• Aucun résultat trouvé

Ce projet avait comme but principal d'identifier de nouvelles protéines pouvant réguler le VIH-1 chez les macrophages primaires. Étant l'un des réservoirs viraux persistants chez les personnes infectées, il est important d'étudier l'établissement de l'infection chez ce type cellulaire et de trouver de nouvelles protéines pouvant être une cible thérapeutique potentielle.

Le criblage de petits ARN interférents a très bien fonctionné chez les MDMs. Bien que chaque donneur réagit différemment à l'infection, le knock-down de plusieurs gènes a modulé l'infection virale efficacement. Sur les cinquante gènes testés, cinq protéines ont été identifiées comme des régulateurs négatifs de l'infection, dont trois qui n'étaient pas connues pour intervenir dans le cycle infectieux du VIH-1. Une autre protéine testée a été identifiée comme un régulateur positif et deux autres ont eu des résultats contradictoires dépendamment de la séquence de siRNA utilisée. Cette étude a permis de constater que plusieurs voies bien distinctes influencent la réplication virale chez le macrophage humain, que ce soit des protéines impliquées dans le métabolisme des lipides ou dans la réparation de l'ADN. Bien que certaines protéines ayant ressorti du criblage ont déjà été étudiées dans le contexte du VIH-1 (ex. ADAR1, APOBEC3B, ATM, MDM2 et OAS1), celles-ci ne l'étaient pas nécessairement dans l'environnement cellulaire des macrophages.

Notre attention s'est plutôt portée sur les protéines peu étudiées dans l'infection des MDMs. Nous avons sélectionné quatre gènes pour pousser les études plus loin. Tout d'abord, le gène MDM2 est déjà connu pour réguler l'infection, mais la littérature montre des effets positifs et négatifs sur celle-ci. Étant notre seul gène identifié comme régulateur positif de l'infection, nous avons choisi d'enquêter plus en profondeur sur son rôle exact. Nous avons montré que le siRNA n'avait pas de toxicité sur les cellules et que le knock-down de MDM2 diminuait l'infection. L'expérience a été testée avec plusieurs modèles viraux et l'effet a été remarqué autant au niveau de l'expression du gène rapporteur que pour la production de nouvelles particules virales. Comme nous avons remarqué un effet indirect de MDM2 sur la réplication virale, nous dirigerons nos études futures vers l'identification des protéines intermédiaires interagissant avec le VIH-1 et trouver laquelle des étapes du cycle viral est affectée par celle-ci. Il est probable que ce soit au niveau de l'intégration du génome viral

60

vu l'importance de MDM2 dans le cycle cellulaire, donc l'activité des sentiers de réparation de l'ADN et de régulation du cycle cellulaire en réponse au VIH-1 devra être étudiée plus en détail.

Trois protéines régulant négativement l'infection et qui sont totalement inconnues dans le contexte du VIH-1 vont aussi être les sujets d'études plus poussées. La première est FABP9, une protéine liant les acides gras. Considérant la nature de l'enveloppe virale, il est possible que cette protéine interagisse avec cette composante du virion. La deuxième protéine, GGH, est plutôt impliquée dans le métabolisme de l'acide folique et la disponibilité du glutamate, une molécule présente en grande quantité dans le plasma de patients infectés. Son impact sur la régulation du glutamate sera étudié et possiblement une corrélation avec le taux d'infection sera observée. Finalement, LOXL3 montre aussi une restriction de l'infection. Cette lysyl oxydase pourrait agir à plusieurs étapes du cycle viral et affecte peut-être la stabilité des protéines du VIH-1. Ces trois protéines sont des facteurs de restriction potentiels, mais des études complexes devront être effectuées avant de pouvoir les classer dans cette catégorie, comme prouver que le virus possède une protéine interférant avec l'un de nos facteurs de restriction potentiels ou montrer que l'évolution a favorisé l'activité antivirale du gène.

