• Aucun résultat trouvé

Nous donnons ici les valeurs des paramètres de convergence (définis dans la section

C du chapitre 4) utilisées pour les différents systèmes étudiés, dans la table D.1. Pour rappel, ces paramètres sont

– Ecut : énergie de coupure pour la décomposition en ondes planes des fonctions

d’onde (équation 4.1)

– Enˆ : énergie de coupure pour les quantités de compensation en PAW

– ESCR : énergie de coupure pour les éléments de matrice d’oscillateur dans

l’ex-pression 4.10de la polarisation contrainte (dans l’équation4.8, le vecteur G doit

vérifier l’inégalité 4.9)

– Eex : énergie de coupure pour la décomposition en ondes planes de l’équation

3.51 (donnant les éléments de matice de l’interaction effective Wr en cRPA dans

la base des fonctions d’onde corrélées)

– nband : nombre de bandes prises en compte pour le calcul DFT+U /cRPA

– nk: nombre de pointsk utilisés pour échantillonner la première zone de Brillouin

(définie dans la section C - 1du chapitre1)

Nous utilisons également un smearing de Fermi-Dirac égal à 0.1 eV pour les occupa-tions.

Chapitre D. Valeurs des paramètres de convergence

Système Cutoff energies (Ha) Other

Ecut Enˆ ESCR Eex nband nk Ce 15.0 60.0 5.0 85.0 120 64 Pr 15.0 60.0 7.5 85.0 120 64 Nd 15.0 60.0 7.5 85.0 120 64 Pm 15.0 60.0 7.5 85.0 120 216 Sm 15.0 60.0 10.0 85.0 100 343 Eu 15.0 60.0 10.0 110.0 120 64 Gd 15.0 60.0 10.0 110.0 120 64 Tb 15.0 60.0 13.75 125.0 120 64 Dy 15.0 60.0 10.0 85.0 120 125 Ho 15.0 60.0 11.75 85.0 120 64 Er 15.0 60.0 10.0 110.0 100 64 Tm 15.0 60.0 13.5 110.0 100 125 Yb 15.0 60.0 14.0 125.0 100 64 Lu 15.0 60.0 14.0 110.0 100 64 UO2 15.0 60.0 5.0 35.0 100 64 NpO2 15.0 60.0 5.0 35.0 100 64 PuO2 15.0 60.0 5.0 35.0 100 64 AmO2 15.0 60.0 5.0 35.0 100 64 CmO2 15.0 60.0 5.0 35.0 100 64

TABLE D.1 – Valeurs des paramètres de convergence (définis dans la section C du chapitre 4) pour les calculs sur le cérium, les autres lanthanides, et les oxydes d’ac-tinides.

Bibliographie

[1] Priyanka Seth, Philipp Hansmann, Ambroise van Roekeghem, Loig Vaugier, and Silke Biermann. Towards a first-principles determination of effective coulomb interactions in correlated electron materials : Role of intershell interactions. Phys.

Rev. Lett., 119 :056401, Aug 2017.

[2] Carsten Honerkamp, Hiroshi Shinaoka, Fakher F Assaad, and Philipp Werner. On the limitations of crpa downfolding. arXiv preprint arXiv :1809.03742, 2018. [3] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules.

Phys. Rev., 28 :1049–1070, Dec 1926.

[4] M. BORN and R. OPPENHEIMER. ON THE QUANTUM THEORY OF MOLECULES, pages 1–24.

[5] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods. Mathematical Proceedings of the Cambridge

Philosophical Society, 24(1) :89–110, 1928.

[6] P.A.M. Dirac. The Principles of Quantum Mechanics. International series of mono-graphs on physics. Clarendon Press, 1981.

[7] W. Pauli. General principles of quantum mechanics. Springer-Verlag, 1980.

[8] V. Fock. Näherungsmethode zur lösung des quantenmechanischen mehrkörper-problems. Zeitschrift für Physik, 61(1) :126–148, Jan 1930.

