• Aucun résultat trouvé

2. Choix et description des systèmes étudiés

2.6 Dickite

La dickite est une argile de la famille des kaolins qui possède la particularité de ne pas contenir d’ions dans la zone inter-feuillets. Ceci en fait une référence plus simple à étudier que les autres argiles car aucun processus d’échange d’ions n’a lieu entre les inter-feuillets et la solution extérieure.

Ce composé sera plus largement décrit et étudié au chapitre II de la seconde partie de ce manuscript.

Alliot C., Bion L., Mercier F., Toulhoat P., Effect of aqueous acetic, oxalic, and carbonic acids on the adsorption of europium(III) onto α-alumina, Journal of Colloid and Interface

Science, 298, 573–581, 2006

Angenault J., Symétrie et structure : Cristallochimie du solide, Supérieur Chimie, Edition

Vuibert, Paris, 2001

Antits J., Stumpf T., Rabung T., Wieland E., Fanghänel T., Uptake of Cm(III) and Eu(III) by Calcium Silicate Hydrates: A Solution Chemistry and Time-Resolved Laser Fluorescence Spectroscopy Study, Environmental Science & Technology, 37, 3568-3573, 2003

Beribe Y.G., de Bruyn, P.L., Adsorption at the rutile-solution interface. Thermodynamic and experimental study, Journal of Colloid and Interface Science, 27, 2, 305-318, 1968

Berry R.J., Mueller M.R., Photocatalytic decomposition of crude oil slicks using TiO2 on a floating substrate, Microchemical Journal, 50, 28–32, 1994

Brookes I.M., Muryn C.A., Thornton G., Imaging water dissociation on TiO2(110), Physical

review Letter, 87, 266103, 2001

Brown I.D., Altermatt K.K., Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta Crystallographica, Section B: Structural

Science, B41, 4, 244-247, 1985

Bullock E.L., Patthey L., Steinman S.G., Clean and hydroxylated rutile TiO2(110) surfaces studied by X-ray photoelectron spectroscopy, Surface Science, 352-354, 504-510, 1996

Casas I., De Pablo J., Pérez I., Giménez J., Duro L., Bruno J., Evidence of Uranium and Associated Trace Element Mobilization and Retention Processes at Oklo(Gabon), a Naturally Radioactive Site,Environmental Science & Technology, 38, 3310, 2004

Catalette H., Dumonceau J., Ollar P., Sorption of cesium, barium and europium on magnetite,

Journal of contaminant hydrology,35, 151-159, 1998

Chapman D.L., A contribution to the theory of electrocapillarity, Philosophical Magazine, 25, 6, 475-481, 1913

Cheng D., Ray A.K., Removal of toxic metal ions from wastewater by semiconductor Photocatalysis, Chemical Engineering Science, 56, 1561-1570, 2001

Colombo C., Barron V., Torrent J., Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites, Geochemica et Cosmochimica Acta,

58,8, 1261-1269, 1994

Conde, J.E., Sanz Alaejos, M.S., Selenium concentrations in natural environmental waters,

Chemical Review, 97, 1979-2003, 1997

Davies, J.A., James O.R., Leckie J.O., Surface ionization and complexation at the oxide/water interface, Journal of Colloid and Interface Science, 63, 3, 480-499, 1978a

Davies, J.A., Leckie J.O., Surface ionization and complexation at the oxide/water interface II,

Journal of Colloid and Interface Science, 67, 1, 90-107, 1978b

Davies, J.A., Leckie J.O., Surface ionization and complexation at the oxide/water interface III.adsorption of anions, Journal of Colloid and Interface Science, 74(1), 32-43, 1980

Davies, J.A., Kent, D.B., Surface complexation modeling in aqueous geochemistry, in

Mineral-water interface geochemistry, 23, edited by M.F. Hochella Jr. and A.F. White, pp