Ce projet a donc permis de mieux comprendre les facteurs de l'hôte jouant un rôle dans l'infection par le VIH-1 chez les macrophages humains et a réussi son but premier: huit protéines ont été identifiées comme des régulateurs de l'infection et quatre d'entre elles vont être étudiées plus en détail. Par contre, avant d'aller plus loin, il faudra identifier à quelle étape du cycle viral chacune de ces protéines agit pour planifier les expérimentations plus complexes. De plus, chacun de nos gènes testés provient d'une analyse transcriptomique nous ayant montré que ces gènes sont plus ou moins fortement exprimés dans les cellules infectées que dans les cellules ayant résisté à l'infection. Nous devrons donc déterminer si c'est l'infection qui module l'expression du gène ou si le virus infecte préférentiellement les macrophages exprimant un niveau inhabituel de la protéine.

61

Bibliographie

1. Masur, H., et al., An outbreak of community-acquired Pneumocystis carinii

pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med,

1981. 305(24): p. 1431-8.

2. Barre-Sinoussi, F., et al., Isolation of a T-lymphotropic retrovirus from a patient at

risk for acquired immune deficiency syndrome (AIDS). Science, 1983. 220(4599): p.

868-71.

3. Popovic, M., et al., Detection, isolation, and continuous production of cytopathic

retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science, 1984.

224(4648): p. 497-500.

4. Marx, J.L., A virus by any other name. Science, 1985. 227(4693): p. 1449-51. 5. Adachi, A., et al., Production of acquired immunodeficiency syndrome-associated

retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol, 1986. 59(2): p. 284-91.

6. ONUSIDA. Le sida en chiffres. 2015 [cited 2016 May 28]; Available from: http://www.unaids.org/sites/default/files/media_asset/AIDS_by_the_numbers_2015 _fr.pdf.

7. WHO. Adult HIV prevalence (15-49 years), 2014 by WHO region. 2016 [cited 2016 June 23]; Available from: http://www.who.int/gho/hiv/en/.

8. Klaver, B. and B. Berkhout, Comparison of 5' and 3' long terminal repeat promoter

function in human immunodeficiency virus. J Virol, 1994. 68(6): p. 3830-40.

9. Vogt, V.M., Retroviral Virions and Genomes, in Retroviruses, J.M. Coffin, S.H. Hughes, and H.E. Varmus, Editors. 1997, Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory Press.: Cold Spring Harbor (NY).

10. Greene, W.C. and B.M. Peterlin, Charting HIV's remarkable voyage through the

cell: Basic science as a passport to future therapy. Nat Med, 2002. 8(7): p. 673-80.

11. Cantin, R., S. Methot, and M.J. Tremblay, Plunder and stowaways: incorporation

of cellular proteins by enveloped viruses. J Virol, 2005. 79(11): p. 6577-87.

12. Ganser-Pornillos, B.K., M. Yeager, and O. Pornillos, Assembly and architecture of

HIV. Adv Exp Med Biol, 2012. 726: p. 441-65.

13. Robinson, H.L., New hope for an AIDS vaccine. Nat Rev Immunol, 2002. 2(4): p. 239-50.

14. Earl, P.L., R.W. Doms, and B. Moss, Oligomeric structure of the human

immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci U S A,

1990. 87(2): p. 648-52.

15. Pinter, A., et al., Oligomeric structure of gp41, the transmembrane protein of

human immunodeficiency virus type 1. J Virol, 1989. 63(6): p. 2674-9.

16. Center, R.J., et al., Oligomeric structure of the human immunodeficiency virus type

1 envelope protein on the virion surface. J Virol, 2002. 76(15): p. 7863-7.

17. Zhu, P., et al., Cryoelectron tomography of HIV-1 envelope spikes: further evidence

for tripod-like legs. PLoS Pathog, 2008. 4(11): p. e1000203.

