• Aucun résultat trouvé

Les résultats présentés dans ce mémoire ont démontré que la diversité au sein des souches de Geotrichum spp. et Galactomyces spp. isolées de produits laitiers ou de l’environnement est bien présente, autant au niveau phénotypique que génomique. Cette diversité a de fait mené à l’identification de sous-groupes variables selon le caractère étudié, qui pourraient éventuellement être identifiés à titre de sous-espèces. Malheureusement, étant donné un manque de données génomiques complètes, aucun gène-clé explicitement impliqué dans l’affinage des fromages et unique aux différents groupes de souches n’a pu être identifié.

D’un point de vue industriel, le regroupement des souches de Geotrichum spp. démontre un fort potentiel pour le développement de différents types de ferments d’affinage. Tel qu’illustré dans ce travail, la caractérisation phénotypique des souches de Geotrichum spp. implique de nombreuses analyses afin de dresser un portrait complet de leurs capacités et caractéristiques plutôt variables. Afin de faciliter leur classification, l’idéal aurait été d’être en mesure d’associer des gènes clés aux caractéristiques phénotypiques des souches étudiées, par exemple leur capacité à développer des pseudo-hyphes, leur capacité alcalinisante ou protéolytique, ou encore leur capacité à consommer certaines substances carbonées. De la sorte, pour une caractérisation et classification ultérieure de nouvelles souches de G. candidum, il aurait été nécessaire d’évaluer la présence ou l’absence de ces gènes clés afin de déterminer pour quel type de fromage les souches devraient être utilisées : des fromages à croute fleurie ou à croute lavée, à pâte molle ou à pâte ferme, à saveurs douces ou prononcées, aux arômes soufrés ou davantage fruités, etc. Or, en raison de l’assemblage incomplet des génomes des souches de Geotrichum spp., il n’a pas été possible, hors de tout doute, d’associer des gènes spécifiques aux caractéristiques phénotypiques. Ainsi, le re-séquençage des génomes des souches de Geotrichum spp. avec une technologie complémentaire (ex : PacBio) sera essentiel afin d’obtenir les représentations génomiques les plus complètes possible, et de fait établir un portrait plus représentatif des gènes définissant chacune des souches.

La réalisation de ce travail a mené à de nouveaux questionnements et de nouvelles avenues de recherche. En rapport aux analyses phénotypiques réalisées sur les souches, il a été observé que certaines souches de G. candidum avaient le potentiel de libérer des composés aromatiques non seulement associés aux arômes soufrés (ail, chou, ferme), ces derniers découlant souvent de l’activité protéolytique, mais également associés à des arômes fruités, ceux-ci découlant davantage de l’activité lipolytique. De fait, il serait intéressant de caractériser l’activité lipolytique des souches ainsi que de

70

doser les composés aromatiques libérés lors de l’affinage de caillés modèles pour avoir un meilleur portrait de l’activité des souches en contexte de fabrication fromagère. Par ailleurs, une autre façon d’obtenir un portrait plus détaillé et complet des activités métaboliques des souches de G. candidum en cours d’affinage de caillé modèle serait de mesurer l’activité des souches par transcriptomique. En rapport aux analyses de biologie moléculaire, il serait idéal de pouvoir comparer les gènes identifiés par génomique par rapport à ceux obtenus par trancriptomique afin d’évaluer si seulement à partir des génomes des souches, et donc de gènes clés, il est réellement possible de les classer selon le type de fromage à fabriquer, ou bien si des analyses complémentaires sont nécessaires.

71

Bibliographie

1. Canada Gd. 2017. Transformation de produits laitiers - fromage.

http://www.dairyinfo.gc.ca/index_f.php?s1=dff-fcil&s2=proc-trans&s3=psdp-pvpl&s4=cp- pf&page=prodspecial. Accessed

2. Fillion G. 2016. Libre-échange Canada-UE : 10 choses que vous devez savoir, on Radio-

Canada. http://ici.radio-canada.ca/nouvelle/811927/aecg-ceta-libre-echange-accord-entente- europe-ue-canada-trudeau-magnette. Accessed

3. Fox PF, Law J. 1991. Enzymology of cheese ripening. Food Biotechnology 5:239-262.

4. Corsetti A, Rossi J, Gobbetti M. 2001. Interactions between yeasts and bacteria in the smear

surface-ripened cheeses. International Journal of Food Microbiology 69:1-10.

