• Aucun résultat trouvé

corps où c'est plus ou moins épais (l'épiderme), on doit établir le rapport de nouveau.

Ce travail de validation de la technique laser devait être complété, par une étude de la cinétique de la réépidermisation ainsi que le rétablissement de la fonction barrière. Pour ce fait l'utilisation de technique de la PIE ainsi que la mesure du flux sanguin, couplées à une technique de photographie, a permis le suivi de ce phénomène et la détermination d'une courbe d'évolution en fonction du temps de ces différents paramètres.

L'utilisation de la technique de tomographie par cohérence optique, a permis la visualisation de l'apparition du nouvel épiderme (apparition d'un stratum corneum). De cette manière nous avons pu établir une corrélation entre les mesures physiologiques et les observations obtenues par imagerie (OCT).

Enfin, et à la suite de ces résultats, le laser Er:YAG comme technique de désépidermisation, présente plus d'avantages que la technique référence: la bulle de succion. Ce travail peut être compléter par une analyse biochimique comparative afin de vérifier les mécanismes intervenants, ainsi qu'une différence, probable, entre les deux techniques.

Le laser Er: YAG ainsi validé, pourra être utiliser dans d'autres études sur la cicatrisation proprement dite, en augmentant la fluence pour atteindre le derme. Ou inversement en réduisant la fluence utilisée, et par conséquent n'atteindre que le SC et induire ainsi des irritations.

B

Bibliographie

1. Leaper, D.J., et al., Surgical site infection - a European perspective of incidence and economic burden. Int Wound J., 2004. 1(4): p. 247-73.

2. L'OREAL, www.skin-science.com. 2005,

3. Schweizer, J., et al., New consensus nomenclature for mammalian keratins. J Cell Biol., 2006. 174(2): p. 169-74. Epub 2006 Jul 10.

4. Banchereau, J., et al., Immunobiology of dendritic cells. Annu Rev Immunol., 2000. 18: p. 767-811.

5. Tachibana, T. and T. Nawa, Immunohistochemical reactions of receptors to met- enkephalin, VIP, substance P, and CGRP located on Merkel cells in the rat sinus hair follicle. Arch Histol Cytol., 2005. 68(5): p. 383-91.

6. SCFO, www.scf-online.com, skin care forum.

7. Santoro, M.M. and G. Gaudino, Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res., 2005. 304(1): p. 274-86. Epub 2004 Dec 8.

8. Leonhardt, H., Histologie, Zytologie und Mikroanatomie des Menschen, in Physiology of the skin II, P. Pugliese, Editor. 2001, Allured Publishing Corporation.

9. Peters, E.M., et al., Neuropeptide control mechanisms in cutaneous biology: physiological and clinical significance. J Invest Dermatol., 2006. 126(9): p. 1937-47.

10. Hokfelt, T., et al., Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res., 1975. 100(2): p. 235-52.

11. Fournier, N. and S. Mordon, Nonablative remodeling with a 1,540 nm erbium:glass laser. Dermatol Surg., 2005. 31(9 Pt 2): p. 1227-35; discussion 1236.

12. Gambichler, T., et al., Applications of optical coherence tomography in dermatology. J Dermatol Sci., 2005. 40(2): p. 85-94. Epub 2005 Aug 31. 13. Singer, A.J. and R.A. Clark, Cutaneous wound healing. N Engl J Med., 1999.

14. Clark, R.A.F., Wound Repair:overview and general considerations, in the molecular and cellular biology of wound repair, R.A.F. Clark, Editor. 1997, Plenum Press: New York. p. 636 pages.

15. Brown, E.J., Phagocytosis. Bioessays., 1995. 17(2): p. 109-17.

16. Rappolee, D.A., et al., Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science., 1988. 241(4866): p. 708-12.

17. Leibovich, S.J. and R. Ross, The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol., 1975. 78(1): p. 71-100.

18. DWH.Riches, Macrophage Involvement in wound repair, remodeling and fibrosis, in the molecular and cellular biology of wound repair, i.C. RAF, Editor. 1996, Plenum Press: New York. p. 95-141.

19. Paladini, R.D., et al., Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol., 1996. 132(3): p. 381-97.

20. Goliger, J.A. and D.L. Paul, Wounding alters epidermal connexin expression and gap junction-mediated intercellular communication. Mol Biol Cell., 1995. 6(11): p. 1491-501.