[9] Martin Head-Gordon, Rudolph J. Rico, Manabu Oumi, and Timothy J. Lee. A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chemical Physics Letters, 219(1) :21 – 29, 1994. [10] DAVID MAURICE and MARTIN HEAD-GORDON. Analytical second derivatives for excited electronic states using the single excitation configuration interaction method : theory and application to benzo[a]pyrene and chalcone. Molecular

Physics, 96(10) :1533–1541, 1999.

[11] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the

Cambridge Philosophical Society, 23(5) :542–548, 1927.

[12] Enrico Fermi. Statistical method to determine some properties of atoms. Rend.

Accad. Naz. Lincei, 6(602-607) :5, 1927.

[13] Edward Teller. On the stability of molecules in the thomas-fermi theory. Rev.

BIBLIOGRAPHIE

[14] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,

136(1) :B864–B871, Nov 1964.

[15] W. Kohn and L. J. Sham. Self-consistent equations including exchange and cor-relation effects. Phys. Rev., 140 :A1133–A1138, Nov 1965.

[16] Mel Levy. Universal variational functionals of electron densities, first-order den-sity matrices, and natural spin-orbitals and solution of the v-representability problem. Proceedings of the National Academy of Sciences, 76(12) :6062–6065, 1979.

[17] Mel Levy. Electron densities in search of hamiltonians. Phys. Rev. A, 26 :1200– 1208, Sep 1982.

[18] P.A.M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical

proceedings of the Cambridge Philosophical Society, 26, 1930.

[19] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45 :566–569, Aug 1980.

[20] R. O. Jones and O. Gunnarsson. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 61 :689–746, Jul 1989.

[21] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. Insights into current limi-tations of density functional theory. Science, 321(5890) :792–794, 2008.

[22] David C. Langreth and John P. Perdew. Theory of nonuniform electronic systems. i. analysis of the gradient approximation and a generalization that works. Phys.

Rev. B, 21 :5469–5493, Jun 1980.

[23] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45(29) :13244–13249, Jun 1992. PW92.

[24] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 :3865–3868, Oct 1996.

[25] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern.

Zeitschrift für Physik, 52(7) :555–600, Jul 1929.

[26] Kieron Burke, Matthias Ernzerhof, and John P. Perdew. The adiabatic connection method : a non-empirical hybrid. Chemical Physics Letters, 265(1) :115 – 120, 1997.

[27] Jochen Heyd and Gustavo E. Scuseria. Efficient hybrid density functional calcu-lations in solids : Assessment of the heyd–scuseria–ernzerhof screened coulomb hybrid functional. The Journal of Chemical Physics, 121(3) :1187–1192, 2004. [28] Ionut D. Prodan, Gustavo E. Scuseria, and Richard L. Martin. Assessment of

metageneralized gradient approximation and screened coulomb hybrid density functionals on bulk actinide oxides. Phys. Rev. B, 73 :045104, Jan 2006.

[29] Jonathan H. Skone, Marco Govoni, and Giulia Galli. Self-consistent hybrid func-tional for condensed systems. Phys. Rev. B, 89 :195112, May 2014.

BIBLIOGRAPHIE

[30] Lars Hedin. New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev., 139 :A796–A823, Aug 1965. [31] Giovanni Onida, Lucia Reining, and Angel Rubio. Electronic excitations :

density-functional versus many-body green’s-function approaches. Rev. Mod. Phys.,

74 :601–659, Jun 2002.

[32] R. Sakuma, T. Miyake, and F. Aryasetiawan. Self-energy and spectral function of ce within the GW approximation. Phys. Rev. B, 86 :245126, Dec 2012.

[33] E Fermi and E Amaldi. Accad. ital. rome 6, 119 (1934). 6 :119, 1934.

[34] J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23 :5048–5079, May 1981.

[35] A. Svane. Electronic structure of cerium in the self-interaction-corrected local-spin-density approximation. Phys. Rev. B, 53 :4275–4286, Feb 1996.

[36] L. Gerward, J. Staun Olsen, L. Petit, G. Vaitheeswaran, V. Kanchana, and A. Svane. Bulk modulus of ceo2 and pro2—an experimental and theoretical study. Journal of Alloys and Compounds, 400(1) :56 – 61, 2005.

[37] Martin C. Gutzwiller. Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett., 10 :159–162, Mar 1963.