5. Leclercq-Perlat M-N, Buono F, Lambert D, Latrille E, Spinnler H-E, Corrieu G. 2004.

Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions. Journal of Dairy Research 71:346-354.

6. Arfi K, Leclercq-Perlat MN, Spinnler HE, Bonnarme P. 2005. Importance of curd-

neutralising yeasts on the aromatic potential of Brevibacterium linens during cheese ripening. International Dairy Journal 15:883-891.

7. Boutrou R, Gueguen M. 2005. Interests in Geotrichum candidum for cheese technology.

International Journal of Food Microbiology 102:1-20.

8. Collins YF, McSweeney PLH, Wilkinson MG. 2003. Lipolysis and free fatty acid

catabolism in cheese: A review of current knowledge. International Dairy Journal 13:841- 866.

9. Spinnler HE, Gripon JC, Fox PF, McSweeney PLH, Cogan TM, Guinee TP. 2004.

Surface mould-ripened cheeses, p 157-174, Cheese: Chemistry, Physics and Microbiology: Major Cheese Groups. Elsevier Science.

10. Marcellino N, Beuvier E, Grappin R, Guéguen M, Benson DR. 2001. Diversity of

Geotrichum candidum strains isolated from traditional cheesemaking fabrications in France. Applied and Environmental Microbiology 67:4752-4759.

11. Gente S, La Carbona S, Guéguen M. 2007. Levels of cystathionine γ lyase production by

Geotrichum candidum in synthetic media and correlation with the presence of sulphur flavors in cheese. International Journal of Food Microbiology 114:136-142.

12. Boutrou R, Kerriou L, Gassi J-Y. 2006. Contribution of Geotrichum candidum to the

proteolysis of soft cheese. International Dairy Journal 16:775-783.

13. Dieuleveux V, Van Der Pyl D, Chataud J, Gueguen M. 1998. Purification and

characterization of anti-Listeria compounds produced by Geotrichum candidum. Applied and Environmental Microbiology 64:800-803.

14. Guéguen M, Schmidt J. 1992. Les levures et Geotrichum candidum, p 165-219, Les groupes

microbiens d’intérêt laitier, Cepil ed, Paris, France.

15. Jollivet N, Chataud J, Vayssier Y, Bensoussan M, Belin J-M. 1994. Production of volatile

compounds in model milk and cheese media by eight strains of Geotrichum candidum Link. Journal of Dairy Research 61:241-248.

16. Jacobsen T, Poulsen OM. 1995. Comparison of lipases from different strains of the fungus

Geotrichum candidum. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism

1257:96-102.

17. Molimard P, Lesschaeve, Issanchou S, Brousse M, Spinnler H, E. 1997. Effect of the

association of surface flora on the sensory properties of mould-ripened cheese. Le Lait

72

18. Gente S, Desmasures N, Jacopin C, Plessis G, Beliard M, Panoff J-M, Guéguen M. 2002.

Intra-species chromosome-length polymorphism in Geotrichum candidum revealed by pulsed field gel electrophoresis. International Journal of Food Microbiology 76:127-134. 19. Alper I, Frenette M, Labrie S. 2013. Genetic diversity of dairy Geotrichum candidum

strains revealed by multilocus sequence typing. Applied Microbiology and Biotechnology

97:5907-5920.

20. Prillinger H, Molnár O, Eliskases-Lechner F, Lopandic K. 1999. Phenotypic and

genotypic identification of yeasts from cheese. Antonie van Leeuwenhoek 75:267-283. 21. Gente S, Sohier D, Coton E, Duhamel C, Gueguen M. 2006. Identification of Geotrichum

candidum at the species and strain level: Proposal for a standardized protocol. Journal of Industrial Microbiology and Biotechnology 33:1019-1031.

