• Aucun résultat trouvé

Le taux de mortalité due au sepsis reste plus que jamais des enjeux cruciaux en santé publique. Les patients hospitalisés en réanimation pour syndromes septiques sont sujets à d’importantes modifications physiopathologiques conduisant à une importante variabilité pharmacocinétique. Cette variabilité induit chez les patients atteints de sepsis des risques de sous-dosage et de toxicité non négligeables par rapport à la population générale. Il est donc nécessaire qu’un travail d’optimisation posologique soit effectué pour pouvoir contrôler l’infection mise en cause et ainsi, faire perdurer l’utilisation des antibiotiques actuels en limitant l’émergence de résistances tout en réduisant la morbi-mortalité d’une large proportion de patients hospitalisés en réanimation.

Par la mesure et l’étude des concentrations en antibiotiques, ce travail a permis de caractériser cette variabilité pharmacocinétique parmi deux classes d’antibiotiques : bêta-lactamines et aminosides qui, lorsqu’ils sont associés, permettent de couvrir une large gamme d’espèces bactériennes pathogènes. Via une approche de data-mining, ce travail a également permis d’identifier les facteurs de risques de sous exposition lors de la première administration d’amikacine. Par le biais de la modélisation pharmacocinétique de population et de simulations, ce travail a abouti en un algorithme posologique optimisation les cibles PK/PD de l’amikacine. Concernant la tobramycine, la modélisation pharmacocinétique a été capable de décrire son comportement au niveau pulmonaire chez un modèle animal sous ventilation mécanique sous deux modalités : la voie intraveineuse et la voie inhalée.

L’ensemble de ce travail suggère que pour atteindre les cibles PK/PD d’efficacité, les anti-infectieux doivent être utilisés à des posologies différentes, en moyenne bien plus importante, par rapport à la population générale. Pour l’amikacine en IV, les doses initiales doivent être fortement majorées ce qui pourrait induire une toxicité rénale. En cas d’infection pulmonaire, la voie inhalée semblerait être une alternative intéressante pour la tobramycine car elle possède un profil de diffusion pulmonaire plus intéressant que la voie intraveineuse tout en limitant son exposition systémique à risque de néphrotoxicité. Ce travail souligne la faiblesse des pratiques actuelles d’utilisation des anti-infectieux en réanimation, avec des schémas posologiques très peu individualisés, peu à même de gérer de façon optimale les multiples

sources de variabilité PK/PD. Les pratiques de suivi thérapeutique pharmacologique apparaissent également insuffisantes en termes de disponibilité, de performance et d’interprétation.

Ce travail propose quelques avancées dans l’optimisation et la modélisation des anti-infectieux. Mais les études pharmacocinétique en réanimation sont souvent soumises à de nombreuses contraintes pratiques : faible effectif de patients, méthodes de dosages peu accessibles en routine, imprécision des méthodes microbiologiques évaluant le degré de résistance des germes pathogènes. De plus, des incertitudes subsistent concernant les cibles PK/PD d’efficacité concernant les aminosides et trop peu de données sont disponibles quant à la toxicité des anti-infectieux de façon général. Pour finir, la diversité qu’offre les patients hospitalisés en réanimation peut également amener à remettre en cause certaines aspect statistiques suggérant d’utiliser de nouvelles approches permettant de mieux expliquer la physiopathologie du sepsis et permettant la détection de nouvelles covariables de façon à mieux évaluer la pharmacocinétique des anti-infectieux.

Références bibliographiques

1. Sepsis [Internet]. Wikipedia; [cited 2019 Apr 10]. Available from:

http://fr.wikipedia.org/wiki/Sepsis

2. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. Chest. 1992 Jun;101(8):1644–55.

3. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001

SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med.

2003 Apr; 31(4) :1250-6.

4. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al.

The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA.

2016 Feb 23;315(8):801–10.

5. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure.

On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996 Jul;22(7):707–10.

6. Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011 Jun;(62):1–8.

7. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Review Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. The Lancet Neurology. Elsevier Ltd; 2009 Apr 1;8(4):355–69.

8. Yeh RW, Sidney S, Chandra M, of MSEJ, 2010. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010 Jun 10;362(23):2155–65.