[38] V. I. Anisimov and O. Gunnarsson. Density-functional calculation of effective coulomb interactions in metals. Phys. Rev. B, 43 :7570–7574, Apr 1991.

[39] Antoine Georges and Gabriel Kotliar. Hubbard model in infinite dimensions.

Phys. Rev. B, 45 :6479–6483, Mar 1992.

[40] Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg. Dy-namical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys., 68 :13–125, Jan 1996.

[41] V I Anisimov, A I Poteryaev, M A Korotin, A O Anokhin, and G Kotliar. First-principles calculations of the electronic structure and spectra of strongly cor-related systems : dynamical mean-field theory. Journal of Physics : Condensed

Matter, 9(35) :7359, 1997.

[42] K. Held, I. A. Nekrasov, N. Blümer, V. I. Anisimov, and D. Vollhardt. Realistic mod-eling of strongly correlated electron systems : An introduction to the lda+dmft approach. International Journal of Modern Physics B, 15(19n20) :2611–2625, 2001.

[43] B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan. The α−γ transition of cerium is entropy driven. Phys. Rev. Lett., 96 :066402, Feb 2006.

[44] Nicola Lanatà, Yong-Xin Yao, Cai-Zhuang Wang, Kai-Ming Ho, Jörg Schmalian, Kristjan Haule, and Gabriel Kotliar. γ−α. Phys. Rev. Lett., 111 :196801, Nov 2013.

BIBLIOGRAPHIE

[45] Nicola Lanatà, Yongxin Yao, Cai-Zhuang Wang, Kai-Ming Ho, and Gabriel Kotliar. Phase diagram and electronic structure of praseodymium and plutonium. Phys.

Rev. X, 5 :011008, Jan 2015.

[46] I. L. M. Locht, Y. O. Kvashnin, D. C. M. Rodrigues, M. Pereiro, A. Bergman, L. Bergqvist, A. I. Lichtenstein, M. I. Katsnelson, A. Delin, A. B. Klautau, B. Jo-hansson, I. Di Marco, and O. Eriksson. Standard model of the rare earths ana-lyzed from the hubbard i approximation. Phys. Rev. B, 94 :085137, Aug 2016. [47] Bernard Amadon and Alexis Gerossier. Comparative analysis of models for the

α−γ phase transition in cerium : A dft+dmft study using wannier orbitals. Phys.

Rev. B, 91 :161103, Apr 2015.

[48] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichten-stein. Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B, 70 :195104, Nov 2004.

[49] Bi-Ching Shih, Yubo Zhang, Wenqing Zhang, and Peihong Zhang. Screened

coulomb interaction of localized electrons in solids from first principles. Phys.

Rev. B, 85 :045132, Jan 2012.

[50] R. Sakuma and F. Aryasetiawan. First-principles calculations of dynamical

screened interactions for the transition metal oxides mo (m=mn, fe, co, ni).

Phys. Rev. B, 87 :165118, Apr 2013.

[51] Nicola Marzari and David Vanderbilt. Maximally localized generalized wannier functions for composite energy bands. Phys. Rev. B, 56 :12847–12865, Nov 1997. [52] Ivo Souza, Nicola Marzari, and David Vanderbilt. Maximally localized wannier

functions for entangled energy bands. Phys. Rev. B, 65 :035109, Dec 2001. [53] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David

Van-derbilt. Maximally localized wannier functions : Theory and applications. Rev.

Mod. Phys., 84 :1419–1475, Oct 2012.

[54] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the

Royal Society of London A : Mathematical, Physical and Engineering Sciences,

276(1365) :238–257, 1963.

[55] Junjiro Kanamori. Electron correlation and ferromagnetism of transition metals.

Progress of Theoretical Physics, 30(3) :275–289, 1963.

[56] J H de Boer and E J W Verwey. Semi-conductors with partially and with com-pletely filled 3 d -lattice bands. Proceedings of the Physical Society, 49(4S) :59, 1937.

[57] N F Mott and R Peierls. Discussion of the paper by de boer and verwey.

Proceed-ings of the Physical Society, 49(4S) :72, 1937.

[58] N F Mott. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society. Section A, 62(7) :416, 1949.