22. Polev DE, Bobrov KS, Eneyskaya EV, Kulminskaya AA. 2014. Draft genome sequence

of Geotrichum candidum strain 3C. Genome Announcements 2:e00956-00914.

23. Morel G, Sterck L, Swennen D, Marcet-Houben M, Onesime D, Levasseur A, Jacques N, Mallet S, Couloux A, Labadie K, Amselem J, Beckerich J -M, Henrissat B, Van de Peer Y, Wincker P, Souciet J-L, Gabaldón T, Tinsley CR, Casaregola S. 2015.

Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Scientific Reports 5:11571.

24. Lessard M-H, Viel C, Boyle B, St-Gelais D, Labrie S. 2014. Metatranscriptome analysis

of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese. BMC Genomics 15:235-235.

25. Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat M-N, Bento P, Fraud S, Gibrat J-F, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich J-M, Swennen D, Bonnarme P. 2015.

Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS ONE 10:1-25.

26. Labrie S. 2010. Cheese: Yeasts and Molds, p 147-150, Encyclopedia of Biotechnology in

Agriculture and Food doi:10.1081/E-EBAF-120044088. CRC Press.

27. Beresford T, Williams A. 2004. The microbiology of cheese ripening, p 287-317. In Fox

PF, McSweeney PLH, Cogan TM, Guinee TP (ed), Cheese: Chemistry, Physics and Microbiology, vol Volume 1. Academic Press.

28. Chamba JF, Irlinger F. 2004. Secondary and adjunct cultures, p 191-206. In Fox PF,

McSweeney PLH, Cogan TM, Guinee TP (ed), Cheese: Chemistry, Physics and Microbiology, vol 1. Academic Press.

29. McSweeney PLH. 2004. Biochemistry of cheese ripening. International Journal of Dairy

Technology 57:127-144.

30. Fleet G. 1990. Yeasts in dairy products. Journal of Applied Bacteriology 68:199-211.

31. Larpin-Laborde S, Imran M. 2011. Surface microbial consortia from Livarot, a French

smear-ripened cheese. Canadian Journal of Microbiology 660.

32. Brennan NM, Cogan TM, Loessner M, Scherer S. 2004. Bacterial surface-ripened cheeses,

p 199-225. In Fox PF, McSweeney PLH, Cogan TM, Guinee TP (ed), Cheese: Chemistry, Physics and Microbiology, vol 2. Academic Press.

33. Leclercq-Perlat MN, Oumer A, Bergere JL, Spinnler HE, Corrieu G. 2000. Behavior of

Brevibacterium linens and Debaryomyces hansenii as ripening flora in controlled production of smear soft cheese from reconstituted milk: Growth and substrate consumption. Journal of Dairy Science 83:1665-1673.

34. Lavoie K, Touchette M, St-Gelais D, Labrie S. 2012. Characterization of the fungal

microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Science and Technology 92:455-468.

73

35. Molimard P, Spinnler HE. 1996. Review: Compounds involved in the flavor of surface

mold-ripened cheeses: Origins and properties. Journal of Dairy Science 79:169-184. 36. Desmasures N. 2014. CHEESE | Mold-ripened varieties p409-415. In Tortorello ML (ed),

Encyclopedia of Food Microbiology 2nd ed doi:10.1016/B978-0-12-384730-0.00060-4.

Academic Press, Oxford.

37. Gripon JC. 2002. CHEESE | Mould-ripened cheeses, p 401-406. In Roginski H (ed),

Encyclopedia of Dairy Sciences doi:10.1016/B0-12-227235-8/00081-X. Elsevier, Oxford. 38. Eliskases-Lechner F, Guéguen M, Panoff JM. 2011. Yeasts and molds | Geotrichum

candidum, p 765-771. In Fuquay JW (ed), Encyclopedia of Dairy Sciences 2nd ed

doi:10.1016/B978-0-12-374407-4.00365-4. Academic Press, San Diego.

39. McSweeney P, Fox P. 2004. Metabolism of residual lactose and of lactate and citrate.

Cheese: chemistry, physics and microbiology 1:361-371.