133-175, Mineralogical Society of America, Washinton DC, 1990

Delacroix P., Guerre J.P., Leblanc P., Guide pratique Radionucléides et radioprotection, CEA

EDP sciences, 2003

Dielbold U., The surface science of titanium dioxide, Surface Science Reports, 48, 53-229,

2003

Drot R., Simoni E., Alnot M., Ehrhardt J.-J., Structural Environment of Uranium (VI) and Europium (III) Species Sorbed onto Phosphate Surfaces: XPS and Optical Spectroscopy Studies, Journal of Colloid and Interface Science, 205, 410–416, 1998

Dutta P.K, Ginwalla A., Hogg B., Patton B.R, Chwieroth B., Liang Z., Gauma P., Mills M., Akbars S., Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures: Optimization of a Carbon Monoxide Sensor, Journal of Physical Chemistry B, 103, 4412-4422, 1999

Dzombak D.A., Morel F.M.M., Surface complexation modeling, Hydrous ferric oxide, John

Willey, New York, 1989

Elrashidi M.A., Adriano D.C., Workman S.M., Lindsay W.L., Chemical equilibria of selenium in soils : a theoretical development, Soil Science, 144,2, 141-152, 1987

Fardley K.J., Dzombak D.A., Morel F.M.M., a surface precipitation model for the sorption of cations on metal oxide, Journal of Colloid and Interface Science, 106, 1, 226-242, 1985

Fishbein L., Overview of analysis of carcinogenic and/or mutagenic metals in biological and environmental samples. I. Arsenic, beryllium, cadmium, chromium and selenium.

International journal of environmental analytical chemistry, 17(2), 113-70, 1984

Guan D.M., Martin J.M., Selenium distribution in the Rhone delta and the Gulf of Lions

Marine Chemistry 36, 303-316, 1991

Gouy G.,Sur la constitution de la charge électrique à la surface d’un électrolyte, Journal de

Physique, 9, 457-501, 1910

Hayes K.F., Katz L.E., Application of X-ray adsorption spectroscopy for surface complexation modeling of metal ion sorption, in Physics and Chemistry of mineral surfaces,

Hayes K.F., Papelis C., Leckie J.O., Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces, Journal of Colloid and Interface Science, 125(2), 717-726,

1988

Heinrich V.E., Cox P.A., The surface science of metal oxides, Cambridge University Press, Cambridge 1994

Henderson M.A., An HREELS and TPD study of water on TiO2(110) : the extent of molecular versus dissociative adsorption, Surface Science, 335, 151-166, 1996

Herbelin A.L., Westall J.C., FITEQL 3.2: A computer program for determination of chemical equilibrium constants from experimental data, Report 96-01, Departement of Chemistry, Oregon State University, Corvallis, 1996

Herbelin, A.L., Westall, J.C., FITEQL 4.0: A computer program for determination of chemical equilibrium constants from experimental data, Report 99-01. Department of Chemistry, Oregon State University, Corvallis, 1999

Herrmann, J.-M., Heterogeneous photocatalysis: state of the art and present applications.

Topics in Catalysis, 34(1-4), 49-65, 2005

Hiemstra T., Van Riemsdijk W.H., Bolt G.H., Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides : a new approach. 1. Model description and evaluation of intrinsic reaction constants, Journal of Colloid and Interface Science, 133, 1, 91-104, 1989

Hiemstra T., Van Riemsdijk W.H., Physical chemical interpretation of primary charging behaviour of metal (hydr)oxides, Colloid and surfaces, 59, 7-25, 1991

Hiemstra T.,Venema P., Van Riemsdijk W.H., Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides : the bond valence principle, Journal of Colloid and Interface

Science, 184, 680-692, 1996

Hiemstra T., Van Riemsdijk W.H., Surface structural ion adsorption modeling of competitive binding of oxyanions by metal(hydr)oxides, Journal of Colloid and Interface Science, 210, 182-193, 1999