9. Group UCSW. United States Cancer Statistics: 1999–2014 Incidence and Mortality Web-based Report. Department of Health and Human Services, Centers for Disease 2015.

10. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J, et al.

The Surviving Sepsis Campaign: Results of an international guideline-based performance improvement program targeting severe sepsis*. Critical Care Medicine. 2010 Feb;38(2):367–

74.

11. Sakr Y, Jaschinski U, Wittebole X, Szakmany T, Lipman J, Ñamendys-Silva SA, et al.

Sepsis in Intensive Care Unit Patients: Worldwide Data From the Intensive Care over Nations Audit. Open Forum Infectious Diseases. 2018 Dec;5(12):ofy313.

12. Brun-Buisson C, Meshaka P, Pinton P, Vallet B, EPISEPSIS Study Group. EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units.

Intensive Care Med. 2004 Apr;30(4):580–8.

13. Brun-Buisson C, Doyon F, Carlet J. Bacteremia and severe sepsis in adults: a

multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. Am J Respir Crit Care Med. 1996 Sep;154(3 Pt 1):617–24.

14. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010 Oct 27;304(16):1787–94.

15. Agency for Healthcare Research and Quality. HCUP facts and gures: Statistics on hospital-based care in the United States. 2008 [cited 2018 Feb 6]. pp. 1–3. Available from:

http://www.hcup-us.ahrq.gov/reports/ factsand gures/2008/TOC_2008.jsp.

16. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA. 2017 Oct 3;318(13):1241–9.

17. Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care.

2011 Jul 28;15(4):R183.

18. Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009 Dec

2;302(21):2323–9.

19. Oleksiewicz MB, Nagy G, Nagy E. Anti-bacterial monoclonal antibodies: back to the future? Arch Biochem Biophys. 2012 Oct 15;526(2):124–31.

20. Schulte W, Bernhagen J, Bucala R. Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View. Mediators of Inflammation.

2013;2013(6):1–16.

21. Qiu P, Cui X, Sun J, Welsh J, Natanson C, Eichacker PQ. Antitumor necrosis factor therapy is associated with improved survival in clinical sepsis trials: a meta-analysis. Critical Care Medicine. 2013 Oct;41(10):2419–29.

22. Levi M, van der Poll T. Coagulation and sepsis. Thrombosis Research. 2017 Jan;149:38–44.

23. Miller DL, Yaron R, Yellin MJ. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J Leukoc Biol. 1998 Mar;63(3):373–9.

24. Levi M, Cate Ten H. Disseminated intravascular coagulation. N Engl J Med. 1999 Aug 19;341(8):586–92.

25. Adams MN, Ramachandran R, Yau M-K, Suen JY, Fairlie DP, Hollenberg MD, et al.

Structure, function and pathophysiology of protease activated receptors. Pharmacology and Therapeutics. Elsevier Inc; 2011 Jun 1;130(3):248–82.

26. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al.

Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001 Mar 8;344(10):699–709.

27. Vincent J-L, De Backer D. Circulatory shock. N Engl J Med. 2013 Oct 31;369(18):1726–

34.

28. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. Epstein FH, editor. N Engl J Med. 2001 Aug 23;345(8):588–95.

29. Zardi EM, Zardi DM, Dobrina A, Afeltra A. Prostacyclin in sepsis: a systematic review.

Prostaglandins Other Lipid Mediat. 2007 Feb;83(1-2):1–24.

30. Fullerton JN, O’Brien AJ, Gilroy DW. Lipid mediators in immune dysfunction after severe inflammation. Trends in Immunology. Elsevier Ltd; 2014 Jan 1;35(1):12–21.

31. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacological Reviews. 1978 Sep;30(3):293–331.

32. Aronoff DM. Cyclooxygenase Inhibition in Sepsis: Is There Life after Death? Mediators of Inflammation. 2012;2012(3):1–7.

33. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001 Aug;27(8):1416–21.

34. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance:

implications for antibacterial dosing in the critically ill. Clin Pharmacokinet. 2010;49(1):1–16.