BIBLIOGRAPHIE

[59] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti. Electronic structure calculations with dynamical mean-field theory.

Rev. Mod. Phys., 78 :865–951, Aug 2006.

[60] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory and strong interactions : Orbital ordering in mott-hubbard insulators. Phys. Rev. B, 52 :R5467–R5470, Aug 1995.

[61] M. T. Czy˙zyk and G. A. Sawatzky. Local-density functional and on-site correla-tions : The electronic structure of la2cuo4 and lacuo3. Phys. Rev. B, 49 :14211– 14228, May 1994.

[62] A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein. Correlated metals and the LDA + u method. Phys. Rev. B, 67 :153106, Apr 2003.

[63] A. B. Shick, A. I. Liechtenstein, and W. E. Pickett. Implementation of the lda+u method using the full-potential linearized augmented plane-wave basis. Phys.

Rev. B, 60 :10763–10769, Oct 1999.

[64] P. Larson, Walter R. L. Lambrecht, Athanasios Chantis, and Mark van Schilf-gaarde. Electronic structure of rare-earth nitrides using the LSDA + u approach : Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys.

Rev. B, 75 :045114, Jan 2007.

[65] Gérald Jomard, Bernard Amadon, François Bottin, and Marc Torrent. Structural, thermodynamic, and electronic properties of plutonium oxides from first princi-ples. Phys. Rev. B, 78 :075125, Aug 2008.

[66] Boris Dorado, Bernard Amadon, Michel Freyss, and Marjorie Bertolus. DFT + U calculations of the ground state and metastable states of uranium dioxide. Phys.

Rev. B, 79 :235125, Jun 2009.

[67] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sut-ton. Electron-energy-loss spectra and the structural stability of nickel oxide : An lsda+u study. Phys. Rev. B, 57 :1505–1509, Jan 1998.

[68] M S S Brooks. Thomas-fermi screening of exchange interactions. Journal of

Physics : Condensed Matter, 13(22) :L469, 2001.

[69] Stewart J. Clark and John Robertson. Screened exchange density functional ap-plied to solids. Phys. Rev. B, 82 :085208, Aug 2010.

[70] G. E. Engel. Linear response and the exchange-correlation hole within a

screened-exchange density functional theory. Phys. Rev. Lett., 78 :3515–3518, May 1997.

[71] Matteo Cococcioni and Stefano de Gironcoli. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys.

Rev. B, 71 :035105, Jan 2005.

[72] J. F. Janak. Proof that ∂e

∂ni = in density-functional theory. Phys. Rev. B, 18 :7165– 7168, Dec 1978.

BIBLIOGRAPHIE

[73] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett., 55 :418–421, Jul 1985.

[74] E. Antonides, E. C. Janse, and G. A. Sawatzky. LMM auger spectra of cu, zn, ga, and ge. i. transition probabilities, term splittings, and effective coulomb interac-tion. Phys. Rev. B, 15 :1669–1679, Feb 1977.

[75] G. A. Sawatzky and J. W. Allen. Magnitude and origin of the band gap in nio.

Phys. Rev. Lett., 53 :2339–2342, Dec 1984.

[76] Dirk Van Der Marel. The electronic structure of embedded transition metal atoms. PhD thesis, 1985.

[77] Takao Yamazaki and Akio Kotani. Systematic analysis of 4f core photoemission spectra in actinide oxides. Journal of the Physical Society of Japan, 60(1) :49–52, 1991.

[78] Akio Kotani and Takao Yamazaki. Systematic analysis of core photoemission spectra for actinide di-oxides and rare-earth sesqui-oxides. Progress of Theoretical

Physics Supplement, 108 :117–131, 1992.

[79] J. F. Herbst, D. N. Lowy, and R. E. Watson. Single-electron energies, many-electron effects, and the renormalized-atom scheme as applied to rare-earth met-als. Phys. Rev. B, 6 :1913–1924, Sep 1972.

[80] D. D. Sarma and P. Vishnu Kamath. Estimation of electron-electron interaction strengths for the rare-earth metals from xα calculations. Phys. Rev. B, 36 :7402– 7406, Nov 1987.

