• Aucun résultat trouvé

L’objectif principal de mon projet de recherche était de caractériser des mécanismes moléculaires à potentiel thérapeutique dans la progression métastatique du mélanome uvéal. Ces travaux de doctorat ont permis d’identifier trois cibles à potentiel thérapeutique: la surexpression du récepteur HTR2B dans les cellules métastatiques, l’hypohydroxyméthylation de l’ADN dans les cellules cancéreuses et la surexpression de MCT4 dans les cellules cancéreuses hypoxiques.

Actuellement, aucune étude clinique ciblant HTR2B ou MCT4 n’a été démarrée pour le traitement des cancers. Des inhibiteurs de la forme mutée d’IDH1 (e.g Verticillin A) et activateur de TET1 (e.g AGI-5198) sont disponibles sur le marché. La. Nos travaux sont donc novateurs et pourraient grandement contribuer à l’avancement des connaissances dans le contexte actuel de la recherche sur le cancer et dans celui du mélanome uvéal permettant ainsi le développement d’une thérapie adjuvante qui ciblerait un de ces trois aspects et qui pourrait permettre d’améliorer la survie des patients à haut risque de développer des métastases.

Bibliographie

1. Landreville, S., O.A. Agapova, and J.W. Harbour, Emerging insights into the

molecular pathogenesis of uveal melanoma. Future oncology, 2008. 4(5): p. 629-36.

2. Buder, K., et al., Systemic treatment of metastatic uveal melanoma: review of

literature and future perspectives. Cancer Med, 2013. 2(5): p. 674-86.

3. Augsburger, J.J., Z.M. Correa, and A.H. Shaikh, Effectiveness of treatments for

metastatic uveal melanoma. American journal of ophthalmology, 2009. 148(1): p.

119-27.

4. Pereira, P.R., et al., Current and emerging treatment options for uveal melanoma. Clin Ophthalmol, 2013. 7: p. 1669-82.

5. Woodman, S.E., Metastatic uveal melanoma: biology and emerging treatments. Cancer J, 2012. 18(2): p. 148-52.

6. Mejean, A. and T. Lebret, [The metastatic cascade: angiogenesis and new

concepts]. Prog Urol, 2008. 18 Suppl 7: p. S156-66.

7. Onken, M.D., et al., An accurate, clinically feasible multi-gene expression assay for

predicting metastasis in uveal melanoma. The Journal of molecular diagnostics :

JMD, 2010. 12(4): p. 461-8.

8. Dizeyi, N., et al., Expression of serotonin receptors 2B and 4 in human prostate

cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol,

2005. 47(6): p. 895-900.

9. Kopparapu, P.K., et al., Expression and localization of serotonin receptors in

human breast cancer. Anticancer Res, 2013. 33(2): p. 363-70.

10. Svejda, B., et al., The 5-HT(2B) receptor plays a key regulatory role in both

neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment. Cancer, 2010. 116(12): p. 2902-12.

11. Soll, C., et al., Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology, 2010. 51(4): p. 1244-54.

12. Choi, D.S., et al., 5-HT2B receptor-mediated serotonin morphogenetic functions in

mouse cranial neural crest and myocardiac cells. Development, 1997. 124(9): p.

13. Williams, K.E., et al., Focal adhesion kinase and Wnt signaling regulate human

ductal carcinoma in situ stem cell activity and response to radiotherapy. Stem

Cells, 2015. 33(2): p. 327-41.

14. Fan, H. and J.L. Guan, Compensatory function of Pyk2 protein in the promotion of

focal adhesion kinase (FAK)-null mammary cancer stem cell tumorigenicity and metastatic activity. J Biol Chem, 2011. 286(21): p. 18573-82.

15. Roelle, S., et al., Essential role of Pyk2 and Src kinase activation in neuropeptide-

induced proliferation of small cell lung cancer cells. Oncogene, 2008. 27(12): p.

1737-48.

16. Fu, B., et al., GRAM domain-containing protein 1A (GRAMD1A) promotes the

expansion of hepatocellular carcinoma stem cell and hepatocellular carcinoma growth through STAT5. Sci Rep, 2016. 6: p. 31963.

17. Mirmohammadsadegh, A., et al., STAT5 phosphorylation in malignant melanoma is

important for survival and is mediated through SRC and JAK1 kinases. J Invest

Dermatol, 2006. 126(10): p. 2272-80.

18. Wellbrock, C., et al., STAT5 contributes to interferon resistance of melanoma cells. Curr Biol, 2005. 15(18): p. 1629-39.

19. Yoo, J.H., et al., ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ

Signaling in Uveal Melanoma. Cancer Cell, 2016. 29(6): p. 889-904.

20. Sinnberg, T., et al., beta-Catenin signaling increases during melanoma progression

and promotes tumor cell survival and chemoresistance. PLoS One, 2011. 6(8): p.

e23429.

21. Fatima, S., et al., 5-Hydroxytryptamine promotes hepatocellular carcinoma

proliferation by influencing beta-catenin. Mol Oncol, 2016. 10(2): p. 195-212.