18. Starcich, B.R., et al., Identification and characterization of conserved and variable

regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell, 1986.

62

19. Arthos, J., et al., Identification of the residues in human CD4 critical for the binding

of HIV. Cell, 1989. 57(3): p. 469-81.

20. Coffin, J.M., HIV population dynamics in vivo: implications for genetic variation,

pathogenesis, and therapy. Science, 1995. 267(5197): p. 483-9.

21. Cocchi, F., et al., The V3 domain of the HIV-1 gp120 envelope glycoprotein is

critical for chemokine-mediated blockade of infection. Nat Med, 1996. 2(11): p.

1244-7.

22. Choe, H., et al., The beta-chemokine receptors CCR3 and CCR5 facilitate infection

by primary HIV-1 isolates. Cell, 1996. 85(7): p. 1135-48.

23. Berson, J.F., et al., A seven-transmembrane domain receptor involved in fusion and

entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol, 1996.

70(9): p. 6288-95.

24. Gallaher, W.R., Detection of a fusion peptide sequence in the transmembrane

protein of human immunodeficiency virus. Cell, 1987. 50(3): p. 327-8.

25. Franke, E.K., H.E. Yuan, and J. Luban, Specific incorporation of cyclophilin A into

HIV-1 virions. Nature, 1994. 372(6504): p. 359-62.

26. Liu, C., et al., Cyclophilin A stabilizes the HIV-1 capsid through a novel non-

canonical binding site. Nat Commun, 2016. 7: p. 10714.

27. Karageorgos, L., P. Li, and C. Burrell, Characterization of HIV replication

complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses, 1993.

9(9): p. 817-23.

28. Bukrinskaya, A., et al., Establishment of a functional human immunodeficiency

virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp

Med, 1998. 188(11): p. 2113-25.

29. Ji, J.P. and L.A. Loeb, Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry, 1992. 31(4): p. 954-8.

30. Miller, M.D., C.M. Farnet, and F.D. Bushman, Human immunodeficiency virus type

1 preintegration complexes: studies of organization and composition. J Virol, 1997.

71(7): p. 5382-90.

31. Bukrinsky, M.I., et al., A nuclear localization signal within HIV-1 matrix protein

that governs infection of non-dividing cells. Nature, 1993. 365(6447): p. 666-9.

32. Heinzinger, N.K., et al., The Vpr protein of human immunodeficiency virus type 1

influences nuclear localization of viral nucleic acids in nondividing host cells. Proc

Natl Acad Sci U S A, 1994. 91(15): p. 7311-5.

33. Gallay, P., et al., HIV-1 infection of nondividing cells through the recognition of

integrase by the importin/karyopherin pathway. Proc Natl Acad Sci U S A, 1997.

94(18): p. 9825-30.

34. Adams, M., et al., Cellular latency in human immunodeficiency virus-infected

individuals with high CD4 levels can be detected by the presence of promoter- proximal transcripts. Proc Natl Acad Sci U S A, 1994. 91(9): p. 3862-6.

35. Schroder, A.R., et al., HIV-1 integration in the human genome favors active genes

and local hotspots. Cell, 2002. 110(4): p. 521-9.

36. Carteau, S., C. Hoffmann, and F. Bushman, Chromosome structure and human

immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol, 1998. 72(5): p. 4005-14.

37. Taube, R., et al., Tat transactivation: a model for the regulation of eukaryotic

63

38. Cullen, B.R., Retroviruses as model systems for the study of nuclear RNA export

pathways. Virology, 1998. 249(2): p. 203-10.

39. Freed, E.O., HIV-1 assembly, release and maturation. Nat Rev Microbiol, 2015. 13(8): p. 484-96.

40. Yuan, X., et al., Mutations in the N-terminal region of human immunodeficiency

virus type 1 matrix protein block intracellular transport of the Gag precursor. J

Virol, 1993. 67(11): p. 6387-94.