[81] Louis A Girifalco. Statistical mechanics of solids, volume 58. OUP USA, 2003. [82] O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen. Density-functional

calculation of the parameters in the anderson model : Application to mn in cdte.

Phys. Rev. B, 39 :1708–1722, Jan 1989.

[83] A. K. McMahan, Richard M. Martin, and S. Satpathy. Calculated effective

hamil-tonian for la2cuo4 and solution in the impurity anderson approximation. Phys.

Rev. B, 38 :6650–6666, Oct 1988.

[84] Mark S. Hybertsen, Michael Schlüter, and Niels E. Christensen.

Calcula-tion of coulomb-interacCalcula-tion parameters for la2cuo4 using a constrained-density-functional approach. Phys. Rev. B, 39 :9028–9041, May 1989.

[85] F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger. Calculations of hubbard u from first-principles. Phys. Rev. B, 74 :125106, Sep 2006.

[86] Aryasetiawan and Gunnarsson. The gw method. Rep. Prog. Phys. 61 (1998) 237, 1997.

[87] Bernard Amadon, Thomas Applencourt, and Fabien Bruneval. Screened coulomb interaction calculations : crpa implementation and applications to dynamical screening and self-consistency in uranium dioxide and cerium. Phys. Rev. B, 89 :125110, Mar 2014.

BIBLIOGRAPHIE

[88] Loig Vaugier. Electronic Structure of Correlated Materials From First Principles :

Hubbard interaction and Hund’s exchange. Theses, Ecole Polytechnique X,

De-cember 2011.

[89] F. Nilsson, R. Sakuma, and F. Aryasetiawan. Ab initio. Phys. Rev. B, 88 :125123, Sep 2013.

[90] K. Karlsson, F. Aryasetiawan, and O. Jepsen. Method for calculating the electronic structure of correlated materials from a truly first-principles LDA + u scheme.

Phys. Rev. B, 81 :245113, Jun 2010.

[91] Gabriel Kotliar Ping Sun. Extended dynamical mean field theory and gw method.

arXiv :cond-mat/0205522, 2002.

[92] S. Biermann, F. Aryasetiawan, and A. Georges. First-principles approach to the electronic structure of strongly correlated systems : Combining the gw approxi-mation and dynamical mean-field theory. Phys. Rev. Lett., 90 :086402, Feb 2003. [93] Jan M. Tomczak, Michele Casula, Takashi Miyake, Ferdi Aryasetiawan, and Silke Biermann. Combined gw and dynamical mean field theory : Dynamical screening effects in transition metal oxides. 2012.

[94] Silke Biermann Thomas Ayral, Philipp Werner. Spectral properties of correlated materials : Local vertex and non-local two-particle correlations from combined gw and dynamical mean field theory. arXiv :1205.5553, 2012.

[95] C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G. Kresse, A. Toschi, and K. Held. Comparing quasiparticle gw+dmft and lda+dmft for the test bed mate-rial srvo3. Phys. Rev. B, 88 :165119, Oct 2013.

[96] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jo-mard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger. Abinit : First-principles approach to material and nanosystem properties. Computer Physics Communications, 180(12) :2582 – 2615, 2009. 40 YEARS OF CPC : A celebratory issue focused on quality software for high performance, grid and novel computing architectures.

[97] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Do-rado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukaˇcevi´c, A. Martin, C. Martins, M.J.T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Ver-straete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and J.W. Zwanziger. Recent developments in the abinit software package. Computer Physics Communications, 205 :106 – 131, 2016.

BIBLIOGRAPHIE

[98] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 :17953–17979, Dec 1994.

[99] Marc Torrent, François Jollet, François Bottin, Gilles Zerah, and Xavier Gonze. Implementation of the projector augmented-wave method in the abinit code : Application to the study of iron under pressure. Computational Materials Science, 42(2) :337 – 351, 2008.

[100] Matteo Giantomassi. Core electrons and self-consistency in the GW approximation

from a PAW perspective. PhD thesis, 2009.

[101] Miessler, G. L. ; Tarr, D. A. (1999). Inorganic Chemistry (2nd ed.). Prentice-Hall. p.

38.

[102] Norman Neil Greenwood. Chemistry of the elements / N.N. Greenwood and A.

