• Aucun résultat trouvé

Bande de rotation

II.7.5. Corrélation homonucléaire par le J : INADEQUATE refocalisé

L’expérience INADEQUATE (Incredible Natural Abundance DoublE Quantum Transfer Experiment) refocalisée avec filtre Z a prouvé sa grande efficacité pour déterminer les corrélations homonucléaires associées aux liaisons chimiques dans les solides inorganique [52]. Au cours de cette thèse nous avons utilisé ce type d’expérience pour analyser les corrélations homonucléaires entre les noyaux 29Si-29Si sur des échantillons enrichis en isotope 29Si ou 11B-11B. La séquence d’impulsion rf ainsi que le chemin de cohérence correspondant à cette expérience sont donnés sur la figure 49.

-10 -5 0 5 10 15 20 25 -10 -5 0 5 10 15 20 25

B

3

-B

3

B

4

-B

4

B

3

-B

4 11 B 1 Q di m ens ion (pp m ) 11B 1Q dimension (ppm)

II-51

Figure 49: Séquence d’impulsion de l’expérience INADEQUATE refocalisée avec filtre Z (haut) et chemins de cohérences (bas) [52-54]

Le chemin de cohérences montre que le spectre 2D résultant est une corrélation entre un spectre 2Q (dimension indirecte) et un spectre 1Q (dimension directe). La figure 50 illustre les types de spectres obtenus après une expérience de type INADEQUATE refocalisée. Le spectre brut comme nous venons de l’évoquer montre une corrélation 2Q-1Q (figure 50a). Pour obtenir un spectre plus simple à simuler on effectue un processus de cisaillement appelé sharing qui permet de passer d’un spectre 2Q-1Q à un spectre 1Q-1Q (figure 50b).

Figure 50: Spectres 2D INADEQUATE correspondant à trois spins A, B et C faiblement couplés. B est couplé à A et C (JAB ≠0, JBC≠ 0), et A et C ne sont pas couplés (JAC = 0). a) spectre brut de corrélations 2Q-1Q : la présence des deux pics à égale distance de la diagonal à la fréquence (ωA + ωB), par exemple, correspond à la proximité entre les deux spins A et B b) spectre traité avec la procédure de cisaillement de corrélation 1Q-1Q. [21]

Séquence de pulse Chemin de cohérence 0 t1 -2 -1 +1 +2 𝜋 2 𝜋

II-52

Conclusion

Au cours de mon travail de thèse j’ai élaboré et caractérisé des verres homogènes et des verres présentant des séparations de phases, celles-ci étant exploitées dans l’objectif de synthétiser des vitrocéramiques. Ce chapitre détaille les modes de synthèse que j’ai adoptés afin d’élaborer les échantillons des systèmes aluminosilicates, borosilicates et aluminoborosilicates. Les méthodes de caractérisation qui m’ont permis de définir l’ensemble des spécificités des échantillons à différentes échelles (macroscopique, microscopique et échelle locale) ont été détaillées : il s’agit des propriétés thermiques (Tg, Tc, Tf), microstructurales (MEB, TEM, STEM) et structurales (DRX en température, RMN). La RMN étant l’outil de diagnostic privilégié dans le cadre de cette thèse, cette spectroscopie a été développée plus longuement afin de présenter ses principes, les principales interactions et leur influence sur le signal RMN et les expériences d’acquisition du signal RMN, des spectres 1D aux spectres 2D tels que les spectres MQMAS essentiels pour les noyaux quadripolaires (aluminium et bore notamment dans cette étude), et les méthodes de corrélation et de découplage hétéro et homonucléaire (INADEQUATE, D-HMQC, 𝑅212).

II-53

Références

[1] L. C. Daniel R. Neuville, Daniel Caurant, Lionel Montagne, Du verre au cristal, 2013.

[2] F. Millot, V. Sarou-Kanian, J. C. Rifflet, and B. Vinet, "The surface tension of liquid silicon at high temperature," Materials Science and Engineering: A, vol. 495, pp. 8-13, 2008/11/15/ 2008. [3] L. De Broglie, "Waves and quanta," Nature, vol. 112, p. 540, 1923.