41. Zhou, W., et al., Identification of a membrane-binding domain within the amino-

terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol, 1994. 68(4): p. 2556-69.

42. Ono, A. and E.O. Freed, Plasma membrane rafts play a critical role in HIV-1

assembly and release. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13925-30.

43. Chen, J., et al., High efficiency of HIV-1 genomic RNA packaging and heterozygote

formation revealed by single virion analysis. Proc Natl Acad Sci U S A, 2009.

106(32): p. 13535-40.

44. Lu, K., X. Heng, and M.F. Summers, Structural determinants and mechanism of

HIV-1 genome packaging. J Mol Biol, 2011. 410(4): p. 609-33.

45. Checkley, M.A., B.G. Luttge, and E.O. Freed, HIV-1 envelope glycoprotein

biosynthesis, trafficking, and incorporation. J Mol Biol, 2011. 410(4): p. 582-608.

46. Morita, E., et al., ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe, 2011. 9(3): p. 235-42.

47. Gottlinger, H.G., et al., Effect of mutations affecting the p6 gag protein on human

immunodeficiency virus particle release. Proc Natl Acad Sci U S A, 1991. 88(8): p.

3195-9.

48. Kaplan, A.H., et al., Partial inhibition of the human immunodeficiency virus type 1

protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol, 1993. 67(7): p. 4050-5.

49. Wiegers, K., et al., Sequential steps in human immunodeficiency virus particle

maturation revealed by alterations of individual Gag polyprotein cleavage sites. J

Virol, 1998. 72(4): p. 2846-54.

50. Barre-Sinoussi, F., A.L. Ross, and J.F. Delfraissy, Past, present and future: 30

years of HIV research. Nat Rev Microbiol, 2013. 11(12): p. 877-83.

51. Male, D., et al., Immunology. 8th Edition ed. 2013: Elsevier Saunders.

52. Patel, P., et al., Estimating per-act HIV transmission risk: a systematic review. Aids, 2014. 28(10): p. 1509-19.

53. Fiebig, E.W., et al., Dynamics of HIV viremia and antibody seroconversion in

plasma donors: implications for diagnosis and staging of primary HIV infection.

Aids, 2003. 17(13): p. 1871-9.

54. McMichael, A.J., et al., The immune response during acute HIV-1 infection: clues

for vaccine development. Nat Rev Immunol, 2010. 10(1): p. 11-23.

55. Hladik, F., et al., Initial events in establishing vaginal entry and infection by human

immunodeficiency virus type-1. Immunity, 2007. 26(2): p. 257-70.

56. Geijtenbeek, T.B., et al., DC-SIGN, a dendritic cell-specific HIV-1-binding protein

that enhances trans-infection of T cells. Cell, 2000. 100(5): p. 587-97.

57. Veazey, R.S., et al., Gastrointestinal tract as a major site of CD4+ T cell depletion

64

58. Brenchley, J.M. and D.C. Douek, The mucosal barrier and immune activation in

HIV pathogenesis. Curr Opin HIV AIDS, 2008. 3(3): p. 356-61.

59. Stacey, A.R., et al., Induction of a striking systemic cytokine cascade prior to peak

viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol,

2009. 83(8): p. 3719-33.

60. Borrow, P. and N. Bhardwaj, Innate immune responses in primary HIV-1 infection. Curr Opin HIV AIDS, 2008. 3(1): p. 36-44.

61. Alter, G., et al., Differential natural killer cell-mediated inhibition of HIV-1

replication based on distinct KIR/HLA subtypes. J Exp Med, 2007. 204(12): p.

3027-36.

62. Tomaras, G.D., et al., Initial B-cell responses to transmitted human

immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol, 2008. 82(24): p. 12449-63.