40. Bockelmann W. 2002. CHEESE | Smear-ripened cheeses, p 391-401. In Roginski H (ed),

Encyclopedia of Dairy Sciences doi:10.1016/B0-12-227235-8/00080-8. Elsevier, Oxford. 41. Bockelmann W. 2002. Development of defined surface starter cultures for the ripening of

smear cheeses. International Dairy Journal 12:123-131.

42. Bockelmann W, Hoppe -Seyler T. 2001. The surface flora of bacterial smear-ripened

cheeses from cow's and goat's milk. International Dairy Journal 11:307-314.

43. Larpin S, Mondoloni C, Goerges S, Vernoux J-P, Guéguen M, Desmasures N. 2006.

Geotrichum candidum dominates in yeast population dynamics in Livarot, a French red- smear cheese. FEMS Yeast Research 6:1243-1253.

44. Bärtschi C, Berthier J, Valla G. 1994. Inventaire et évolution des flores fongiques de

surface du Reblochon de Savoie. Le Lait 74:105-114.

45. Psoni L, Kotzamanidis C, Yiangou M, Tzanetakis N, Litopoulou-Tzanetaki E. 2007.

Genotypic and phenotypic diversity of Lactococcus lactis isolates from Batzos, a Greek PDO raw goat milk cheese. International Journal of Food Microbiology 114:211-220.

46. Delgado S, Mayo B. 2004. Phenotypic and genetic diversity of Lactococcus lactis and

Enterococcus spp. strains isolated from Northern Spain starter-free farmhouse cheeses. International Journal of Food Microbiology 90:309-319.

47. Stefanovic E, Kilcawley KN, Rea MC, Fitzgerald GF, McAuliffe O. 2017. Genetic,

enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavor diversification. Journal of Applied Microbiology 122:1245-1261.

48. Padilla B, Manzanares P, Belloch C. 2014. Yeast species and genetic heterogeneity within

Debaryomyces hansenii along the ripening process of traditional ewes' and goats' cheeses. Food Microbiology 38:160-166.

49. Fontaine K, Hymery N, Lacroix MZ, Puel S, Puel O, Rigalma K, Gaydou V, Coton E, Mounier J. 2015. Influence of intraspecific variability and abiotic factors on mycotoxin

production in Penicillium roqueforti. International Journal of Food Microbiology 215:187- 193.

50. Gillot G, Jany J-L, Poirier E, Maillard M-B, Debaets S, Thierry A, Coton E, Coton M.

2017. Functional diversity within the Penicillium roqueforti species. International Journal of Food Microbiology 241:141-150.

51. Gillot G, Jany J-L, Coton M, Le Floch G, Debaets S, Ropars J, López-Villavicencio M, Dupont J, Branca A, Giraud T. 2015. Insights into Penicillium roqueforti morphological

and genetic diversity. PloS ONE 10:e0129849.

52. Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM. 2001. Recent advances in cheese

microbiology. International Dairy Journal 11:259-274.

53. Banjara N, Suhr MJ, Hallen-Adams HE. 2015. Diversity of yeast and mold species from

74

54. Belén Flórez A, Álvarez-Martín P, López-Díaz TM, Mayo B. 2007. Morphotypic and

molecular identification of filamentous fungi from Spanish blue-veined Cabrales cheese, and typing of Penicillium roqueforti and Geotrichum candidum isolates. International Dairy Journal 17:350-357.

55. Tornadijo ME, Fresno JM, Sarmiento RM, Carballo J. 1998. Study of the yeasts during

the ripening process of Armada cheeses from raw goat's milk. Le Lait 78:647-659.

56. Cosentino S, Fadda M, Deplano M, Mulargia A, Palmas F. 2001. Yeasts associated with

Sardinian ewe's dairy products. International Journal of Food Microbiology 69:53-58. 57. Pisano MB, Fadda ME, Deplano M, Corda A, Cosentino S. 2006. Microbiological and

chemical characterization of Fiore Sardo, a traditional Sardinian cheese made from ewe's milk. International Journal of Dairy Technology 59:171-179.