[4] W. C. Röntgen, "On a new kind of rays," Science, vol. 3, pp. 227-231, 1896.

[5] W. H. Bragg and W. L. Bragg, "The reflection of X-rays by crystals," Proc. R. Soc. Lond. A, vol. 88, pp. 428-438, 1913.

[6] E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance Absorption by Nuclear Magnetic Moments in a Solid," Physical review, vol. 69, pp. 37-38, 1946.

[7] F. Bloch, M. Packard, and W. Hansen, "The nuclear experiment," Physical review, vol. 70, pp. 474-485, 1946.

[8] E. L. Hahn, "Spin echoes," Physical review, vol. 80, p. 580, 1950.

[9] W. G. Proctor and F. C. Yu, "The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound," Physical review, vol. 77, pp. 717-717, 1950.

[10] W. Dickinson, "Dependence of the F 19 nuclear resonance position on chemical compound,"

Physical review, vol. 77, p. 736, 1950.

[11] E. Andrew, A. Bradbury, and R. Eades, "Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation," Nature, vol. 183, p. 1802, 1959.

[12] R. R. Ernst and W. A. Anderson, "Application of Fourier transform spectroscopy to magnetic resonance," Review of Scientific Instruments, vol. 37, pp. 93-102, 1966.

[13] R. R. Ernst, "Sensitivity enhancement in magnetic resonance," in Advances in Magnetic and

Optical Resonance. vol. 2, ed: Elsevier, 1966, pp. 1-135.

[14] S. Goudsmit, "La découverte du spin de l'électron," Journal de Physique, vol. 28, pp. 123-128, 1967.

[15] R. W. Brown, E. M. Haacke, Y.-C. N. Cheng, M. R. Thompson, and R. Venkatesan, Magnetic

resonance imaging: physical principles and sequence design: John Wiley & Sons, 2014.

[16] H. S. Gutowsky and G. Pake, "Structural investigations by means of nuclear magnetism. II. Hindered rotation in solids," The Journal of Chemical Physics, vol. 18, pp. 162-170, 1950. [17] M. E. Smith and E. R. H. van Eck, "Recent advances in experimental solid state NMR

methodology for half-integer spin quadrupolar nuclei," Progress in Nuclear Magnetic

II-54

[18] A. Jerschow, "From nuclear structure to the quadrupolar NMR interaction and high-resolution spectroscopy," Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 46, pp. 63-78, 2005/03/17/ 2005.

[19] S. E. Ashbrook and M. J. Duer, "Structural information from quadrupolar nuclei in solid state NMR," Concepts in Magnetic Resonance Part A, vol. 28A, pp. 183-248, 2006.

[20] M. H. Levitt, "The Signs of Frequencies and Phases in NMR," Journal of Magnetic Resonance, vol. 126, pp. 164-182, 1997/06/01/ 1997.

[21] L. Martel, "Etude de la séparation de phase dans des verres silicatés par résonance magnétique nucléaire haute résolution solide et microscopie electronique," Université d'Orléans, 2011. [22] D. Massiot, J. Hiet, N. Pellerin, F. Fayon, M. Deschamps, S. Steuernagel, and P. J. Grandinetti,

"Two-dimensional one pulse MAS of half-integer quadrupolar nuclei," Journal of Magnetic

Resonance, vol. 181, pp. 310-315, 2006.

[23] M. M. Maricq and J. Waugh, "NMR in rotating solids," The Journal of Chemical Physics, vol. 70, pp. 3300-3316, 1979.

[24] J. S. Frye and G. E. Maciel, "Setting the magic angle using a quadrupolar nuclide," Journal of

Magnetic Resonance (1969), vol. 48, pp. 125-131, 1982.

[25] E. Oldfield and R. J. Kirkpatrick, "High-resolution nuclear magnetic resonance of inorganic solids," Science, vol. 227, pp. 1537-1544, 1985.

[26] L. Frydman and J. S. Harwood, "Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR," Journal of the American Chemical Society, vol. 117, pp. 5367-5368, 1995.

