Extraction de la diffusion simple combin´ee avec D.O.R.T

Dans le document The DART-Europe E-theses Portal (Page 150-154)

II. A.4

III.7 Aberration

III.7.3 Extraction de la diffusion simple combin´ee avec D.O.R.T

Avant d’appliquer la m´ethode D.O.R.T, la matriceKF est tronqu´ee en ne consid´erant plus qu’une voie sur quatre. Cette op´eration est n´ecessaire afin que la matrice des coefficients de distorsion correspondante DF ne pr´esente plus de corr´elations entre ses lignes et ses colonnes, ce qui permet de se placer dans le cadre g´en´eral de la RMT. Une fois cette op´eration r´ealis´ee, la matrice KF est de taille M2 × M2 .

La m´ethode D.O.R.T est appliqu´ee `a la matrice KF :

KF =UFΛFVF† (III.32)

Pour comprendre l’action de la SVD sur la matriceKF, on peut d´ecomposer cette derni`ere en la somme d’une matrice moyenne

KF

(qui constitue l’esp´erance de la matrice KF) et d’une

perturbation ∆KF associ´ee aux fluctuations [ep− hepi] des coefficents de distorsion autour de

Les coefficients de la matrice KF

est strictement ´egale `a la matriceK(3)(Eq.III.26) pond´er´ee par la distorsion moyenne hepi engendr´ee par la couche diffusante :

KFt

=hepi K(1)

(III.35) Cette matrice est de rang 1 et on s’attend `a ce que le vecteur propre correspondant focalise exactement `a l’endroit o`u est plac´ee la cible.

Quant `a la matrice ∆KF, ses coefficients δklmF sont donn´es par δkFlm(f) = [el+m1(f)− hel+m1(f)i] exp Cette matrice ∆KF correspond `a la perturbation due `a l’aberration de la couche diffusante : elle contient les fluctuations des coefficients de distorsion ep autour de leur moyenne hepi. Ses coefficients de distorsion [el+m1(f)− hel+m1(f)i] sont constants le long de chaque antidiago-nale (l+m=constante). Il existe donc une relation de phase d´eterministe entre les coefficients de ∆Ksitu´es sur la mˆeme antidiagonale :

βn = δkln,l+n(T, f) o`u p est la distance inter-´el´ements et n un entier. Comme on l’a montr´e au §II.5.2, la matrice

∆K pr´esente le mˆeme comportement statistique qu’une matrice de Hankel al´eatoire.

Quand la SVD est appliqu´ee `a la matrice KF (Eq.III.32), nous esp´erons que son premier espace propre λF1UF1VF1

corresponde `a la matrice KF

. Dans ce cas, le vecteur singulier VF1

se repropage vers la position exacte de la cible. Cela n’est possible que si la matrice ∆KF ne constitue qu’une faible perturbation par rapport `a

KF

. Autrement dit, on arrivera `a imager correctement la cible si les coefficients de distorsion sont suffisament liss´es par le filtrage pr´ealable des antidiagonales.

Nous allons maintenant pr´edire le taux de fluctuations limite `a ne pas pas d´epasser si l’on souhaite imager correctement la cible. Les r´esultats de la RMT sont une nouvelle fois utilis´es. Le signal correspond ici `a la valeur moyenne des coefficients de distorsion|hepi|. Le bruit correspond

`a leur ´ecart type observ´e. En Annexe III.A.4, on montre que la SVD r´eussira `a extraire KF sur le premier espace propre de KF si :

|hepi|

std [ep] > λFS

pM/2 (III.38)

o`uλFS est le seuil de d´etection pour la premi`ere valeur singuli`ere dans le cas d’une matrice de Hankel al´eatoire (voir §III.6). Le seuil de d´etection d´efini par l’´equation III.38 est mat´erialis´e par la ligne horizontale noire sur la figure III.17. λFS a ´et´e calcul´e ici en consid´erant la fonction de r´epartition F1H(λ) obtenue pour une matrice de Hankel de taille M2 × M2, avec ici M2 =16.

Le taux de fausses alarmes a ´et´e fix´e `a γ = 103 et nous avons obtenu num´eriquement un seuilλFS = 2.52. Notre technique r´eussira `a imager correctement la cible aux fr´equencesf pour lesquelles le ratio std|hep[ei|p] (courbe rouge sur Fig.III.17) est au dessus du seuil √λFS

M/2 (ligne noire sur Fig.III.17).

(a) (b)

Fig. III.18: (a) Phase d´eroul´ee du premier vecteur propre V1 `a la fr´equence f = 3,1 MHz.

Les phases des vecteurs propres V01 (bleu) et V1F (rouge) sont compar´ees `a la phase id´eale (vert) obtenue en l’absence d’aberration. (b) Images obtenues en repropageant num´eriquement les premiers vecteurs propres V01(bleu), V1F(rouge) compar´ees `a celle obtenu dans le cas id´eal

(vert) et `a l’image ´echographique (noir).