Jodin M.C., Gaboriaud F., Humbert B., Limitations of potentiometric studies to determine the surface charge of gibbsite γ -Al(OH)3 particles, Journal of Colloid and Interface Science, 287, 581-591, 2005

LeeB.I., Wang X., Bhave R., Hu M., Synthesis of brookite TiO2 nanoparticles by ambient condition sol process, Materials letters, 60, 1179–1183, 2006

Lemly A.D., Aquatic selenium pollution is a global environmental safety issue, Ecotoxicology

and environmental safety, 59, 44-59, 2004

Li J., Ma W., Chen C., Zhao J., Zhu H., Gao X., Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation, Journal of Molecular

Linsebigler A.L., Lu, G., Yates J.T. Jr, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical review, 95, 735-758, 1995

Lomenech C., Simoni E., Drot R., Ehrhardt J.-J., Mielczarski J., Sorption of Uranium(VI) Species on Zircon : Structural Investigation of the Solid/Solution Interface, Journal of Colloid

and Interface Science,261, 221-232, 2003

Maier K. J., Foe C., Ogle R.S., Williams M.J., Knight A. W., Kiffney P., Melton L.A., The dynamics of selenium in aquatic ecosystems, Trace Substances in Environmental Health, 21 361-408, 1987

Maksymovych P., Mezhenny S., Yates J.T. Jr, STM study of water adsorption on the TiO2(110)-(1x2) surface,Chemical Physics Letters, 270-276, 2003

Meve J., Vertongen F., Molle L., Clinics in endocrinology and metabolism, Taylor A.

Editions, 14, 629-656, 1985

Montavon G., Rabung T., Geckeis H., Grambow B., Interaction of Eu(III)/Cm(III) with Alumina-Bound Poly(acrylic acid): Sorption, Desorption, and Spectroscopic Studies,

Environmental Science & Technology, 38, 4312-4318, 2004

Naveau A., Monteil-Rivera F., Dumonceau J., Catalette H., Simoni E., Sorption of Sr(II) and Eu(III) onto pyrite under different redox potential conditions, Journal of Colloid and Interface

Science, 293, 27–35, 2006

O’Day P.A., Molecular environmental geochemistry, Review of geophysics, 37, 2, 1999

Onishi H., Iwasawa Y., STM-imaging of formate intermediates adsorbed on a TiO2(110) surface, Chemical Physics Letters, 226, 111-114, 1994

Ordonez-Regil E., Drot R., Simoni E., Ehrhardt J.-J., Sorption of Uranium(VI) onto Lanthanum Phosphate Surfaces, Langmuir, 18,7977-7984, 2002

Parks, G.A., Surface energy and adsorption at mineral/water interfaces: An introduction, in

Mineral-water interface geochemistry, 23, edited by M.F. Hochella Jr. and A.F. White, pp

133-175, Mineralogical Society of America, Washinton DC, 1990

Parks, G.A., The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complexes systems, Chemical Review, 65, 177-198, 1965

Perron H., Simulation par la théorie de la fonctionelle de la densité de l’interaction de l’ion uranyle avec les surfaces de TiO2 et de NiFe2O4, Thèse de l’Université Paris Sud 11, 2007

Piriou B., Fedoroff M., Jeanjean J., Bercis L., Characterization of the Sorption of Europium(III) on Calcite by Site-Selective and Time-Resolved Luminescence Spectroscopy,

Séby F., Potin-Gautier M., Giffaut E., Donard, O.F.X., Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological respository of radioactive wastes to the biosphere, Analusis, 26, 193-198, 26, 1998

Schaub R., Thostrup P., Lopez N., Laegsgaard E., Stengaard I., Norskov J.K., Besenbacher F., Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110), Physical

review Letter, 87, 266104, 2001

Schindler P., Kamber H.R., Acidity of silanol groups, Helvetica Chemica Acta, 51, 7, 1781-1786, 1968