Earnshaw. 01 1985.

[103] R.I. Beecroft and C.A. Swenson. On the existence of a critical point for the phase transition in cerium. Journal of Physics and Chemistry of Solids, 15(3) :234 – 239, 1960.

[104] A. Schiwek, F. Porsch, and W. B. Holzapfel. High temperature-high pressure structural studies of cerium. High Pressure Research, 22(2) :407–410, 2002. [105] J.Staun Olsen, L. Gerward, U. Benedict, and J.-P. Itié. The crystal structure and

the equation of state of cerium metal in the pressure range 0–46 gpa. Physica

B+C, 133(2) :129 – 137, 1985.

[106] M. Grioni, P. Weibel, D. Malterre, Y. Baer, and L. Du‘o. Resonant inverse photoe-mission in cerium-based materials. Phys. Rev. B, 55 :2056–2067, Jan 1997. [107] A. P. Murani, Z. A. Bowden, A. D. Taylor, R. Osborn, and W. G. Marshall. Evidence

for localized 4f states in α-ce. Phys. Rev. B, 48 :13981–13984, Nov 1993.

[108] B. Johansson, I. A. Abrikosov, M. Aldén, A. V. Ruban, and H. L. Skriver. Calculated phase diagram for the γ α transition in ce. Phys. Rev. Lett., 74 :2335–2338, Mar 1995.

[109] Bernard Amadon, Thomas Applencourt, and Fabien Bruneval. Erratum :

Screened coulomb interaction calculations : crpa implementation and applica-tions to dynamical screening and self-consistency in uranium dioxide and cerium [phys. rev. b 89, 125110 (2014)]. Phys. Rev. B, 96 :199907, Nov 2017.

[110] A.B Shick, W.E Pickett, and A.I Liechtenstein. Ground and metastable states in γ-ce from correlated band theory. Journal of Electron Spectroscopy and Related

Phenomena, 114-116(Supplement C) :753 – 758, 2001. Proceeding of the Eight

International Conference on Electronic Spectroscopy and Structure,.

[111] B. Amadon, F. Jollet, and M. Torrent. γ and β cerium : Lda+u calculations of ground-state parameters. Phys. Rev. B, 77 :155104, Apr 2008.

[112] S. V. Streltsov, E. Gull, A. O. Shorikov, M. Troyer, V. I. Anisimov, and P. Werner. Magnetic susceptibility of cerium : An lda+dmft study. Phys. Rev. B, 85 :195109, May 2012.

BIBLIOGRAPHIE

[113] J. Bieder and B. Amadon. Thermodynamics of the α-γ transition in cerium from first principles. Phys. Rev. B, 89 :195132, May 2014.

[114] Kristjan Haule and Gabriel Kotliar. Optical spectroscopy and photoemission

of α- and γ-cerium from lda+dmft. Physica B : Condensed Matter,

359-361(Supplement C) :139 – 141, 2005. Proceedings of the International Con-ference on Strongly Correlated Electron Systems.

[115] S. K. Panda, H. Jiang, and S. Biermann. Pressure dependence of dynamically screened coulomb interactions in nio : Effective hubbard, hund, intershell, and intersite components. Phys. Rev. B, 96 :045137, Jul 2017.

[116] E. Bucher, C. W. Chu, J. P. Maita, K. Andres, A. S. Cooper, E. Buehler, and K. Nas-sau. Electronic properties of two new elemental ferromagnets : fcc pr and nd.

Phys. Rev. Lett., 22 :1260–1263, Jun 1969.

[117] A. Jayaraman. Solid-liquid and solid-solid transformations in the rare-earth met-als at high pressures. Phys. Rev., 139 :A690–A696, Aug 1965.

[118] Wiberg E. Holleman, A. F. Inorganic Chemistry. Academic Press : San Diego, 2001.

[119] Jr. K. A. Gschneidner. Rare Earth Alloys. D. Van Nostrand Company, Princeton, New Jersey, 1961.

[120] D. B. McWhan and A. L. Stevens. Effect of pressure on the magnetic properties and crystal structure of gd, tb, dy, and ho. Phys. Rev., 139 :A682–A689, Aug 1965.