22. Sui, H., et al., 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal

cancer metastasis by regulating Axin1/beta-catenin/MMP-7 signaling pathway.

Oncotarget, 2015. 6(28): p. 25975-87.

23. Jinek, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive

24. Ishino, Y., et al., Nucleotide sequence of the iap gene, responsible for alkaline

phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987. 169(12): p. 5429-33.

25. Charpentier, E. and J.A. Doudna, Biotechnology: Rewriting a genome. Nature, 2013. 495(7439): p. 50-1.

26. Cong, L., et al., Multiplex genome engineering using CRISPR/Cas systems. Science, 2013. 339(6121): p. 819-23.

27. Mali, P., et al., RNA-guided human genome engineering via Cas9. Science, 2013.

339(6121): p. 823-6.

28. Jiang, W., et al., RNA-guided editing of bacterial genomes using CRISPR-Cas

systems. Nat Biotechnol, 2013. 31(3): p. 233-9.

29. Hwang, W.Y., et al., Efficient genome editing in zebrafish using a CRISPR-Cas

system. Nat Biotechnol, 2013. 31(3): p. 227-9.

30. Iyombe-Engembe, J.P., et al., Efficient Restoration of the Dystrophin Gene Reading

Frame and Protein Structure in DMD Myoblasts Using the CinDel Method. Mol

Ther Nucleic Acids, 2016. 5: p. e283.

31. Rodriguez-Paredes, M. and M. Esteller, Cancer epigenetics reaches mainstream

oncology. Nat Med, 2011. 17(3): p. 330-9.

32. Sandoval, J. and M. Esteller, Cancer epigenomics: beyond genomics. Curr Opin Genet Dev, 2012. 22(1): p. 50-5.

33. Portela, A. and M. Esteller, Epigenetic modifications and human disease. Nat Biotechnol, 2010. 28(10): p. 1057-68.

34. Haffner, M.C., et al., Global 5-hydroxymethylcytosine content is significantly

reduced in tissue stem/progenitor cell compartments and in human cancers.

Oncotarget, 2011. 2(8): p. 627-37.

35. Jin, S.G., et al., 5-Hydroxymethylcytosine is strongly depleted in human cancers but

its levels do not correlate with IDH1 mutations. Cancer Res, 2011. 71(24): p. 7360-

5.

36. Lian, C.G., et al., Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of

37. Christensen, B.C., et al., DNA methylation, isocitrate dehydrogenase mutation, and

survival in glioma. J Natl Cancer Inst, 2011. 103(2): p. 143-53.

38. Dang, L., S. Jin, and S.M. Su, IDH mutations in glioma and acute myeloid

leukemia. Trends Mol Med, 2010. 16(9): p. 387-97.

39. Krell, D., et al., Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations

in glioblastoma. PLoS One, 2011. 6(5): p. e19868.

40. Shibata, T., et al., Mutant IDH1 confers an in vivo growth in a melanoma cell line

with BRAF mutation. Am J Pathol, 2011. 178(3): p. 1395-402.

41. Huang, Y. and A. Rao, Connections between TET proteins and aberrant DNA

modification in cancer. Trends Genet, 2014. 30(10): p. 464-74.

42. Bhutani, N., D.M. Burns, and H.M. Blau, DNA demethylation dynamics. Cell, 2011.

146(6): p. 866-72.

43. Kim, M., et al., Dynamic changes in DNA methylation and hydroxymethylation

when hES cells undergo differentiation toward a neuronal lineage. Hum Mol Genet,

2014. 23(3): p. 657-67.

44. Yu, M., et al., Base-resolution analysis of 5-hydroxymethylcytosine in the

mammalian genome. Cell, 2012. 149(6): p. 1368-80.

45. Dang, L., et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009. 462(7274): p. 739-44.

46. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.

47. Carreau, A., et al., Why is the partial oxygen pressure of human tissues a crucial

parameter? Small molecules and hypoxia. J Cell Mol Med, 2011. 15(6): p. 1239-53.

48. Kulkarni, A.C., P. Kuppusamy, and N. Parinandi, Oxygen, the lead actor in the

pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal, 2007. 9(10): p. 1717-30.

49. von Zglinicki, T., et al., Mild hyperoxia shortens telomeres and inhibits

proliferation of fibroblasts: a model for senescence? Exp Cell Res, 1995. 220(1): p.

186-93.

50. Keith, B. and M.C. Simon, Hypoxia-inducible factors, stem cells, and cancer. Cell, 2007. 129(3): p. 465-72.

51. Bovenzi, C.D., et al., Prognostic Indications of Elevated MCT4 and CD147 across

Cancer Types: A Meta-Analysis. Biomed Res Int, 2015. 2015: p. 242437.

52. Mouriaux, F., et al., Effects of Long-term Serial Passaging on the Characteristics

and Properties of Cell Lines Derived From Uveal Melanoma Primary Tumors.