• Aucun résultat trouvé

36 Figure 14: (a) Image MET en champ clair du matériau vitrocéramique 55SiO 2 -5Na 2 O-17ZnO-23Ga 2 O 3

Liste des figures

I- 36 Figure 14: (a) Image MET en champ clair du matériau vitrocéramique 55SiO 2 -5Na 2 O-17ZnO-23Ga 2 O 3

obtenu après une cristallisation à 1000° C sur une durée de 10 mn (b) Intensité d’émission en luminescence à 696 nm en fonction du temps pour la vitrocéramique 55SiO2-5Na2O-17ZnO-23Ga2O3

dopée au Cr3+. ... I-25

Figure 15: Images MEB des vitrocéramiques du système B2O3-BaO cristallisées en surface, obtenues avec différents traitements thermiques : (a) 550 ° C pendant 30 h; (b) 575 ° C pendant 5h (c) 600 ° C pendant 10 h, (d) 800 ° C pendant 1 h et (e) 900 ° C pendant 1 h [50]. ... I-30 Figure 16: images MEB de la surface des échantillons traités thermiquement à 620°C pendant 1h : (a) sans modification de surface, (b) surface exposée aux vibrations ultrasoniques dans une solution aqueuse de β-BBO avant le traitement thermique [58] ... I-31 Figure 17: Photo-précipitation de la Phase LaBGeO5 dans le verre 25La2O3-25B2O3-25GeO2 ... I-32 Figure 18: Images obtenues par microscopie optique de polarisation. La longueur d’onde du laser d’écriture est de λ=546 nm [67] ... I-33

I-37

Références :

[1] L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, "Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass," Journal of the American Ceramic

Society, vol. 90, pp. 1556-1561, 2007.

[2] Y. Yue, "The iso-structural viscosity, configurational entropy and fragility of oxide liquids,"

Journal of Non-Crystalline Solids, vol. 355, pp. 737-744, 2009/05/01/ 2009.

[3] A. Monaco, A. I. Chumakov, Y. Z. Yue, G. Monaco, L. Comez, D. Fioretto, W. A. Crichton, and R. Rüffer, "Density of Vibrational States of a Hyperquenched Glass," Physical Review Letters, vol. 96, p. 205502, 2006.

[4] Y. Yue and C. A. Angell, "Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses," Nature, vol. 427, p. 717, 2004.

[5] Q.-Y. Z. Zhong-Hong Jiang, "The structure of glass: A phase equilibrium diagram approach,"

Progress in Materials Science, vol. 61, pp. 144-215, Décembre 5 2013

[6] G. N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, and S. J. Gurman, "Local structure of silicate glasses," Nature, vol. 293, p. 611, 1981.

[7] W. Vogel, Glass Chemistry, 2 ed.: Springer-Verlag Berlin Heidelberg, 1994.

[8] Z. Jiang and L. Hu, "Phase diagram structure model of glass," Science in China Series E:

Technological Sciences, vol. 40, pp. 1-11, February 01 1997.

[9] W. H. Zachariasen, "THE ATOMIC ARRANGEMENT IN GLASS," Journal of the American Chemical

Society, vol. 54, pp. 3841-3851, 1932/10/01 1932.

[10] J. Zarzycki, Glasses and the Vitreous State, 1991.

[11] J. E. STANWORTH, "Oxide Glass Formation from the Melt," Journal of the American Ceramic

Society, vol. 54, pp. 61-63, 1971.

[12] J. Zarzycki, Les verres et l'état vitreux, 1982.

[13] L. C. Daniel R. Neuville, Daniel Caurant, Lionel Montagne, Du verre au cristal, 2013.

[14] J. W. Gibbs, "On the equilibrium of heterogeneous substances," American Journal of Science, vol. Series 3 Vol. 16, pp. 441-458, December 1, 1878 1878.

[15] A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, "Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers," Journal of Non-Crystalline Solids, vol. 356, pp. 3059-3065, 2010. [16] R. Becker, Döring, W., "Kinetic treatment of germ formation in supersaturated

I-38 [17] G. B. B. W.Holand, Glass-ceramic technology, 2012.

[18] J. W. P. Schmelzer, A. R. Gokhman, and V. M. Fokin, "Dynamics of first-order phase transitions in multicomponent systems: a new theoretical approach," Journal of Colloid and Interface

Science, vol. 272, pp. 109-133, 2004.

[19] S. Sen and T. Mukerji, "A generalized classical nucleation theory for rough interfaces: application in the analysis of homogeneous nucleation in silicate liquids," Journal of

Non-Crystalline Solids, vol. 246, pp. 229-239, 1999.

[20] L. Gránásy, T. Börzsönyi, and T. Pusztai, "Nucleation and Bulk Crystallization in Binary Phase Field Theory," Physical Review Letters, vol. 88, p. 206105, 2002.

[21] L. Gránásy, "Diffuse interface model of volume nucleation in glasses," Thermochimica Acta, vol. 280–281, pp. 83-100, 1996.