[121] D.K. Stephens. The phase diagrams of praseodymium, europium, gadolinium and ytterbium. Journal of Physics and Chemistry of Solids, 26(6) :943 – 948, 1965.

[122] A.K. McMahan, C. Huscroft, R.T. Scalettar, and E.L. Pollock. Volume-collapse transitions in the rare earth metals. Journal of Computer-Aided Materials Design, 5(2) :131–162, May 1998.

[123] Victor M. Goldschmidt. Geochemische verteilungsgesetze der elemente, part v : Isomorphie und polymorphie der sesquioxyde. die lanthaniden-kontraktion und ihre konsequenzen.

[124] G. Crecelius, G. K. Wertheim, and D. N. E. Buchanan. Core-hole screening in lanthanide metals. Phys. Rev. B, 18 :6519–6524, Dec 1978.

[125] F Gerken, A S Flodström, J Barth, L I Johansson, and C Kunz. Surface core level shifts of the lanthanide metals ce 58 -lu 71 : A comprehensive experimental study. Physica Scripta, 32(1) :43, 1985.

[126] G. Kaindl, A. Höhr, E. Weschke, S. Vandré, C. Schüβler-Langeheine, and C. Laub-schat. Surface core-level shifts and surface states for the heavy lanthanide metals.

BIBLIOGRAPHIE

[127] G. K. Wertheim and G. Crecelius. Divalent surface state on metallic samarium.

Phys. Rev. Lett., 40 :813–816, Mar 1978.

[128] P. O. Hedén, H. Löfgren, and S. B. M. Hagström. 4f electronic states in the metals nd, sm, dy, and er studied by x-ray photoemission. Phys. Rev. Lett., 26 :432–434, Feb 1971.

[129] Lang et al. Study of the 4f and valence band density of states in rare-earth metals. ii. experiment and results. J. Phys. F : Met. Phys. 11 121, 1981.

[130] JF Herbst and JW Wilkins. Handbook on the Physics and Chemistry of Rare Earths, volume 10. North-Holland, Amsterdam, 1987.

[131] Nissan Spector Christiane Bonnelle. Rare-Earths and Actinides in High Energy

Spectroscopy. 2015.

[132] U. Benedict and W.B. Holzapfel. Chapter 113 high-pressure studies — struc-tural aspects. In Lanthanides/Actinides : Physics I, volume 17 of Handbook on the

Physics and Chemistry of Rare Earths, pages 245 – 300. Elsevier, 1993.

[133] V. Sobolev. Thermophysical properties of npo2, amo2 and cmo2. Journal of

Nuclear Materials, 389(1) :45 – 51, 2009. Thermochemistry and Thermophysics

of Nuclear Materials.

[134] L. Petit, A. Svane, Z. Szotek, and W. M. Temmerman. First-principles calculations of puo2±x. Science, 301(5632) :498–501, 2003.

[135] Y. Baer and J. Schoenes. Electronic structure and coulomb correlation energy in uo2 single crystal. Solid State Communications, 33(8) :885 – 888, 1980.

[136] B. W. Veal, D. J. Lam, H. Diamond, and H. R. Hoekstra. X-ray photoelectron-spectroscopy study of oxides of the transuranium elements np, pu, am, cm, bk, and cf. Phys. Rev. B, 15 :2929–2942, Mar 1977.

[137] L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, and G. M. Stocks. Electronic

structure and ionicity of actinide oxides from first principles. Phys. Rev. B,

81 :045108, Jan 2010.

[138] J. Schoenes. Optical properties and electronic structure of uo2. Journal of Applied

Physics, 49(3) :1463–1465, 1978.

[139] T. Mark McCleskey, Eve Bauer, Quanxi Jia, Anthony K. Burrell, Brian L. Scott, Steven D. Conradson, Alex Mueller, Lindsay Roy, Xiaodong Wen, Gustavo E. Scuseria, and Richard L. Martin. Optical band gap of npo2 and puo2 from optical absorbance of epitaxial films. Journal of Applied Physics, 113(1) :013515, 2013. [140] Chikashi Suzuki, Tsuyoshi Nishi, Masami Nakada, Mitsuo Akabori, Masaru

Documents relatifs