Schindler P.W., Stumm W., The surface chemistry of oxides, hydroxides, and oxide minerals,

in Aquatic Surface Chemistry, edited by W. Stumm, pp 83-110, John Willey, 1987

Schlegel M., Pointeau I., Coreau N., Reiller P., Mechanism of Europium Retention by Calcium Silicate Hydrates: An EXAFS Study, Environmental Science & Technology, 37, 3568-3573, 2003

Sigg L., Stumm W., Behra P., Chimie des milieux aquatiques, Masson, Paris, 1992

Sposito G., The surface chemistry of soils, Oxford University press, New York, 1984

Sposito G., The chemistry of soils, Oxford University Press, New York, 1989

Sposito G.,On point of zero charge, Environmental Science & Technology, 32, 19, 2815, 1998

Stumm W., Chemistry of solid-water interface, John Willey and Sons, New York, 1992

Stumm W., Huang C.P., Jenkins S.R., Specific chemical interaction affecting the stability of dispersed system, Croatica Chemica Acta, 42, 223-245, 1970

Stumm W., Kummert R., Sigg L., A ligand exchange model fort he adsorption of inorganic and organic ligands at hydrous oxide interfaces, Croatica Chemica Acta, 53,2, 291-312, 1980

Sylwester E. R., Hudson E. A., Allen P. G., The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite, Geochimica and Cosmochimica Acta 64, 2431, 2000

Tadanier C.J., Eick M.J., Formulating the Charge-distribution Multisite Surface Complexation Model Using FITEQL, Soil Science Society of America Journal, 66, 1505-1517, 2002

Thévenet F., Guaitella O., Herrmann, J. M., Rousseau A., Guillard C., Photocatalytic degradation of acetylene over various titanium dioxide-based photocatalysts. Applied

Catalysis, B: Environmental, 61(1-2), 58-68, 2005

Thévenet F., Panczer G., Jollivet P., Champagnon B., Determination of the environment of lanthanide ions in a simplified non-active nuclear glass and its weathering gel products – Europium as a structural luminescent probe, Journal of Non-Crystalline Solids, 351, 673,

Turner G. D., Zachara J. M., Mckinley J. P., Smith S. C., Surface-charge properties and UO22+

adsorption of a subsurface smectite, 60, 18, 3399-3414, 1993

Vieillard P., Propriétés thermochimiques des composés du cuivre: atlas de données thermochimiques, Sciences Géologiques, 41, 03-04, 1988

Vulliet E., Emmelin C., Chovelon J.-M., Guillard C., Herrmann J.-M., Photocatalytic degradation of the herbicide cinosulfuron in aqueous TiO2 suspension. Environmental

Chemistry Letters, 1, 62-67, 2003

Wang L.Q., Baer D.R., Engelhard M.H., Shultz A.N., The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects, Surface Science, 344, 237-250, 1995

Wang P., Anderko A., Turner D., Thermodynamic Modeling of the Adsorption of Radionuclides on Selected Minerals. I: Cations, Industrial & Engineering Chemistry Research, 40, 4428, 2001

Zhang P., Sparks D.L., Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface, Environmental Science & Technology, 24, 1848-1856, 1990

Zhu L., Ye X., Tang G., Zhao N., Gong Y., Zhao Y., Zhao J., Zhang X., Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. Journal of Biomedical Materials Research, Part A 78A, (3), 515-522, 2006

Chapitre II :

Ce chapitre présente des travaux préliminaires à l’étude des sorptions. En effet, étudier l’adsorption d’espèces contenues dans une solution aqueuse sur une surface requiert de connaître la surface de manière précise. La structure, la charge ainsi que l’état de cette surface sont autant de paramètres majeurs influençant la sorption d’espèces.

Cette partie s’intéresse donc à l’étude des surfaces monocristallines (110) et (001) par des techniques spectroscopiques complémentaires telles que les spectroscopies électroniques (AR-XPS), optiques (µ-Raman polarisé en champ lointain et en champ proche) et de forces (AFM liquide).