[22] M. Ghasemzadeh, A. Nemati, and S. Baghshahi, "Effects of nucleation agents on the preparation of transparent glass–ceramics," Journal of the European Ceramic Society, vol. 32, pp. 2989-2994, 2012.

[23] L. Cormier, O. Dargaud, N. Menguy, G. S. Henderson, M. Guignard, N. Trcera, and B. Watts, "Investigation of the Role of Nucleating Agents in MgO-SiO2-Al2O3-SiO2-TiO2 Glasses and Glass-Ceramics: A XANES Study at the Ti K- and L2,3-Edges," Crystal Growth and Design, vol. 11, pp. 311-319, 2011 2011.

[24] J. W. Greig, "Immiscibility in silicate melts; Part I," American Journal of Science, vol. Series 5 Vol. 13, pp. 1-44, January 1, 1927 1927.

[25] M. V. A.Weber, "Keimbildung in übersättigten Gebilden," Phys. Chem, vol. 119, pp. 277 - 301, 1926.

[26] G. Borelius, "Zur Theorie der Umwandlungen von metallischen Mischphasen. V Schwankungen und Kernbildung in unterkühlten Phasen," Annalen der Physik, vol. 425, pp. 517-531, 1938. [27] J. Zarzycki, Glasses and the Vitreous State Cambridge Solid State Science Series, 1991. [28] J. W. Cahn, "On spinodal decomposition," Acta Metallurgica, vol. 9, pp. 795-801, 1961/09/01/

1961.

[29] B. E. Warren and A. G. Pincus, "ATOMIC CONSIDERATION OF IMMISCIBILITY IN GLASS SYSTEMS*," Journal of the American Ceramic Society, vol. 23, pp. 301-304, 1940.

[30] S. Block and E. M. LEVIN, "Structural Interpretation of Immiscibility in Oxide Systems: II, Coordination Principles Applied to Immiscibility," Journal of the American Ceramic Society, vol. 40, pp. 113-118, 1957.

[31] P. Hudon and D. R. Baker, "The nature of phase separation in binary oxide melts and glasses. I. Silicate systems," Journal of Non-Crystalline Solids, vol. 303, pp. 299-345, 2002/06/01/ 2002.

I-39 [32] M. M. Shul’ts, "Some Thermodynamic Aspects of Phase-Separation Phenomena," Boston, MA,

1973, pp. 23-27.

[33] D. R. Neuivlle, L. Cormier, L. D. Caurant , and L. Montagne, Du verre au cristal: nucleation,

croissance et démixtion, de la recherche aux applications, 2013.

[34] J. W. Gibbs, The collected works of J. Willard Gibbs. New Haven: Yale University Press, 1948. [35] W. Höland, V. Rheinberger, and M. Schweiger, "Nucleation and Crystallization Phenomena in

Glass-Ceramics," Advanced Engineering Materials, vol. 3, pp. 768-774, 2001.

[36] L. M. HU A.-M., MAO D.-L., Crystallization of spodumene-diopside in the las glass ceramics with

CaO and MgO addition vol. 90. Dordrecht, PAYS-BAS: Springer, 2007.

[37] E. D. Zanotto, "A bright future for glass-ceramics," American Ceramic Society, vol. 89, p. 19, 2010.

[38] L. Wondraczek and P. Pradeau, "Transparent Hafnia-Containing β-Quartz Glass Ceramics: Nucleation and Crystallization Behavior," Journal of the American Ceramic Society, vol. 91, pp. 1945-1951, 2008.

[39] X.-z. Guo, h. Yang, M. Cao, C. Han, and F.-f. Song, "Crystallinity and crystallization mechanism of lithium aluminosilicate glass by X-ray diffractometry," Transactions of Nonferrous Metals

Society of China, vol. 16, pp. 593-597, 2006.

[40] S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, "YAG glass-ceramic phosphor for white LED (I): background and development," 2005, pp. 594111-594111-7.

[41] J. W. Strutt and J. W. Strutt, On the Transmission of Light through an Atmosphere containing

Small Particles in Suspension, and on the Origin of the Blue of the Sky Scientific Papers: Cambridge University Press, 2009.

[42] M. Clara Gonçalves, L. F. Santos, and R. M. Almeida, "Rare-earth-doped transparent glass ceramics," Comptes Rendus Chimie, vol. 5, pp. 845-854, 2002.

[43] P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," Journal of Applied Physics, vol. 78, pp. 6367-6374, 1995. [44] A. Sakamoto and S. Yamamoto, "Glass–Ceramics: Engineering Principles and Applications,"

International Journal of Applied Glass Science, vol. 1, pp. 237-247, 2010.

[45] S. Chenu, E. Véron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, and M. Allix, "Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass-Ceramics," Advanced Optical Materials, vol. 2, pp. 364-372, 2014.

[46] R. Adair, L. L. Chase, and S. A. Payne, "Nonlinear refractive index of optical crystals," Physical

Review B, vol. 39, pp. 3337-3350, 1989.