63. Wei, X., et al., Antibody neutralization and escape by HIV-1. Nature, 2003. 422(6929): p. 307-12.

64. Lichterfeld, M., et al., HIV-1 Nef is preferentially recognized by CD8 T cells in

primary HIV-1 infection despite a relatively high degree of genetic diversity. Aids,

2004. 18(10): p. 1383-92.

65. Pantaleo, G., C. Graziosi, and A.S. Fauci, New concepts in the immunopathogenesis

of human immunodeficiency virus infection. N Engl J Med, 1993. 328(5): p. 327-35.

66. Marcello, A., Latency: the hidden HIV-1 challenge. Retrovirology, 2006. 3: p. 7. 67. Chun, T.W., et al., Presence of an inducible HIV-1 latent reservoir during highly

active antiretroviral therapy. Proc Natl Acad Sci U S A, 1997. 94(24): p. 13193-7.

68. Chun, T.W., et al., Early establishment of a pool of latently infected, resting

CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A, 1998.

95(15): p. 8869-73.

69. Davey, R.T., Jr., et al., HIV-1 and T cell dynamics after interruption of highly active

antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A, 1999. 96(26): p. 15109-14.

70. Zhang, L., et al., Quantifying residual HIV-1 replication in patients receiving

combination antiretroviral therapy. N Engl J Med, 1999. 340(21): p. 1605-13.

71. Chomont, N., et al., HIV reservoir size and persistence are driven by T cell survival

and homeostatic proliferation. Nat Med, 2009. 15(8): p. 893-900.

72. Sun, H., et al., Th1/17 Polarization of CD4 T Cells Supports HIV-1 Persistence

during Antiretroviral Therapy. J Virol, 2015. 89(22): p. 11284-93.

73. Sonza, S., et al., Monocytes harbour replication-competent, non-latent HIV-1 in

patients on highly active antiretroviral therapy. Aids, 2001. 15(1): p. 17-22.

74. Churchill, M.J., et al., Use of laser capture microdissection to detect integrated

HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J

Neurovirol, 2006. 12(2): p. 146-52.

75. Zalar, A., et al., Macrophage HIV-1 infection in duodenal tissue of patients on long

term HAART. Antiviral Res, 2010. 87(2): p. 269-71.

76. Cribbs, S.K., et al., Healthy HIV-1-infected individuals on highly active

antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res Hum

65

77. Cory, T.J., et al., Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS, 2013. 8(3): p. 190-5.

78. Lederman, M.M., et al., Immunologic responses associated with 12 weeks of

combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J Infect Dis, 1998.

178(1): p. 70-9.

79. Arts, E.J. and D.J. Hazuda, HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med, 2012. 2(4): p. a007161.

80. van Furth, R. and Z.A. Cohn, The origin and kinetics of mononuclear phagocytes. J Exp Med, 1968. 128(3): p. 415-35.

81. Greter, M., et al., Stroma-derived interleukin-34 controls the development and

maintenance of langerhans cells and the maintenance of microglia. Immunity,

2012. 37(6): p. 1050-60.

82. Xue, J., et al., Transcriptome-based network analysis reveals a spectrum model of

human macrophage activation. Immunity, 2014. 40(2): p. 274-88.

83. Hamilton, J.A., Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol, 2008. 8(7): p. 533-44.

84. Davies, L.C., et al., Tissue-resident macrophages. Nat Immunol, 2013. 14(10): p. 986-95.

85. Wang, Y., et al., IL-34 is a tissue-restricted ligand of CSF1R required for the

development of Langerhans cells and microglia. Nat Immunol, 2012. 13(8): p. 753-

60.

86. Hoeffel, G., et al., Adult Langerhans cells derive predominantly from embryonic

fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J

Exp Med, 2012. 209(6): p. 1167-81.

87. Ginhoux, F., et al., Fate mapping analysis reveals that adult microglia derive from

primitive macrophages. Science, 2010. 330(6005): p. 841-5.

88. Hashimoto, D., et al., Tissue-resident macrophages self-maintain locally throughout

adult life with minimal contribution from circulating monocytes. Immunity, 2013.