Pour illustrer l’effet du filtrage des antidiagonales deKsur les distorsions du front d’onde, nous allons prendre l’exemple des r´esultats obtenus `a la fr´equencef = 3,1 MHz. Cette fr´equence est mise en ´evidence par des disques pleins sur la figure III.17. A cette fr´equence, notre technique doit fonctionner puisque l’on est au dessus du seuil de d´etection. La SVD est appliqu´ee aux matrices K0(non filtr´ee) et KF. Les phases d´eroul´ees des premiers vecteurs propres V01 et V1F

sont trac´ees sur la figure III.18(a). Elles sont compar´ees `a la phase id´eale obtenue en absence de couche diffusante. Celle-ci correspond `a la loi parabolique k(xi2RXT)2

T qui permet de focaliser

`a la bonne position. La phase d´eroul´ee du premier vecteur propre est une observable pertinente car elle correspond au front d’onde li´e `a la cible. Sans filtrage pr´ealable, les fortes distorsions de phase du front d’onde r´esultent en un premier vecteur propreV01 dont la phase d´eroul´ee est marqu´ee par d’importantes fluctuations erratiques par rapport `a la phase id´eale : l’´ecart type de ces fluctuations est ici de 2,65 rad. Au contraire, le filtrage pr´ealable des antidiagonales de K conduit `a un vecteur propre V1F dont la phase d´eroul´ee pr´esente un comportement proche du cas id´eal.

La figure III.18(b) repr´esente les diff´erentes images obtenues dans le plan focal suite `a la repropagation num´erique des premiers vecteurs propres V10 et VF1. Ce dernier refocalise sur la position de la cible, avec une qualit´e proche de celle obtenue en l’absence d’aberration.

Au contraire, sans filtrage pr´ealable, le vecteur singulier V01 ne refocalise pas num´eriquement sur la cible et il est impossible de connaˆıtre sa position. Notons que si V10 ´etait repropag´e exp´erimentalement, il refocaliserait sur la cible : les distorsions du front d’onde seraient corrig´ees par le milieu diffusant lui mˆeme. Malheureusement, en pratique, on ne peut pas connaˆıtre l’aberration engendr´ee par la couche diffusante du fait de la diffusion multiple. Enfin, nous montrons ´egalement l’image ´echographique obtenue `a partir de la matrice K0 sur la figure III.18(b). De nouveau, les distorsions de phase induites par l’aberration sont si importantes que l’image obtenue pr´esente une s´erie de lobes principaux sans rapport avec la position r´eelle de la cible.

L’exemple pr´esent´e sur la figure III.18 rend ´evidente l’action de notre filtre sur les effets aberrants de la couche diffusante. Il permet de lisser les coefficients de distorsiondij d’un facteur qM

2. Si ce lissage est suffisant, la SVD r´eussit ensuite `a extraire la matricenon-distordue KFt sur le premier espace propre de KF. La repropagation du vecteur propre associ´e VF1 permet ensuite de localiser la cible avec une tr`es bonne pr´ecision, comme en atteste la figure III.18(b).

En conclusion, le lissage de l’aberration op´er´e par le filtrage des antidiagonales deKexplique la grande diff´erence de performance observ´ee entre l’´echographie et notre technique. En effet, mˆeme si l’´echo direct de la cible ´emerge du bruit de diffusion multiple, l’´echographie ´echoue `a imager correctement la cible du fait de l’aberration importante induite par la couche diffusante.

Au contraire, notre technique diminue cette influence et la SVD permet ensuite d’extraire le front d’onde non distordu sur le premier vecteur propreVF1. La repropagation de celui-ci dans un milieu virtuellement homog`ene permet ensuite d’imager correctement la cible, sans occurrence de lobes secondaires ni de d´eplacement de la tache focale.

III.8 Conclusion

En conclusion, la technique d´evelopp´ee ici, combinant l’extraction de signaux simplement diffus´es et la m´ethode D.O.R.T, am´eliore sensiblement les capacit´es d’un r´eseau multi-´el´ements en ce qui concerne la d´etection et l’imagerie d’une cible plac´ee derri`ere une couche haute-ment diffusante. D’une part, l’analyse temps-fr´equence de la matrice de r´eponse permet de s´electionner les bandes de fr´equence favorables `a sa d´etection, contrairement `a l’´echographie traditionnelle effectu´ee dans le domaine temporel. Cela est rendu possible en fixant un crit`ere de d´etection rigoureux bas´e sur la th´eorie des matrices al´eatoires. On a ainsi pu montrer que la diminution de la contribution multiplement diffus´ee permettait d’am´eliorer significativement les performances de la m´ethode D.O.R.T en milieu al´eatoire. Notre technique pr´esente mˆeme de meilleures performances que l’´echographie focalis´ee en terme de d´etection de cible. D’autre part, les effets aberrants de la couche diffusante sont fortement diminu´es par le filtre appliqu´e aux antidiagonales de la matrice de r´eponse. Alors que l’aberration d´egrade fortement l’image

´echographique, notre technique permet de corriger ses effets et de localiser la cible avec une tr`es bonne pr´ecision. Les perspectives de ce travail sont nombreuses, un brevet a notamment

´et´e d´epos´e sur cette technique. La prochaine ´etape consistera `a tester son efficacit´e dans des situations r´eelles (d´etection d’une cible enfouie dans la terre, de d´efauts dans des aciers parti-culi`erement diffusants aux fr´equences ultrasonores,etc.).

Dans le document The DART-Europe E-theses Portal (Page 150-154)