21. Gabbiani, G., C. Chaponnier, and I. Huttner, Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol., 1978. 76(3): p. 561-8.

22. Clark, R.A., Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol., 1990. 94(6 Suppl): p. 128S- 134S.

23. Larjava, H., et al., Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest., 1993. 92(3): p. 1425-35.

24. Clark, R.A., et al., Re-epithelialization of normal human excisional wounds is associated with a switch from alpha v beta 5 to alpha v beta 6 integrins. Br J Dermatol., 1996. 135(1): p. 46-51.

25. Pilcher, B.K., et al., The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol., 1997. 137(6): p. 1445-57.

Bibliographie

26. Bugge, T.H., et al., Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell., 1996. 87(4): p. 709-19.

27. Mignatti, P., et al., Proteinases and tissue remodeling, in The molecular and cellular biology of wound repair, e. In: Clark RAF, Editor. 1996, New York: Plenum Press. p. 427-74.

28. Nanny, L., the molecular and cellular biology of wound repair, C. RAF, Editor. 1996, New York:Plenum Press. p. 171-94.

29. Werner, S., et al., Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. J Invest Dermatol., 1994. 103(4): p. 469-73.

30. Abraham, J., the molecular and cellular baiology of wound repair, C. RAF, Editor. 1996, New York:Plenum Pres. p. 195-248.

31. Clark, R.A., Wound repair. Curr Opin Cell Biol., 1989. 1(5): p. 1000-8.

32. Lawrence, W.T., Physiology of the acute wound. Clin Plast Surg., 1998. 25(3): p. 321-40.

33. Yamamoto, N., et al., Dermal neoformation during partial-thickness skin wound healing. Ann Plast Surg., 2006. 56(2): p. 182-5.

34. Bruun, J.N., et al., Sulfonamide and trimethoprim concentrations in human serum and skin blister fluid. Antimicrob Agents Chemother., 1981. 19(1): p. 82- 5.

35. Hoffman, M., et al., Cutaneous wound healing is impaired in hemophilia B. Blood., 2006. 108(9): p. 3053-60. Epub 2006 Jul 6.

36. Cavallini, M. and A. Casati, A prospective, randomized, blind comparison between saline, calcium gluconate and diphoterine for washing skin acid injuries in rats: effects on substance P and beta-endorphin release. Eur J Anaesthesiol., 2004. 21(5): p. 389-92.

37. Laplante, A.F., et al., Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. Faseb J., 2001. 15(13): p. 2377-89.

38. Breetveld, M., et al., Comparison of wound closure after burn and cold injury in human skin equivalents. J Invest Dermatol., 2006. 126(8): p. 1918-21. Epub 2006 Apr 27.

39. Vowden, K., Common problems in wound care: wound and ulcer measurement. Br J Nurs., 1995. 4(13): p. 775-6, 778-9.

40. Bohannon, R.W. and B.A. Pfaller, Documentation of wound surface area from tracings of wound perimeters. Clinical report on three techniques. Phys Ther., 1983. 63(10): p. 1622-4.

41. Zahouani, H., et al., Theoretical and experimental study of wound healing: application to leg ulcers. Med Biol Eng Comput., 1992. 30(2): p. 234-9. 42. Griffin, J.W., et al., A comparison of photographic and transparency-based

methods for measuring wound surface area. Phys Ther., 1993. 73(2): p. 117-22. 43. Mignot, J., techniques morphométrique de l'évaluation de la cicatrisation d'un

ulcère,. la revue du praticien, 1996. 46: p. S18-S22.

44. Oh, J.T., et al., Quantification of the wound healing using polarization-sensitive optical coherence tomography. J Biomed Opt., 2006. 11(4): p. 041124.

45. Kompaore, F., J.P. Marty, and C. Dupont, In vivo evaluation of the stratum corneum barrier function in blacks, Caucasians and Asians with two noninvasive methods. Skin Pharmacol., 1993. 6(3): p. 200-7.

46. Goldman, L. and R.J. Rockwell, Jr., Laser systems and their applications in medicine and biology. Adv Biomed Eng Med Phys., 1968. 1: p. 317-82. 47. Schmidt-Erfurth, U., et al., Three-dimensional ultrahigh-resolution optical

coherence tomography of macular diseases. Invest Ophthalmol Vis Sci., 2005. 46(9): p. 3393-402.