[27] F. H. Larsen and N. C. Nielsen, "Effects of Finite Rf Pulses and Sample Spinning Speed in Multiple-Quantum Magic-Angle Spinning (MQ-MAS) and Multiple-Quantum Quadrupolar Carr− Purcell− Meiboom− Gill Magic-Angle Spinning (MQ-QCPMG-MAS) Nuclear Magnetic Resonance of Half-Integer Quadrupolar Nuclei," The Journal of Physical Chemistry A, vol. 103, pp. 10825-10832, 1999.

[28] P. Madhu, A. Goldbourt, L. Frydman, and S. Vega, "Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses," Chemical Physics Letters, vol. 307, pp. 41-47, 1999.

[29] P. Madhu, A. Goldbourt, L. Frydman, and S. Vega, "Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: Theory and experiments," The Journal of Chemical Physics, vol. 112, pp. 2377-2391, 2000.

[30] A. Goldbourt, P. Madhu, and S. Vega, "Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectrosocopy of spin-5/2 nuclei," Chemical

II-55

[31] D. Massiot, B. Touzo, D. Trumeau, J. P. Coutures, J. Virlet, P. Florian, and P. J. Grandinetti, "Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei,"

Solid State Nuclear Magnetic Resonance, vol. 6, pp. 73-83, 1996.

[32] S. P. Brown and S. Wimperis, "Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei. Acquisition of the whole echo," Journal of Magnetic Resonance, vol. 124, pp. 279-285, 1997.

[33] J. Amoureux, L. Delevoye, S. Steuernagel, Z. Gan, S. Ganapathy, and L. Montagne, "Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei," Journal of

Magnetic Resonance, vol. 172, pp. 268-278, 2005.

[34] C. Morais, M. Lopes, C. Fernandez, and J. Rocha, "Assessing the potential of fast amplitude modulation pulses for improving triple‐quantum magic angle spinning NMR spectra of half‐ integer quadrupolar nuclei," Magnetic Resonance in Chemistry, vol. 41, pp. 679-688, 2003. [35] H.-T. Kwak, S. Prasad, T. Clark, and P. J. Grandinetti, "Selective suppression and excitation of

solid-state NMR resonances based on quadrupole coupling constants," Journal of Magnetic

Resonance, vol. 160, pp. 107-113, 2003.

[36] J.-P. Amoureux, C. Fernandez, and S. Steuernagel, "ZFiltering in MQMAS NMR," Journal of

Magnetic Resonance, Series A, vol. 1, pp. 116-118, 1996.

[37] D. Massiot, B. Touzo, D. Trumeau, J. Coutures, J. Virlet, P. Florian, and P. Grandinetti, "Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei,"

Solid State Nuclear Magnetic Resonance, vol. 6, pp. 73-83, 1996.

[38] H. J. Jakobsen, J. Skibsted, H. Bildsøe, and N. C. Nielsen, "Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids," Journal of Magnetic Resonance (1969), vol. 85, pp. 173-180, 1989/10/15/ 1989.

[39] J. Skibsted, N. C. Nielsen, H. Bildsøe, and H. J. Jakobsen, "Satellite transitions in MAS NMR spectra of quadrupolar nuclei," Journal of Magnetic Resonance (1969), vol. 95, pp. 88-117, 1991/10/15/ 1991.

[40] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, "Modelling one- and two-dimensional solid-state NMR spectra," MAGNETIC

RESONANCE IN CHEMISTRY, vol. 40, pp. 70-76, 2002.

[41] G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. Coey, J.-P. Rebouillat, and A. Liénard, "Atomic coordination and the distribution of electric field gradients in amorphous solids," Physical

Review B, vol. 23, p. 2513, 1981.

[42] M. Baldus, "Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning," Progress in Nuclear Magnetic Resonance

Spectroscopy, vol. 1, pp. 1-47, 2002.

II-56

[44] M. Levitt, "Encyclopedia of nuclear magnetic resonance," GrantDM, HarrisRK (eds), vol. 9, 2002.

[45] A. P. Kentgens, E. R. van Eck, T. Ajithkumar, T. Anupold, J. Past, A. Reinhold, and A. Samoson, "New opportunities for double rotation NMR of half-integer quadrupolar nuclei," Journal of

Magnetic Resonance, vol. 178, pp. 212-219, 2006.