35. Bilbao-Meseguer I, Rodríguez-Gascón A, Barrasa H, Isla A, Solinís MÁ. Augmented Renal Clearance in Critically Ill Patients: A Systematic Review. Clin Pharmacokinet. Springer International Publishing; 2018 Feb 13;14(6):1–15.

36. Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 2015 Sep 21;21(8):827–46.

37. Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med. 2011 Jun 22;3(88):88ps25–5.

38. Ferrer R, Mateu X, Maseda E, Yébenes JC, Aldecoa C, De Haro C, et al. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert Review of Clinical Pharmacology. Taylor & Francis; 2018 Jan 11;11(2):125–

37.

39. Opal SM, Laterre P-F, Francois B, LaRosa SP, Angus DC, Mira J-P, et al. Effect of

eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013 Mar 20;309(11):1154–62.

40. Sair M, Etherington PJ, Peter Winlove C, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Critical Care Medicine. 2001 Jul;29(7):1343–9.

41. Prauchner CA. Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns. 2017 May;43(3):471–85.

42. Azevedo LCP. Mitochondrial dysfunction during sepsis. Endocr Metab Immune Disord Drug Targets. 2010 Sep;10(3):214–23.

43. Teng J, Pourmand A, Mazer-Amirshahi M. Vitamin C: The next step in sepsis management? J Crit Care. 2018 Feb;43:230–4.

44. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al.

Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011 Dec 21;306(23):2594–605.

45. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al.

Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008 Jul 23;300(4):413–22.

46. Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? Journal of Clinical Investigation. 2016 Jan 4;126(1):23–31.

47. Patil NK, Guo Y, Luan L, Sherwood ER. Targeting Immune Cell Checkpoints during Sepsis. Int J Mol Sci. 2017 Nov 14;18(11).

48. Hotchkiss RS, Colston E, Yende S, Angus DC, Moldawer LL, Crouser ED, et al. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single

Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559).

Critical Care Medicine. 2019 May;47(5):632–42.

49. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock:

2016. Vol. 45, Crit Care Med. 2017 Mar;45(3) 486–552.

50. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of

hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine. 2006 Jun;34(6):1589–96.

51. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of

inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009 Nov;136(5):1237–48.

52. Kumar A, Zarychanski R, Light B, Parrillo J, Maki D, Simon D, et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Critical Care Medicine. 2010 Sep;38(9):1773–85.

53. Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, et al.

Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis:

Systematic review with meta-analysis and trial sequential analysis. BMJ. 2013 Mar 23;346:f839.

54. Moeller C, Fleischmann C, Thomas-Rueddel D, Vlasakov V, Rochwerg B, Theurer P, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016 Oct;35:75–83.

55. Juste RN, Panikkar K, Soni N. The effects of low-dose dopamine infusions on

haemodynamic and renal parameters in patients with septic shock requiring treatment with noradrenaline. Intensive Care Med. 1998 Jun;24(6):564–8.

56. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010 Mar

4;362(9):779–89.

57. Annane D, Bellissant E, Bollaert P-E, Briegel J, Keh D, Kupfer Y. Corticosteroids for treating sepsis. Cochrane Database Syst Rev. 2015 Dec 3;(12):CD002243.

58. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al.

Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8;345(19):1359–67.

59. Toews I, George AT, Peter JV, Kirubakaran R, Fontes LES, Ezekiel JPB, et al.

Interventions for preventing upper gastrointestinal bleeding in people admitted to intensive care units. Cochrane Database Syst Rev. 2018 Jun 4;6:CD008687.

60. Tonelli M, Manns B, Feller-Kopman D. Acute renal failure in the intensive care unit: a systematic review of the impact of dialytic modality on mortality and renal recovery. Am J Kidney Dis. 2002 Nov;40(5):875–85.

61. Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ. The Importance of

Pharmacokinetic/Pharmacodynamic Surrogate Markers to Outcome: Focus on Antibacterial Agents. Clin Pharmacokinet. 1995 Jan 1;28(2):143–60.

62. Trylska J, Kulik M. Interactions of aminoglycoside antibiotics with rRNA. Biochem Soc Trans. 2016 Aug 15;44(4):987–93.