48. Anderson, R.R. and J.A. Parrish, The optics of human skin. J Invest Dermatol., 1981. 77(1): p. 13-9.

49. Hruza, G.J., et al., Lasers in dermatology--1993. Arch Dermatol., 1993. 129(8): p. 1026-35.

50. Stratigos, A. and J.S. Dover, Overview of lasers and their properties. Dermatologic Therapy, 2000. 13(1): p. 2.

51. Sliney, D.H. and M.L. Wolborsht, Safety standards and measurement techniques for high intensity light sources. Vision Res., 1980. 20(12): p. 1133-41.

Bibliographie

52. Boulnois, J., Photophysical process in recent medical laser developments : a review. Lasers in Med Sci, 1986. 1: p. 47-66.

53. Lee, W.R., et al., Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. J Control Release., 2001. 75(1-2): p. 155-66.

54. Levy, J.J., et al., Validation of an in vivo wound healing model for the quantification of pharmacological effects on epidermal regeneration. Dermatology., 1995. 190(2): p. 136-41.

55. Ross, E.V., et al., Comparison of carbon dioxide laser, erbium:YAG laser, dermabrasion, and dermatome: a study of thermal damage, wound contraction, and wound healing in a live pig model: implications for skin resurfacing. J Am Acad Dermatol., 2000. 42(1 Pt 1): p. 92-105.

56. Woodley, D.T. and Y.H. Kim, A double-blind comparison of adhesive bandages with the use of uniform suction blister wounds. Arch Dermatol., 1992. 128(10): p. 1354-7.

57. Ross, E.V., et al., Effects of overlap and pass number in CO2 laser skin

resurfacing: a study of residual thermal damage, cell death, and wound healing. Lasers Surg Med., 1999. 24(2): p. 103-12.

58. Lee, W.R., et al., Erbium:YAG laser-mediated oligonucleotide and DNA delivery via the skin: An animal study. J Control Release., 2006. 115(3): p. 344-53. Epub 2006 Aug 23.

59. Eberlein, A., et al., Erbium:YAG laser treatment of post-burn scars: potentials and limitations. Burns., 2005. 31(1): p. 15-24.

60. Potard, G., et al., The stripping technique: in vitro absorption and penetration of five UV filters on excised fresh human skin. Skin Pharmacol Appl Skin Physiol., 2000. 13(6): p. 336-44.

61. Kassis, V. and J. Sondergaard, Heat-separation of normal human skin for epidermal and dermal prostaglandin analysis. Arch Dermatol Res., 1982. 273(3-4): p. 301-6.

62. Huang, D., et al., Optical coherence tomography. Science., 1991. 254(5035): p. 1178-81.

63. Fujimoto, J.G., Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol., 2003. 21(11): p. 1361-7.

64. Gambichler, T., et al., In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site. J Dermatol Sci., 2006. 44(3): p. 145-52. Epub 2006 Oct 27.

65. Gambichler, T., et al., Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison. J Eur Acad Dermatol Venereol., 2006. 20(7): p. 791-5.

66. Gladkova, N.D., et al., In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol., 2000. 6(1): p. 6-16.

67. Welzel, J., Optical coherence tomography in dermatology: a review. Skin Res Technol., 2001. 7(1): p. 1-9.

68. Bechara, F.G., et al., Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol., 2004. 10(3): p. 169-73. 69. Welzel, J., et al., Optical coherence tomography of the human skin. J Am Acad

Dermatol., 1997. 37(6): p. 958-63.

70. Welzel, J., et al., Changes in function and morphology of normal human skin: evaluation using optical coherence tomography. Br J Dermatol., 2004. 150(2): p. 220-5.

71. Yamashita, T., et al., Intense pulsed light therapy for superficial pigmented lesions evaluated by reflectance-mode confocal microscopy and optical coherence tomography. J Invest Dermatol., 2006. 126(10): p. 2281-6. Epub 2006 Jun 1.

72. Sampson, J., A method of replicating dry or moist surfaces for examination by light microscopy. Nature., 1961. 191: p. 932-3.

73. Hatzis, J., The wrinkle and its measurement--a skin surface Profilometric method. Micron., 2004. 35(3): p. 201-19.

74. Sandoz, P., et al., Towards objective evaluation of the skin aspect: principles and instrumentation. Skin Res Technol., 2004. 10(4): p. 263-70.