I-40 [48] H. Vigouroux, "Etude de vitrocéramiques optiques pour le doublement de fréquence

" PhD, Sciences et Technologies Bordeaux I, 2012.

[49] W. Nie, "Optical Nonlinearity:Phenomena, applications, and materials," Advanced Materials, vol. 5, pp. 520-545, 1993.

[50] Y.-H. Kao, Y. Hu, H. Zheng, J. D. Mackenzie, K. Perry, G. Bourhill, and J. W. Perry, "Second harmonic generation in transparent barium borate glass-ceramics," Journal of Non-Crystalline

Solids, vol. 167, pp. 247-254, 1994/02/01 1994.

[51] C. A. C. Feitosa, V. R. Mastelaro, A. R. Zanatta, A. C. Hernandes, and E. D. Zanotto, "Crystallization, texture and second-harmonic generation in TiO2–BaO–B2O3 glasses," Optical

Materials, vol. 28, pp. 935-943, 2006.

[52] P. P. S. E. A. Aronne, "Structure and nonisothermal crystallisation of glasses in the BaO–B2O3– TiO2 system," Phys. Chem. Glasses,, vol. 39, pp. 222–227, 1998.

[53] S. Gu, Q. Yu, H. Tao, J. Zhang, X. Han, and X. Zhao, "Second harmonic generation of the 4TiO2·46BaO·50B2O3 transparent crystallized glasses," Journal of Non-Crystalline Solids, vol. 356, pp. 2295-2298, 2010.

[54] A. L. Martinez, R. Lebullenger, C. A. C. Feitosa, and A. C. Hernandes, "Semi-transparent barium borate surface crystallization for second harmonic generation," Journal of Non-Crystalline

Solids, vol. 351, pp. 1372-1376, 2005.

[55] G. S. Murugan, T. Suzuki, Y. Ohishi, Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, "Second-harmonic generation in transparent surface crystallized glasses in the BaO–B2O3– TeO2 system," Applied Physics Letters, vol. 85, pp. 3405-3407, 2004.

[56] A. Aronne, S. Esposito, and P. Pernice, "Structure and nonisothermal crystallisation of glasses in the BaO–B2O3–SiO2 system," Physics and Chemistry of Glasses, vol. 39, pp. 4-8, 1998.

[57] A. Narazaki, K. Tanaka, and K. Hirao, "Optical second-order nonlinearity of transparent glass-ceramics containing BaTiO3 precipitated via surface crystallization," Journal of Materials

Research, vol. 14, pp. 3640-3646, 1999.

[58] Y. Ding, A. Osaka, and Y. Miura, "Enhanced Surface Crystallization of β-Barium Borate on Glass Due to Ultrasonic Treatment," Journal of the American Ceramic Society, vol. 77, pp. 749-752, 1994.

[59] Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, "Optical second order nonlinearity of transparent Ba2TiGe2O8 crystallized glasses," Applied Physics Letters, vol. 81, pp. 223-225, 2002.

[60] Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, "Formation mechanism of ferroelastic Ba2TiGe2O8 and second order optical non-linearity in transparent crystallized glasses," Journal

I-41 [61] T. Komatsu, Y. Takahashi, Y. Benino, and T. E. D. S. A. Fujiwara, "Fabrication and optical second order nonlinearity of transparent Ba2TiGe2O8 crystallized glasses," in Nonlinear Optics:

Materials, Fundamentals and Applications, Wailea, Maui, Hawaii, 2002, p. WE19.

[62] Y. Ding, Y. Miura, S. Nakaoka, and T. Nanba, "Oriented surface crystallization of lithium niobate on glass and second harmonic generation," Journal of Non-Crystalline Solids, vol. 259, pp. 132-138, 1999.

[63] P. Gupta, H. Jain, D. B. Williams, O. Kanert, and R. Kuechler, "Structural evolution of LaBGeO5 transparent ferroelectric nano-composites," Journal of Non-Crystalline Solids, vol. 349, pp. 291-298, 2004.

[64] Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, "LaBGeO5 single crystals in glass and second-harmonic generation," Materials Science and Engineering: B, vol. 120, pp. 155-160, 2005.

[65] V. N. Sigaev, E. V. Lopatina, P. D. Sarkisov, A. Marotta, and P. Pernice, "Non-isothermal crystallization of La2O3·B2O3·2GeO2 glasses," Thermochimica Acta, vol. 286, pp. 25-31, 1996/09/01 1996.

[66] Y. Takahashi, Y. Benino, V. Dimitrov, and T. Komatsu, "Transparent surface crystallized glasses with optical non-linear LaBGeO5 crystals," Journal of Non-Crystalline Solids, vol. 260, pp. 155-159, 1999.

[67] K. Ogawa, T. Honma, and T. Komatsu, "Birefringence imaging and orientation of laser patterned β-BaB2O4 crystals with bending and curved shapes in glass," Journal of Solid State

II-i