58. Carmichael J. 1957. Geotrichum candidum. Mycologia 49:820-830.

59. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G. 2002. Microbes from raw milk for

fermented dairy products. International Dairy Journal 12:91-109.

60. de Hoog GS, Smith MT. 2004. Ribosomal gene phylogeny and species delimitation in

Geotrichum and its teleomorphs. Studies in Mycology:489-516.

61. de Hoog GS, Smith MT. 2011. Galactomyces Redhead & Malloch (1977), p 413-420. In

Kurtzman CP, Fell JW, Boekhout T (ed), The Yeasts, 5 ed doi:10.1016/B978-0-444-5214 9- 1.00031-8. Elsevier, London.

62. Thornton CR, Slaughter DC, Davis RM. 2010. Detection of the sour-rot pathogen

Geotrichum candidum in tomato fruit and juice by using a highly specific monoclonal antibody-based ELISA. International Journal of Food Microbiology 143:166-172.

63. Pottier I, Gente S, Vernoux J-P, Guéguen M. 2008. Safety assessment of dairy

microorganisms: Geotrichum candidum. International Journal of Food Microbiology

126:327-332.

64. Rohm H, Eliskases‐Lechner F, Bräuer M. 1992. Diversity of yeasts in selected dairy products. Journal of Applied Bacteriology 72:370-376.

65. Maldonado R, Lopes D, Aguiar-Oliveira E, Kamimura E, Macedo G. 2017. A review on

Geotrichum lipases: Production, purification, immobilization and applications. Chemical and Biochemical Engineering Quarterly 30:439-454.

66. Eliskases-Lechner F. 2002. Geotrichum candidum, p 1229-1234. In Roginski H (ed),

Encyclopedia of Dairy Sciences doi:10.1016/B0-12-227235-8/00184-X. Elsevier, Oxford. 67. Lopandic K, Zelger S, Bánszky LK, Eliskases-Lechner F, Prillinger H. 2006.

Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiology 23:341-350.

68. Gueguen M, Jacquet J. 1982. Études sur les caractères culturaux et la morphologie de

Geotrichum candidum Link. Le Lait 62:625-644.

69. Alper IA. 2013. Défi phylogénétique chez la levure d'intérêt laitier Geotrichum candidum.

29595 CaQQLA. Université Laval.

70. Gueguen M, Lenoir J. 1975. Aptitude de l'espèce Geotrichum candidum à la production

d'enzymes protéolytiques. Le Lait 55:145-162.

71. Missous G, Thammavongs B, Launay G, Guéguen M, Dieuleveux V, Panoff J-M. 2010.

Relationship between growth behaviour, micro and macroscopic morphologies and freezing sensitivity of the ripening starter Geotrichum candidum is strain specific and mostly related to the morphotypes: The arthrospores/hyphae parameter. Journal of Dairy Research 77:425- 431.

72. Gueguen M, Lenoir J. 1976. Caractères du système protéolytique de Geotrichum candidum.

Le Lait 56:439-448.

73. Sacristán N, González L, Castro JM, Fresno JM, Tornadijo ME. 2012. Technological

characterization of Geotrichum candidum strains isolated from a traditional Spanish goats’ milk cheese. Food Microbiology 30:260-266.

75

74. Boutrou R, Aziza M, Amrane A. 2006. Enhanced proteolytic activities of Geotrichum

candidum and Penicillium camembertii in mixed culture. Enzyme and Microbial Technology

39:325-331.

75. Spinnler HE, Berger C, Lapadatescu C, Bonnarme P. 2001. Production of sulfur

compounds by several yeasts of technological interest for cheese ripening. International Dairy Journal 11:245-252.

76. Bonnarme P, Lapadatescu C, Yvon M, Spinnler H-E. 2001. L-methionine degradation

potentialities of cheese-ripening microorganisms. Journal of Dairy Research 68:663-674. 77. Lessard M-H, Bélanger G, St-Gelais D, Labrie S. 2012. The composition of Camembert

cheese-ripening cultures modulates both mycelial growth and appearance. Applied and Environmental Microbiology 78:1813-1819.

