, that is not solved with respect to the derivative, in the neighborhood of its singular point.Funktsional. Anal.

i Prilozhen., 19(2) :1–10, 96, 1985.

[14] P. Diamond, A. Klemm, P. Kloeden, and A. Pokrovskii. Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures. J. Statist. Phys., 84(3-4) :713–733, 1996.

[15] P. Diamond, P. Kloeden, and A. Pokrovskii. Numerical modeling of toroidal dynamical systems with invariant Lebesgue measure. Complex Systems, 7(6) :415–422, 1993.

[16] F. J. Dyson and H. Falk. Period of a discrete cat mapping. Amer. Math. Monthly, 99(7) :603–614, 1992.

92

[17] T. Estermann. On the number of primitive lattice points in a parallelogram.Canadian J. Math., 5 :456–459, 1953.

[18] A. Fannjiang and T. Komorowski. A martingale approach to homogenization of unbounded random flows. Ann. Probab., 25(4) :1872–1894, 1997.

[19] A. Fannjiang and T. Komorowski. An invariance principle for diffusion in turbulence.

Ann. Probab., 27(2) :751–781, 1999.

[20] A. Fannjiang and T. Komorowski. Turbulent diffusion in Markovian flows.Ann. Appl.

Probab., 9(3) :591–610, 1999.

[21] C. F. Gauß. Werke. Band IV. Georg Olms Verlag, Hildesheim, 1973. Reprint of the 1873 original.

[22] D. Geman and J. Horowitz. Random shifts which preserve measure. Proc. Amer.

Math. Soc., 49 :143–150, 1975.

[23] E. Ghys. Variations autour du th´eor`eme de r´ecurrence de Poincar´e. Le journal de maths des ´el´eves de ENS, 1(1) :3–12, 1994.

[24] P. G´ora and A. Boyarsky. Why computers like Lebesgue measure. Comput. Math.

Appl., 16(4) :321–329, 1988.

[25] M. R. Herman. Mesure de Lebesgue et nombre de rotation. InGeometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), pages 271–293. Lecture Notes in Math., Vol 597. Springer, Berlin, 1977.

[26] M. R. Herman. Sur la conjugaison diff´erentiable des diff´eomorphismes du cercle `a des rotations. Inst. Hautes ´Etudes Sci. Publ. Math., (49) :5–233, 1979.

[27] P. Kargaev and A. Zhigljavsky. Approximation of real numbers by rationals : some metric theorems. J. Number Theory, 61(2) :209–225, 1996.

[28] A. Katok and B. Hasselblatt.Introduction to the modern theory of dynamical systems, volume 54 ofEncyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza.

[29] Y. Katznelson and D. Ornstein. The differentiability of the conjugation of certain diffeomorphisms of the circle. Ergodic Theory Dynam. Systems, 9(4) :643–680, 1989.

[30] Y. L. Kergosien and R. Thom. Sur les points paraboliques des surfaces. C. R. Acad.

Sci. Paris S´er. A-B, 290(15) :A705–A710, 1980.

[31] P. Kloeden, J. Mustard, and A. Pokrovskii. Statistical properties of some spatially discretized dynamical systems. Z. Angew. Math. Phys., 50(4) :638–660, 1999.

[32] T. Komorowski and G. C. Papanicolaou. Motion in a Gaussian incompressible flow.

Ann. Appl. Probab., 7(1) :229–264, 1997.

[33] A. Korn. Zwei Anwendungen der Methode der sukzessiven Ann¨aherungen. Schwarz Abhandlungen, pages 215–229.

[34] S. M. Kozlov. The averaging method and walks in inhomogeneous environments.

Uspekhi Mat. Nauk, 40(2(242)) :61–120, 238, 1985.

[35] C. Landim, S. Olla, and H. T. Yau. Convection-diffusion equation with space-time ergodic random flow. Probab. Theory Related Fields, 112(2) :203–220, 1998.

[36] O. E. Lanford, III. Informal remarks on the orbit structure of discrete approximations to chaotic maps. Experiment. Math., 7(4) :317–324, 1998.

[37] P. D. Lax. Approximation of meausre preserving transformations. Comm. Pure Appl.

Math., 24 :133–135, 1971.

[38] Y. E. Levy. Some remarks about computer studies of dynamical systems. Phys. Lett.

A, 88(1) :1–3, 1982.

[39] L. Lichtenstein. Zur Theorie der konformen Abbildung. Konforme Abbildung nichta-nalytischer, singularit¨atenfreier Kl¨achenst¨ucke auf ebene Gebiete.

[40] T. Miernowski. Central limit theorem for a Gaussian incompressible flow with ad-ditional Brownian noise. Probab. Math. Statist., 23(2, Acta Univ. Wratislav. No.

2593) :413–434, 2003.

[41] G. C. Papanicolaou and S. R. S. Varadhan. Convection-diffusion equation with space-time ergodic random flow.in J. Fritz, J. L. Lebowitz edts., Random Fields Coll. Math.

Soc. Janos Bolyai, North Holland, 27 :835–873, 1982.

[42] S. C. Port and C. J. Stone. Random measures and their application to motion in an incompressible fluid. J. Appl. Probability, 13(3) :498–506, 1976.

[43] Yu. A. Rozanov. Stationary random processes. Translated from the Russian by A.

Feinstein. Holden-Day Inc., San Francisco, Calif., 1967.

[44] N. B. Slater. Gaps and steps for the sequence nθ mod 1. Proc. Cambridge Philos.

Soc., 63 :1115–1123, 1967.

[45] C. J. Stone. Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc., 14 :694–696, 1963.

[46] D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes, volume 233 ofGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1979.

[47] G. I. Taylor. Diffusions by continuous movements. Proc. London Math. Soc. Ser. 2, 20 :196–211, 1923.

[48] R. Thom. Sur les ´equations diff´erentielles multiformes et leurs int´egrales singuli`eres.

Bol. Soc. Brasil. Mat., 3(1) :1–11, 1972.

[49] R. Uribe-Vargas. New projective invariant associated to the special parabolic points of surfaces and to swallowtails. Preprint of Banach Center, Warsaw.

[50] R. Uribe-Vargas. Surface evolution, implicit differential equations end pairs of legen-drian fibrations. 2005. Preprint.

[51] G. L. Watson. On integersnrelatively prime to [αn]. Canadian J. Math., 5 :451–455, 1953.

[52] T. Weinstein. An introduction to Lorentz surfaces, volume 22 ofde Gruyter Exposi-tions in Mathematics. Walter de Gruyter & Co., Berlin, 1996.

[53] A. Wintner. On the local role of the theory of the logarithmic potential in differential geometry. Amer. J. Math., 75 :679–690, 1953.

Dans le document Discr´ etisations des (Page 91-98)