[46] M. R. Hansen, H. J. Jakobsen, and J. Skibsted, "Structural Environments for Boron and Aluminum in Alumina− Boria Catalysts and Their Precursors from 11B and 27Al Single-and Double-Resonance MAS NMR Experiments," The Journal of Physical Chemistry C, vol. 112, pp. 7210-7222, 2008.

[47] A. Jaworski, B. Stevensson, B. Pahari, K. Okhotnikov, and M. Eden, "Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced 27Al NMR experiments and molecular dynamics simulations," Physical Chemistry Chemical Physics, vol. 14, pp. 15866-15878, 2012.

[48] M. Eden and L. Frydman, "Homonuclear NMR correlations between half-integer quadrupolar nuclei undergoing magic-angle spinning," The Journal of Physical Chemistry B, vol. 107, pp. 14598-14611, 2003.

[49] G. Mali, G. Fink, and F. Taulelle, "Double-quantum homonuclear correlation magic angle sample spinning nuclear magnetic resonance spectroscopy of dipolar-coupled quadrupolar nuclei," The Journal of Chemical Physics, vol. 120, pp. 2835-2845, 2004.

[50] M. Edén, D. Zhou, and J. Yu, "Improved double-quantum NMR correlation spectroscopy of dipolar-coupled quadrupolar spins," Chemical Physics Letters, vol. 431, pp. 397-403, 2006/11/24/ 2006.

[51] B. Hu, J. Trébosc, and J.-P. Amoureux, "Comparison of several hetero-nuclear dipolar recoupling NMR methods to be used in MAS HMQC/HSQC," Journal of Magnetic Resonance, vol. 192, pp. 112-122, 2008.

[52] F. Fayon, G. Le Saout, L. Emsley, and D. Massiot, "Through-bond phosphorus–phosphorus connectivities in crystalline and disordered phosphates by solid-state NMR," Chemical

Communications, pp. 1702-1703, 2002.

[53] G. Bodenhausen, H. Kogler, and R. Ernst, "Selection of coherence-transfer pathways in NMR pulse experiments," Journal of Magnetic Resonance (1969), vol. 58, pp. 370-388, 1984. [54] A. Lesage, M. Bardet, and L. Emsley, "Through-bond carbon− carbon connectivities in

disordered solids by NMR," Journal of the American Chemical Society, vol. 121, pp. 10987-10993, 1999.

III-i

Chapitre III : Etudes structurales des verres d’oxydes : Point

bibliographique

III.1. Les verres silicatés, preuve de l’ordre à courte distance ... III-1

III.1.1. La silice vitreuse : verre SiO2 ... III-1 III.1.2. Système SiO2-MOz/2 (M = alcalins, alcalino-terreux, terres rares) ... III-2

III.2. Les verres aluminosilicates ... III-5

III.2.1. Configurations structurales de l’aluminium ... III-5 III.2.2. Modèle structural des aluminosilicates SiO2-Al2O3-MOz/2 ... III-5 III.2.2.a. Le principe de la compensation de charge et la coordinence de l’aluminium .... III-6 III.2.2.b. Principe d’évitement de Loewenstein ... III-6 III.2.2.c. Distribution de NBO dans le réseau aluminosilicate ... III-7 III.2.2.d. Les limites du modèle de structure des aluminosilicates ... III-8

III.3. Les borates et les unités superstructurales associées ... III-8

III.3.1. Le verres pure B2O3 ... III-9 III.3.2. L’anomalie du bore et les borates alcalins et alcalino-terreux : B2O3 - MOz/2 ... III-11 III.3.3. Modèle Théorique de Krogh-Moe et les unités supertructurales dans les borates III-14 III.3.4. Les borates de terre rare : système B2O3-Tr2O3... III-15

III.4. Les borosilicates du système SiO

2

-B

2

O

3

-MO

z/2

... III-17

III.5. Les borosilicates de terre rare du système SiO

2

-B

2

O

3

-Ln

2

O

3

... III-19

III.6. Les aluminoborosilicates du système SiO

2

-B

2

O

3

-Al

2

O

3

-MO

z/2

... III-21

Conclusion ... III-23

Références : ... III-25

III-1