78. Bonnarme P, Arfi K, Dury C, Helinck S, Yvon M, Spinnler H-E. 2001. Sulfur compound

production by Geotrichum candidum from L-methionine: Importance of the transamination step. FEMS Microbiology Letters 205:247-252.

79. Arfi K, Tâche R, Spinnler HE, Bonnarme P. 2003. Dual influence of the carbon source

and L-methionine on the synthesis of sulphur compounds in the cheese-ripening yeast Geotrichum candidum. Applied Microbiology and Biotechnology 61:359-365.

80. Berger C, Khan JA, Molimard P, Martin N, Spinnler HE. 1999. Production of sulfur

flavors by ten strains of Geotrichum candidum. Applied and Environmental Microbiology

65:5510-5514.

81. Demarigny Y, Berger C, Desmasures N, Gueguen M, Spinnler HE. 2000. Flavour

sulphides are produced from methionine by two different pathways by Geotrichum candidum. Journal of Dairy Research 67:371-380.

82. Martin N, Berger C, Le Du C, Spinnler H. 2001. Aroma compound production in cheese

curd by coculturing with selected yeast and bacteria. Journal of Dairy Science 84:2125-2135. 83. Castellote J, Fraud S, Irlinger F, Swennen D, Fer F, Bonnarme P, Monnet C. 2015.

Investigation of Geotrichum candidum gene expression during the ripening of Reblochon- type cheese by reverse transcription-quantitative PCR. International Journal of Food Microbiology 194:54-61.

84. Martin N, Savonitto S, Molimard P, Berger C, Brousse M, Spinnler HE. 1999. Flavor

generation in cheese curd by coculturing with selected yeast, mold, and bacteria. Journal of Dairy Science 82:1072-1080.

85. Sablé S, Cottenceau G. 1999. Current knowledge of soft cheeses flavor and related

compounds. Journal of Agricultural and Food Chemistry 47:4825-4836.

86. Bloes-Breton S, Bergère J, L. 1997. Volatile sulfur compounds produced by

Micrococcaceae and Coryneform bacteria isolated from cheeses. Le Lait 77:543-559. 87. Helinck S, Spinnler HE, Parayre S, Dame -Cahagne M, Bonnarme P. 2000. Enzymatic

versus spontaneous S-methyl thioester synthesis in Geotrichum candidum. FEMS Microbiology Letters 193:237-241.

88. Mdaini N, Gargouri M, Hammami M, Monser L, Hamdi M. 2006. Production of natural

fruity aroma by Geotrichum candidum. Applied Biochemistry and Biotechnology 128:227- 235.

89. Jacobsen T, Hinrichsen L. 1997. Bioformation of flavor by Penicillium candidum,

Penicillium nalgiovense and Geotrichum candidum on glucose, peptone, maize oil and meat extract. Food Chemistry 60:409-416.

90. Bertolini MC, Laramée L, Thomas DY, Cygler M, Schrag JD, Vernet T. 1994.

Polymorphism in the lipase genes of Geotrichum candidum strains. European Journal Of Biochemistry / FEBS 219:119-125.

91. Veeraragavan K, Colpitts T, Gibbs BF. 1990. Purification and characterization of two

distinct lipases from Geotrichum candidum. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1044:26-33.

76

92. Sidebottom CM, Charton E, Dunn PP, Mycock G, Davies C, Sutton JL, Macrae AR,

Slabas AR. 1991. Geotrichum candidum produces several lipases with markedly different

substrate specificities. European Journal of Biochemistry 202:485-491.

93. Baillargeon MW, Bistline RG, Sonnet PE. 1989. Evaluation of strains of Geotrichum

candidum for lipase production and fatty acid specificity. Applied Microbiology and Biotechnology 30:92-96.

94. Leclercq-Perlat M-N, Corrieu G, Spinnler H-E. 2007. Controlled production of

Camembert-type cheeses: Part III role of the ripening microflora on free fatty acid concentrations. Journal of Dairy Research 74:218-225.

95. Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou A-S, Hélias A, Irlinger F. 2008.

Microbial interactions within a cheese microbial community. Applied and Environmental Microbiology 74:172-181.