38(4): p. 792-804.

89. Cailhier, J.F., et al., Conditional macrophage ablation demonstrates that resident

macrophages initiate acute peritoneal inflammation. J Immunol, 2005. 174(4): p.

2336-42.

90. Maus, U.A., et al., Role of resident alveolar macrophages in leukocyte traffic into

the alveolar air space of intact mice. Am J Physiol Lung Cell Mol Physiol, 2002.

282(6): p. L1245-52.

91. Uderhardt, S., et al., 12/15-lipoxygenase orchestrates the clearance of apoptotic

cells and maintains immunologic tolerance. Immunity, 2012. 36(5): p. 834-46.

92. Italiani, P. and D. Boraschi, From Monocytes to M1/M2 Macrophages:

Phenotypical vs. Functional Differentiation. Front Immunol, 2014. 5: p. 514.

93. Swirski, F.K., et al., Identification of splenic reservoir monocytes and their

deployment to inflammatory sites. Science, 2009. 325(5940): p. 612-6.

94. Ziegler-Heitbrock, L., et al., Nomenclature of monocytes and dendritic cells in

blood. Blood, 2010. 116(16): p. e74-80.

95. Belge, K.U., et al., The proinflammatory CD14+CD16+DR++ monocytes are a

66

96. Cros, J., et al., Human CD14dim monocytes patrol and sense nucleic acids and

viruses via TLR7 and TLR8 receptors. Immunity, 2010. 33(3): p. 375-86.

97. Serbina, N.V., et al., Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol, 2008. 26: p. 421-52.

98. Mills, C.D., et al., M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000. 164(12): p. 6166-73.

99. Stein, M., et al., Interleukin 4 potently enhances murine macrophage mannose

receptor activity: a marker of alternative immunologic macrophage activation. J

Exp Med, 1992. 176(1): p. 287-92.

100. Cao, Y., et al., Interleukin-4 regulates proteoglycan-induced arthritis by specifically

suppressing the innate immune response. Arthritis Rheum, 2007. 56(3): p. 861-70.

101. Tiemessen, M.M., et al., CD4+CD25+Foxp3+ regulatory T cells induce alternative

activation of human monocytes/macrophages. Proc Natl Acad Sci U S A, 2007.

104(49): p. 19446-51.

102. Derlindati, E., et al., Transcriptomic analysis of human polarized macrophages:

more than one role of alternative activation? PLoS One, 2015. 10(3): p. e0119751.

103. Varin, A., et al., Alternative activation of macrophages by IL-4 impairs

phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood, 2010. 115(2): p. 353-62.

104. Lang, R., et al., Shaping gene expression in activated and resting primary

macrophages by IL-10. J Immunol, 2002. 169(5): p. 2253-63.

105. Mantovani, A., et al., The chemokine system in diverse forms of macrophage

activation and polarization. Trends Immunol, 2004. 25(12): p. 677-86.

106. Jaguin, M., et al., Polarization profiles of human M-CSF-generated macrophages

and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol, 2013. 281(1): p. 51-61.

107. Burdo, T.H., A. Lackner, and K.C. Williams, Monocyte/macrophages and their role

in HIV neuropathogenesis. Immunol Rev, 2013. 254(1): p. 102-13.

108. Ellery, P.J., et al., The CD16+ monocyte subset is more permissive to infection and

preferentially harbors HIV-1 in vivo. J Immunol, 2007. 178(10): p. 6581-9.

109. Goodenow, M.M. and R.G. Collman, HIV-1 coreceptor preference is distinct from

target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J

Leukoc Biol, 2006. 80(5): p. 965-72.

110. Marechal, V., et al., Human immunodeficiency virus type 1 entry into macrophages

mediated by macropinocytosis. J Virol, 2001. 75(22): p. 11166-77.