63. Agence française de sécurité sanitaire des produits de santé. Update on good use of injectable aminoglycosides, gentamycin, tobramycin, netilmycin, amikacin. Pharmacological properties, indications, dosage, and mode of administration, treatment monitoring.

Médecine et Maladies Infectieuses. 2012 Jul;42(7):301–8.

64. Modongo C, Pasipanodya JG, Zetola NM, Williams SM, Sirugo G, Gumbo T. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients.

Antimicrob Agents Chemother. 2015 Oct;59(10):6337–43.

65. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, et al.

Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009 Aug;49(3) 325–7.

66. Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017 Nov 14;21(1):276.

67. Beumier M, Casu GS, Hites M, Wolff F, Cotton F, Vincent JL, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015 May;81(5):497–506.

68. Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012 Aug;67(8):2034–42.

69. Sorlí L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis. 2013 Aug 19;13(1):380.

70. Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010 Jun 15;50(12):1568–74.

71. Ueda K, Nannya Y, Kumano K, Hangaishi A, Takahashi T, Imai Y, et al. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. Int J Hematol. 2009 Apr 2;89(5):592–9.

72. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989 Jan 26;320(4):204–10.

73. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al.

Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet. 2016 Jan;387(10014):176–87.

74. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE:

an emerging consensus on rating quality of evidence and strength of recommendations.

BMJ. 2008 Apr 26;336(7650):924–6.

75. Smith BS, Yogaratnam D, Levasseur-Franklin KE, Forni A, Fong J. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012 May;141(5):1327–36.

76. Barquist ES, Gomez-Fein E, Block EFJ, Collin G, Alzamel H, Martinez O. Bioavailability of Oral Fluconazole in Critically Ill Abdominal Trauma Patients With and Without Abdominal Wall Closure: a Randomized Crossover Clinical Trial. The Journal of Trauma: Injury, Infection, and Critical Care. 2007 Jul;63(1):159–63.

77. Tarling MM, Toner CC, Withington PS, Baxter MK, Whelpton R, Goldhill DR. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997 Mar;23(3):256–60.

78. Roberts DJ, Hall RI. Drug absorption, distribution, metabolism and excretion

considerations in critically ill adults. Expert Opinion on Drug Metabolism & Toxicology. 2013 Sep;9(9):1067–84.

79. May F, Peytavin G, Fourati S, Pressiat C, Carteaux G, Razazi K, et al. Paracetamol absorption test to detect poor enteric absorption of oseltamivir in intensive care unit patients with severe influenza: a pilot study. Intensive Care Med. 2019 Oct;45(10):1484–6.

80. Rello J, Rouby JJ, Sole-Lleonart C, Chastre J, Blot S, Luyt CE, et al. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin Microbiol Infect. 2017 Sep;23(9):640–6.

81. Barbot A, Venisse N, Rayeh F, Bouquet S, Debaene B, Mimoz O. Pharmacokinetics and pharmacodynamics of sequential intravenous and subcutaneous teicoplanin in critically ill patients without vasopressors. Intensive Care Med. 2003 Sep;29(9):1528–34.

82. Lipman J, Wallis SC, Rickard CM, Fraenkel D. Low cefpirome levels during twice daily dosing in critically ill septic patients: pharmacokinetic modelling calls for more frequent dosing. Intensive Care Med. 2001 Feb 3;27(2):363–70.

83. Lipman J, Wallis SC, Rickard C. Low plasma cefepime levels in critically ill septic patients: pharmacokinetic modeling indicates improved troughs with revised dosing.

Antimicrob Agents Chemother. 1999 Oct;43(10):2559–61.

84. Llopis-Salvia P, Jiménez-Torres NV. Population pharmacokinetic parameters of vancomycin in critically ill patients. J Clin Pharm Ther. 2006 Oct;31(5):447–54.

85. Marik PE. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care. 1993 Apr;21(2):172–3.

86. Bracco D, Landry C, Dubois M-J, Eggimann P. Pharmacokinetic variability of extended interval tobramycin in burn patients. Burns. 2008 Sep;34(6):791–6.