96. Vassal L, Gripon J. 1984. L'amertume des fromages à pâte molle de type Camembert: Rôle

de la présure et de Penicillium caseicolum, moyens de la contrôler. Le Lait 64:397-417. 97. Imran M, Bré J-M, Guéguen M, Vernoux J-P, Desmasures N. 2013. Reduced growth of

Listeria monocytogenes in two model cheese microcosms is not associated with individual microbial strains. Food Microbiology 33:30-39.

98. Boekhout T, Naumova E. 2003. Pulsed field gel electrophoresis (PFGE) of yeasts, p 93-

103, Experimental Approaches for Assessing Genetic Diversity among Microbial Pathogens. 99. Naumova E, Serpova E, Naumov G. 2010. Genome variability of the yeast Yarrowia

lipolytica. Microbiology 79:252–259.

100. Fasoli G, Barrio E, Tofalo R, Suzzi G, Belloch C. 2016. Multilocus analysis reveals large

genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses. International Journal of Food Microbiology 233:1-10. 101. Sohier D, Le Dizes A-S, Thuault D, Neuveglise C, Coton E, Casaregola S. 2009. Important

genetic diversity revealed by inter-LTR PCR fingerprinting of Kluyveromyces marxianus and Debaryomyces hansenii strains from French traditional cheeses. Dairy Science and Technology 89:569-581.

102. Delorme C, Legravet N, Jamet E, Hoarau C, Alexandre B, El-Sharoud WM, Darwish MS, Renault P. 2017. Study of Streptococcus thermophilus population on a world-wide and

historical collection by a new MLST scheme. International Journal of Food Microbiology

242:70-81.

103. Taïbi A, Dabour N, Lamoureux M, Roy D, LaPointe G. 2010. Evaluation of the genetic

polymorphism among Lactococcus lactis subsp. cremoris strains using comparative genomic hybridization and multilocus sequence analysis. International Journal of Food Microbiology

144:20-28.

104. Vendramin V, Treu L, Campanaro S, Lombardi A, Corich V, Giacomini A. 2017.

Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products. Food Microbiology 63:47-57.

105. Peck MW, van Vliet AHM. 2016. Impact of Clostridium botulinum genomic diversity on

food safety. Current Opinion in Food Science 10:52-59.

106. Marcet-Houben M, Ballester A-R, de la Fuente B, Harries E, Marcos JF, González- Candelas L, Gabaldón T. 2012. Genome sequence of the necrotrophic fungus Penicillium

digitatum, the main postharvest pathogen of citrus. BMC Genomics 13:646.

107. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H,

Han J. 2014. Genome sequencing of four Aureobasidium pullulans varieties:

Biotechnological potential, stress tolerance, and description of new species. BMC Genomics

15:549.

108. Bergström A, Simpson JT, Salinas F, Barré B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G. 2014. A high-definition view

77

of functional genetic variation from natural yeast genomes. Molecular Biology and Evolution

31:872-888.

109. Gente S, Desmasures N, Panoff JM, Guéguen M. 2002. Genetic diversity among

Geotrichum candidum strains from various substrates studied using RAM and RAPD-PCR. Journal of Applied Microbiology 92:491-501.

110. Senses-Ergul S, Ágoston R, B elák Á, Deák T. 2006. Characterization of some yeasts

isolated from foods by traditional and molecular tests. International Journal of Food Microbiology 108:120-124.

111. Vasdinyei R, Deák T. 2003. Characterization of yeast isolates originating from Hungarian

dairy products using traditional and molecular identification techniques. International Journal of Food Microbiology 86:123-130.

112. Sacristán N, Mayo B, Fernández E, Fresno JM, Tornadijo ME, Castro JM. 2013.

Molecular study of Geotrichum strains isolated from Armada cheese. Food Microbiology

36:481-487.

113. Alper I, Frenette M, Labrie S. 2011. Ribosomal DNA polymorphisms in the yeast

Geotrichum candidum. Fungal Biology 115:1259-1269.

114. Sulo P, Laurenčík M, Poláková S, Minárik G, Sláviková E. 2009. Geotrichum bryndzae