75. Jacobi, U., et al., In vivo determination of skin surface topography using an optical 3D device. Skin Res Technol., 2004. 10(4): p. 207-14.

76. Lagarde, J.M., et al., Skin topography measurement by interference fringe projection: a technical validation. Skin Res Technol., 2001. 7(2): p. 112-21.

Bibliographie

77. Guinot, C., et al., Reference ranges of skin micro-relief according to age in French Caucasian and Japanese women. Skin Res Technol., 2006. 12(4): p. 268-78.

78. Alster, T.S., Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing. Lasers Surg Med., 1999. 24(2): p. 87-92.

79. Wilson, D., E. Berardesca, and H.I. Maibach, In vitro transepidermal water loss: differences between black and white human skin. Br J Dermatol., 1988. 119(5): p. 647-52.

80. Agache, P., P. Humbert, and Contributor H I Maibach, Measuring the skin, ed. M. Nursing. 2004: Springer. 784.

81. Capon, A. and S. Mordon, Can thermal lasers promote skin wound healing? Am J Clin Dermatol., 2003. 4(1): p. 1-12.

82. Mordon, S., [Lasers in skin resurfacing]. Ann Dermatol Venereol., 2003. 130(4): p. 479-84.

83. Lee, W.R., et al., The effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil. J Pharm Sci., 2002. 91(7): p. 1613-26. 84. Sumian, C.C., et al., A preliminary clinical and histopathological study of laser

skin resurfacing using a frequency-doubled Nd:YAG laser after application of Chromofilm. J Cutan Laser Ther., 1999. 1(3): p. 159-66.

85. Drnovsek-Olup, B., M. Beltram, and J. Pizem, Repetitive Er:YAG laser irradiation of human skin: a histological evaluation. Lasers Surg Med., 2004. 35(2): p. 146-51.

86. Tanzi, E.L. and T.S. Alster, Single-pass carbon dioxide versus multiple-pass Er:YAG laser skin resurfacing: a comparison of postoperative wound healing and side-effect rates. Dermatol Surg., 2003. 29(1): p. 80-4.

87. Kiistala, U. and K.K. Mustakallio, In-Vivo Separation of Epidermis by Production of Suction Blisters. Lancet., 1964. 41: p. 1444-5.

88. Fitzpatrick, T. and J. Bolognia, Human melanin pigmentation role in pathogenisis of cutaneouss melanoma.

In: melanin; its role in human photoprotection. 1995: Valdemman publishing. co. 177- 182.

89. Stucker, M., et al., Increased laser Doppler flow in skin tumors corresponds to elevated vessel density and reactive hyperemia. Skin Res Technol., 2006. 12(1): p. 1-6.

90. Vander Haeghen, Y. and J.M. Naeyaert, Consistent cutaneous imaging with commercial digital cameras. Arch Dermatol., 2006. 142(1): p. 42-6.

91. Devitt, H., et al., A quantitative approach to epidermal wound healing: the effect of dexamethasone on regenerating epithelium. Br J Dermatol., 1978. 98(3): p. 315-23.

92. Gupta, S. and S. Shroff, Modified technique of suction blistering for epidermal grafting in vitiligo. Int J Dermatol., 1999. 38(4): p. 306-9.

93. Rodrigues, L.M. and M.A. Roberto, Characterization strategies for the

functional assessment of the cutaneous lesion. Burns., 2006. 32(7): p. 797-801. Epub 2006 Sep 26.

94. Holland, A.J., H.C. Martin, and D.T. Cass, Laser Doppler imaging prediction of burn wound outcome in children. Burns., 2002. 28(1): p. 11-7.

95. Sun, Y.H., et al., [Preliminary study on the improvement of wound

microcirculation and retrospection on several methods of the management of deep partial thickness burn wound]. Zhonghua Shao Shang Za Zhi., 2005. 21(1): p. 17-20.

96. Yeong, E.K., et al., Improved accuracy of burn wound assessment using laser Doppler. J Trauma., 1996. 40(6): p. 956-61; discussion 961-2.

97. Arnold, F., et al., Perfusion imaging of skin island flap blood flow by a scanning laser-Doppler technique. Br J Plast Surg., 1995. 48(5): p. 280-7.

98. Singer, A.J., et al., Optical Coherence Tomography: A Noninvasive Method to Assess Wound Reepithelialization. Acad Emerg Med, 2007. 15: p. 15.

I