111. Schmidtmayerova, H., G.J. Nuovo, and M. Bukrinsky, Cell proliferation is not

required for productive HIV-1 infection of macrophages. Virology, 1997. 232(2): p.

379-84.

112. Pelchen-Matthews, A., B. Kramer, and M. Marsh, Infectious HIV-1 assembles in

late endosomes in primary macrophages. J Cell Biol, 2003. 162(3): p. 443-55.

113. Cassol, E., et al., M1 and M2a polarization of human monocyte-derived

macrophages inhibits HIV-1 replication by distinct mechanisms. J Immunol, 2009.

182(10): p. 6237-46.

114. Lane, B.R., et al., The C-X-C chemokine IP-10 stimulates HIV-1 replication. Virology, 2003. 307(1): p. 122-34.

67

115. Cota, M., et al., Selective inhibition of HIV replication in primary macrophages but

not T lymphocytes by macrophage-derived chemokine. Proc Natl Acad Sci U S A,

2000. 97(16): p. 9162-7.

116. Porcheray, F., et al., Macrophage activation and human immunodeficiency virus

infection: HIV replication directs macrophages towards a pro-inflammatory phenotype while previous activation modulates macrophage susceptibility to infection and viral production. Virology, 2006. 349(1): p. 112-20.

117. Azzam, R., et al., Impaired complement-mediated phagocytosis by HIV type-1-

infected human monocyte-derived macrophages involves a cAMP-dependent mechanism. AIDS Res Hum Retroviruses, 2006. 22(7): p. 619-29.

118. Kedzierska, K., et al., HIV-1 down-modulates gamma signaling chain of Fc gamma

R in human macrophages: a possible mechanism for inhibition of phagocytosis. J

Immunol, 2002. 168(6): p. 2895-903.

119. Lodge, R., et al., HIV-1 promotes intake of Leishmania parasites by enhancing

phosphatidylserine-mediated, CD91/LRP-1-dependent phagocytosis in human macrophages. PLoS One, 2012. 7(3): p. e32761.

120. Kedzierska, K. and S.M. Crowe, Cytokines and HIV-1: interactions and clinical

implications. Antivir Chem Chemother, 2001. 12(3): p. 133-50.

121. Harris, R.S., J.F. Hultquist, and D.T. Evans, The restriction factors of human

immunodeficiency virus. J Biol Chem, 2012. 287(49): p. 40875-83.

122. Hrecka, K., et al., Vpx relieves inhibition of HIV-1 infection of macrophages

mediated by the SAMHD1 protein. Nature, 2011. 474(7353): p. 658-61.

123. Laguette, N., et al., SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1

restriction factor counteracted by Vpx. Nature, 2011. 474(7353): p. 654-7.

124. Baldauf, H.M., et al., SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med, 2012. 18(11): p. 1682-7.

125. Li, N., W. Zhang, and X. Cao, Identification of human homologue of mouse IFN-

gamma induced protein from human dendritic cells. Immunol Lett, 2000. 74(3): p.

221-4.

126. Crow, M.K., K.A. Kirou, and J. Wohlgemuth, Microarray analysis of interferon-

regulated genes in SLE. Autoimmunity, 2003. 36(8): p. 481-90.

127. Lahouassa, H., et al., SAMHD1 restricts the replication of human immunodeficiency

virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates.

Nat Immunol, 2012. 13(3): p. 223-8.

128. Accola, M.A., et al., A Conserved Dileucine-Containing Motif in p6(gag) Governs

the Particle Association of Vpx and Vpr of Simian Immunodeficiency Viruses SIV(mac) and SIV(agm). J Virol, 1999. 73(12): p. 9992-9.

129. Bishop, K.N., et al., Cytidine deamination of retroviral DNA by diverse APOBEC

proteins. Curr Biol, 2004. 14(15): p. 1392-6.

130. Koning, F.A., et al., Defining APOBEC3 expression patterns in human tissues and