87. Nation RL, Li J. Optimizing use of colistin and polymyxin B in the critically ill. Semin Respir Crit Care Med. 2007 Dec;28(6):604–14.

88. Mann HJ, Townsend RJ, Fuhs DW, Cerra FB. Decreased hepatic clearance of clindamycin in critically ill patients with sepsis. Clin Pharm. 1987 Feb;6(2):154–9.

89. Sinnollareddy M, Peake SL, Roberts MS, Playford EG, Lipman J, Roberts JA.

Pharmacokinetic evaluation of fluconazole in critically ill patients. Expert Opinion on Drug Metabolism & Toxicology. 2011 Nov;7(11):1431–40.

90. Udy AA, Roberts JA, Lipman J, Blot S. The effects of major burn related

pathophysiological changes on the pharmacokinetics and pharmacodynamics of drug use: An appraisal utilizing antibiotics. Adv Drug Deliv Rev. 2018 Jan 1;123:65–74.

91. Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int. 2017 Jul;92(1):37–46.

92. Perucca E. Age-related changes in pharmacokinetics: predictability and assessment methods. Int Rev Neurobiol. 2007;81:183–99.

93. Alobaid AS, Hites M, Lipman J, Taccone FS, Roberts JA. Effect of obesity on the

pharmacokinetics of antimicrobials in critically ill patients: A structured review. International Journal of Antimicrobial Agents. 2016 Apr;47(4):259–68.

94. Gros A, Dupuis C, Ruckly S, Lautrette A, Garrouste-Orgeas M, Gainnier M, et al.

Association Between Body Weight Variation and Survival and Other Adverse Events in Critically Ill Patients With Shock: A Multicenter Cohort Study of the OUTCOMEREA Network.

Critical Care Medicine. 2018 Oct;46(10):e981–7.

95. Schneider AG, Baldwin I, Freitag E, Glassford N, Bellomo R. Estimation of fluid status changes in critically ill patients: fluid balance chart or electronic bed weight? J Crit Care.

2012 Dec;27(6):745.e7–12.

96. Cheng AT, Plank LD, Hill GL. Prolonged overexpansion of extracellular water in elderly patients with sepsis. Arch Surg. 1998 Jul;133(7):745–51.

97. Gray DS, Bray GA, Gemayel N, Kaplan K. Effect of obesity on bioelectrical impedance.

Am J Clin Nutr. 1989 Aug;50(2):255–60.

98. Pai MP, Nafziger AN, Bertino JS. Simplified estimation of aminoglycoside

pharmacokinetics in underweight and obese adult patients. Antimicrob Agents Chemother.

American Society for Microbiology; 2011 Sep;55(9):4006–11.

99. Traynor AM, Nafziger AN, Bertino JS. Aminoglycoside dosing weight correction factors for patients of various body sizes. Antimicrob Agents Chemother. 1995

Feb;39(2):545–8.

100. Taccone FS, Laterre P-F, Spapen H, Dugernier T, Delattre I, Layeux B, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care.

2010;14(2):R53.

101. Foley K, Keegan M, Campbell I, Murby B, Hancox D, Pollard B. Use of single-frequency bioimpedance at 50 kHz to estimate total body water in patients with multiple organ failure and fluid overload. Critical Care Medicine. 1999 Aug;27(8):1472–7.

102. Tagami T, Sawabe M, Kushimoto S, Marik PE, Mieno MN, Kawaguchi T, et al.

Quantitative diagnosis of diffuse alveolar damage using extravascular lung water. Critical Care Medicine. 2013 Sep;41(9):2144–50.

103. Balik M, Sedivy J, Waldauf P, Kolar M, Smejkalova V, Pachl J. Can bioimpedance determine the volume of distribution of antibiotics in sepsis? Anaesth Intensive Care. 2005 Jun;33(3):345–50.

104. Imaura M, Yokoyama H, Kohyama T, Nagafuchi H, Kohata Y, Takahashi H, et al.

Prediction of distribution volume of vancomycin in critically ill patients using extravascular lung water and pulmonary vascular permeability indices. Int Journal of Clinical Pharmacology and Therapeutics. 2012 Nov;50(11):814–20.

105. Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes.

105. Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes.