• Aucun résultat trouvé

Probabilistic analysis of real-time systems

N/A
N/A
Protected

Academic year: 2021

Partager "Probabilistic analysis of real-time systems"

Copied!
158
0
0

Texte intégral

(1)

HAL Id: tel-01750613

https://tel.archives-ouvertes.fr/tel-01750613v3

Submitted on 4 Jan 2014

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Probabilistic analysis of real-time systems

Dorin Maxim

To cite this version:

(2)

´

Ecole doctorale IAEM Lorraine

Analyse probabiliste des syst`

emes temps r´

eel

TH`

ESE

pr´esent´ee et soutenue publiquement le 10 December 2013 pour l’obtention du

Doctorat de l’Universit´e de Lorraine

(mention informatique) par

Dorin MAXIM

Composition du jury

Pr´esident : Stephan MERZ, DR, Inria Nancy-Grand Est, France

Rapporteurs : Marco Di NATALE, Professeur, ´Ecole Sup´erieur Sant’Anna, Pisa, Italy Isabelle PUAUT, Professeur, Universit´e Rennes I, France

Examinateurs : Mihaela BARONI, Professeur, Universit´e Dunarea de Jos, Romania Laurent GEORGE, MCF HDR, Universit´e Marne la Val´ee, France Thomas NOLTE, Professeur, Universit´e M¨alardalen, Sweden

Encadrants : Liliana CUCU-GROSJEAN, CR, Inria Rocquencourt, France Fran¸coise SIMONOT-LION, Professeur, Loria, France

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

●❡♥❡r❛❧ ✐♥tr♦❞✉❝t✐♦♥

(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

❈❤❛♣✐tr❡ ✶✳ ❙t❛t❡ ♦❢ t❤❡ ❛rt

❞❡❝r❡❛s✐♥❣ t❤❡ ❝♦♠♣❧❡①✐t② ♦❢ t❤❡ ❛♥❛❧②s✐s ✈✐❛ r❡❛❧✲t✐♠❡ r❡✲s❛♠♣❧✐♥❣✱ t❡❝❤♥✐q✉❡ t❤❛t ♠❛❦❡s t❤❡ ❛♥❛❧②s✐s tr❛❝t❛❜❧❡ ❛♥❞ ❛♣♣❧✐❝❛❜❧❡ t♦ r❡❛❧✲❝❛s❡ s②st❡♠s✳

(32)
(33)
(34)
(35)
(36)
(37)

❈❤❛♣✐tr❡ ✷✳ ▼♦❞❡❧✐♥❣ ❛ ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠ ❛♥❞ ✐t ✐s ❡q✉❛❧ t♦ ✿ DM Pi,j = P (Ri,j > Di). ✭✷✳✸✮ ✇❤❡r❡ Ri,j ✐s t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ jth ❥♦❜ ♦❢ t❛s❦ τi✳ ■❢ t❤❡ t❛s❦ ✉♥❞❡r ❛♥❛❧②s✐s ✐s ♣❡r✐♦❞✐❝✱ ✐✳❡✳✱ ✐ts ♣▼■❚ ❞✐str✐❜✉t✐♦♥ ♦♥❧② ❤❛s ♦♥❡ ✈❛❧✉❡✱ t❤❡♥ ❛ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ♦❢ t❤❡ t❛s❦ ♠❛② ❜❡ ❝♦♠♣✉t❡❞ ❜② ❛✈❡r❛❣✐♥❣ t❤❡ ❞❡❛❞❧✐♥❡ ♠✐ss ♣r♦❜❛❜✐❧✐t✐❡s ♦❢ t❤❡ ❥♦❜s r❡❧❡❛s❡❞ ✐♥ ❛♥ ❢❡❛s✐❜✐❧✐t② ✐♥t❡r✈❛❧ [a, b]✱ ❡✳❣✳ t❤❡ ❤②♣❡r✲♣❡r✐♦❞✳ ❆❧t❡r♥❛t✐✈❡❧②✱ ❛ ❝♦♥s❡r✈❛t✐✈❡ ❝❛s❡ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦♥ ❝❛♥ ❜❡ ❛ss✉♠❡❞ ❜② ❝♦♥s✐❞❡r✐♥❣ ✐t t♦ ❜❡ ❡q✉❛❧ t♦ t❤❡ ❧❛r❣❡st ❉▼P ❛♠♦♥❣st ❛❧❧ ❥♦❜s ✐♥ t❤❡ ✐♥t❡r✈❛❧ [a, b]✳ ❉❡✜♥✐t✐♦♥ ✶✶ ✭❚❛s❦ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦✮ ❋♦r ❛ t❛s❦ τi❛♥❞ ❛ t✐♠❡ ✐♥t❡r✈❛❧ [a, b]✱ t❤❡ t❛s❦s✬ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ✐s ❝♦♠♣✉t❡❞ ❛s ❢♦❧❧♦✇s DM Ri(a, b) = P (R[a,b]i > Di) n[a,b] = 1 n[a,b] n[a,b] X j=1 DM Pi,j, ✭✷✳✹✮

✇❤❡r❡ n[a,b]= ⌈b−aTi ⌉✐s t❤❡ ♥✉♠❜❡r ♦❢ ❥♦❜s ♦❢ t❛s❦ τi r❡❧❡❛s❡❞ ❞✉r✐♥❣ t❤❡ ✐♥t❡r✈❛❧ [a, b]✳

(38)
(39)
(40)
(41)
(42)
(43)

❈❤❛♣✐tr❡ ✸✳ ❖♣t✐♠❛❧ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s ❛ ❧✐st ♦❢ t❛s❦s ♦r❞❡r❡❞ ❢r♦♠ t❤❡ ❧♦✇❡st t♦ t❤❡ ❤✐❣❤❡st ♣r✐♦r✐t②✳ priority(i) ✐s ✉s❡❞ t♦ ❞❡♥♦t❡ t❤❡ ♣r✐♦r✐t② ❧❡✈❡❧ ♦❢ t❛s❦ τi✳ ❆❧❧ t❛s❦s ❛r❡ ❛ss✉♠❡❞ t♦ ❤❛✈❡ ✉♥✐q✉❡ ♣r✐♦r✐t✐❡s✳ ✸✳✶✳✶ ❈♦♠♣✉t✐♥❣ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ■♥ t❤❡ ❝❛s❡ ♦❢ ✜①❡❞✲♣r✐♦r✐t② s❝❤❡❞✉❧✐♥❣✱ t❤❡ ♠❛✐♥ r❡s✉❧t ♣r♦✈✐❞✐♥❣ t❤❡ ❝❛❧❝✉❧❛t✐♦♥ ♦❢ Ri,j(Φ), (∀i, j, Φ) ✐s ❣✐✈❡♥ ❜② ❉✐❛③ ❡t ❛❧✳ ❬❉í❛③ ❡t ❛❧✳✱ ✷✵✵✷❪✱ ✇❤❡r❡ t❤❡ P❋ ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❤❡ j✲t❤ ❥♦❜ ♦❢ t❛s❦ τi ✐s ❣✐✈❡♥ ❜② fRi,j(Φ)= f [0,λi,j] Ri,j(Φ)+ (f (λi,j,∞) Ri,j(Φ) ⊗ fCi), ✭✸✳✶✮ ✇❤❡r❡ λi,j ✐s t❤❡ r❡❧❡❛s❡ t✐♠❡ ♦❢ τi,j✳ ❆ s♦❧✉t✐♦♥ ❢♦r ❊q✉❛t✐♦♥ ✭✸✳✶✮ ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ r❡❝✉rs✐✈❡❧②✳ ❊q✉❛t✐♦♥ ✭✸✳✶✮ ❝❛♥ ❜❡ r❡❢♦r♠✉❧❛t❡❞ ❛s ❢♦❧❧♦✇s ✿

Ri,j(Φ) = Bi(λi,j, Φ) ⊗ Ci⊗ Ii(λi,j, Φ), ✭✸✳✷✮

✇❤❡r❡ Bi(λi,j, Φ) ✐s t❤❡ ❛❝❝✉♠✉❧❛t❡❞ ❜❛❝❦❧♦❣ ♦❢ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s r❡❧❡❛s❡❞ ❜❡❢♦r❡

λi,j ❛♥❞ st✐❧❧ ❛❝t✐✈❡ ✭♥♦t ❝♦♠♣❧❡t❡❞ ②❡t✮ ❛t λi,j✳ Ii(λi,j, Φ)✐s t❤❡ s✉♠ ♦❢ t❤❡ ❡①❡❝✉t✐♦♥

(44)
(45)

❈❤❛♣✐tr❡ ✸✳ ❖♣t✐♠❛❧ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s ✕ ❈♦♥❞✐t✐♦♥ ✶ ✿ ❚❤❡ P❋ ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❤❡ t❛s❦ τk ♠❛②✱ ❛❝❝♦r❞✐♥❣ t♦ t❡st ❙✱ ❜❡ ❞❡♣❡♥❞❡♥t ♦♥ t❤❡ s❡t ♦❢ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s✱ ❜✉t ♥♦t ♦♥ t❤❡ r❡❧❛t✐✈❡ ♣r✐♦r✐t② ♦r❞❡r✐♥❣ ♦❢ t❤♦s❡ t❛s❦s✳ ✕ ❈♦♥❞✐t✐♦♥ ✷ ✿ ❚❤❡ P❋ ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❤❡ t❛s❦ τk ♠❛②✱ ❛❝❝♦r❞✐♥❣ t♦ t❡st ❙✱ ❜❡ ❞❡♣❡♥❞❡♥t ♦♥ t❤❡ s❡t ♦❢ ❧♦✇❡r ♣r✐♦r✐t② t❛s❦s✱ ❜✉t ♥♦t ♦♥ t❤❡ r❡❧❛t✐✈❡ ♣r✐♦r✐t② ♦r❞❡r✐♥❣ ♦❢ t❤♦s❡ t❛s❦s✳ ✕ ❈♦♥❞✐t✐♦♥ ✸ ✿ ❲❤❡♥ t❤❡ ♣r✐♦r✐t✐❡s ♦❢ t✇♦ t❛s❦s ♦❢ ❛❞❥❛❝❡♥t ♣r✐♦r✐t✐❡s ❛r❡ s✇❛♣♣❡❞✱ t❤❡♥ t❤❡ 1 − CDF ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❤❡ t❛s❦ ❜❡✐♥❣ ❛ss✐❣♥❡❞ t❤❡ ❤✐❣❤❡r ♣r✐♦r✐t② ❝❛♥♥♦t ✐♥❝r❡❛s❡ ❢♦r ❛♥② ✈❛❧✉❡ ♦❢ t✳ ❙✐♠✐❧❛r❧②✱ t❤❡ 1−CDF ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❤❡ t❛s❦ ❜❡✐♥❣ ❛ss✐❣♥❡❞ t❤❡ ❧♦✇❡r ♣r✐♦r✐t② ❝❛♥♥♦t ❞❡❝r❡❛s❡ ❢♦r ❛♥② ✈❛❧✉❡ ♦❢ t✳ ■♥ ♦r❞❡r t♦ ♣r♦✈❡ t❤❛t t❤❡ ❖P❆ ❛❧❣♦r✐t❤♠ ✐s ❛♣♣❧✐❝❛❜❧❡ t♦ ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s✱ ✇❡ ✐♥tr♦❞✉❝❡ t❤❡ ❢♦❧❧♦✇✐♥❣ r❡s✉❧ts✱ st❛t✐♥❣ t❤❛t t❤❡ r❡❧❛t✐✈❡ ♦r❞❡r ♦❢ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s ❞♦❡s ♥♦t ❛✛❡❝t t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❛ t❛s❦ ❛t ♣r✐♦r✐t② ❧❡✈❡❧ i ❛♥❞ ❛❧s♦ t❤❛t ✇❤❡♥ ❛ t❛s❦ ✐s ♠♦✈❡❞ ❢r♦♠ ♣r✐♦r✐t② ❧❡✈❡❧ i t♦ ❛ ❧♦✇❡r ♣r✐♦r✐t② ❧❡✈❡❧ ✐ts r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ❛♥❞ ✐ts ❉▼❘ ❝❛♥ ♥♦t ✐♥❝r❡❛s❡✳ ❚❤❡♦r❡♠ ✶ ✭❖r❞❡r ♦❢ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s✮ ▲❡t Γ = {τ1, τ2, . . . , τn} ❜❡ ❛ s❡t ♦❢ n ❝♦♥str❛✐♥❡❞✲❞❡❛❞❧✐♥❡ ♣❡r✐♦❞✐❝ t❛s❦s ✇✐t❤ ♣r♦❜❛❜✐❧✐st✐❝ ✇♦rst ❝❛s❡ ❡①❡❝✉t✐♦♥ t✐♠❡s s❝❤❡❞✉❧❡❞ ♣r❡✲❡♠♣t✐✈❡❧② ❛❝❝♦r❞✐♥❣ t♦ ❛ ✜①❡❞✲♣r✐♦r✐t② ❛❧❣♦r✐t❤♠ ♦♥ ❛ s✐♥❣❧❡ ♣r♦❝❡ss♦r✳ ■❢ ❛ t❛s❦ τi ❤❛s ✐ts ♣r✐♦r✐t② ❦♥♦✇♥ ❛♥❞ ❣✐✈❡♥✱ t❤❡♥ t❤❡ ♣r✐♦r✐t② ♦r❞❡r ♦❢ t❤❡ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s ✭❜❡❧♦♥❣✐♥❣ t♦ HP (i)✮ ❞♦❡s ♥♦t ✐♠♣❛❝t t❤❡ ✈❛❧✉❡ ♦❢ DMPi,j(Φ)❢♦r ❛♥② ❥♦❜ ♦❢ τi ♦r t❤❡ ✈❛❧✉❡ ♦❢ DMRi(a, b, Φ), ∀a, b✳ ❙t❛t❡❞ ♦t❤❡r✇✐s❡✱ ✐❢ ♠❡♠❜❡rs❤✐♣ ♦❢ t❤❡

s❡ts HP (i) ❛♥❞ LP (i) ❛r❡ ✉♥❝❤❛♥❣❡❞✱ t❤❡♥ t❤❡ r❡s♣♦♥s❡ t✐♠❡ Ri,j ♦❢ ❛♥② ❥♦❜ ♦❢ τi ✐s

(46)

✸✳✶✳ ■♥tr♦❞✉❝t✐♦♥ ❛t t✐♠❡ t✮ ❛♥❞ t❤❛t ❤❛✈❡ ♥♦t ❜❡❡♥ ❝♦♠♣❧❡t❡❞ ②❡t✱ ✐ts ✈❛❧✉❡ ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ t❤❡ ♣r✐♦r✐t② ♦r❞❡r ♦❢ t❤❡ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s✳ ■♥ ❛ t✐♠❡ ✐♥t❡r✈❛❧ ♦❢ ❧❡♥❣t❤ t✱ ❛♥② t❛s❦ τk ❝❛♥ ❤❛✈❡ ♦♥❧② ⌈t/Tk⌉ r❡❧❡❛s❡s ✇❤✐❝❤ ❛r❡ r❡❧❡✈❛♥t t♦ t❤❡ ❝❛❧❝✉❧❛t✐♦♥ ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❛s❦ τi✱ ✇❤❛t❡✈❡r ✐ts ♣r✐♦r✐t②✳ ❚❤✐s ✐s tr✉❡ ❢♦r ❛❧❧ t❤❡ t❛s❦s t❤❛t ❤❛✈❡ ❤✐❣❤❡r ♣r✐♦r✐t② t❤❛♥ t❤❡ t❛s❦ ❢♦r ✇❤✐❝❤ ✇❡ ❛r❡ ❝♦♠♣✉t✐♥❣ t❤❡ r❡s♣♦♥s❡ t✐♠❡✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ s❛♠❡ r❡❛s♦♥✐♥❣ ✐s ✈❛❧✐❞ ❢♦r t❤❡ ♥✉♠❜❡r ♦❢ ♣r❡✲❡♠♣t✐♦♥s✱ ✐✳❡✳✱ t❤❡ ♥✉♠❜❡r ♦❢ ♣r❡✲❡♠♣t✐♦♥s ❢r♦♠ ❛ t❛s❦ ✇✐t❤ ♣r✐♦r✐t② ❤✐❣❤❡r t❤❛♥ τi ✐s t❤❡ s❛♠❡✱ r❡❣❛r❞❧❡ss ♦❢ ✇❤❡t❤❡r t❤❛t t❛s❦ ❤❛s t❤❡ ❤✐❣❤❡st ♣r✐♦r✐t② ♦r ❛♥② ♣r✐♦r✐t② ❤✐❣❤❡r t❤❛♥ t❤❛t ♦❢ τi✳ ▼♦r❡♦✈❡r✱ s✐♥❝❡ t❤❡ s✉♠♠❛t✐♦♥ ♦❢ t✇♦ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ✐s ❝♦♠♠✉t❛t✐✈❡✱ ✐t ❢♦❧❧♦✇s t❤❛t t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❛s❦ τi ✐s t❤❡ s❛♠❡ ✇❤❛t❡✈❡r t❤❡ ♣r✐♦r✐t✐❡s ✇❡ ❛ss✐❣♥ t♦ t❤❡ r❡st ♦❢ t❤❡ t❛s❦s ✐♥ HP (i)✳ ❚❤❡♦r❡♠ ✷ ✭▼♦♥♦t♦♥✐❝✐t② ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡✮ ▲❡t Γ = {τ1, . . . , τn} ❜❡ ❛ s❡t ♦❢ ❝♦♥str❛✐♥❡❞✲❞❡❛❞❧✐♥❡ t❛s❦s ✇✐t❤ ♣r♦❜❛❜✐❧✐st✐❝ ❡①❡❝✉t✐♦♥ t✐♠❡s✱ s❝❤❡❞✉❧❡❞ ♣r❡✲ ❡♠♣t✐✈❡❧② ❛❝❝♦r❞✐♥❣ t♦ ❛ ✜①❡❞ ♣r✐♦r✐t② ❛❧❣♦r✐t❤♠✳ ❘❡❝❛❧❧ t❤❛t Φ ✐s ❛ ♣r✐♦r✐t② ❛ss✐❣♥✲ ♠❡♥t t❤❛t ♠❛② ❜❡ r❡♣r❡s❡♥t❡❞ ❜② ❛ ❧✐st ♦❢ t❛s❦s ✐♥ s❡q✉❡♥❝❡ ❢r♦♠ ❧♦✇❡st t♦ ❤✐❣❤❡st ♣r✐♦r✐t②✳ ▲❡t Φ1 ❛♥❞ Φ2 ❜❡ t✇♦ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥ts s✉❝❤ t❤❛t✱ t♦ ❣❡t ❢r♦♠ ♦♥❡ ❛s✲ s✐❣♥♠❡♥t t♦ t❤❡ ♦t❤❡r✱ ♦♥❡ ♦♥❧② ❤❛s t♦ ❝❤❛♥❣❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ ♦♥❡ ✉♥✐q✉❡ t❛s❦ τi ✐♥ t❤❡ ❧✐st✱ ❧❡❛✈✐♥❣ t❤❡ r❡❧❛t✐✈❡ ♦r❞❡r ♦❢ ❛❧❧ ♦t❤❡r t❛s❦s ✉♥❝❤❛♥❣❡❞✳ ■❢ t❤❡ ♣r✐♦r✐t② ♦❢ τi ✐s ❧♦✇❡r ✐♥ Φ1 t❤❛♥ ✐♥ Φ2✱ t❤❡♥ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ ❛♥② ♦❢ ✐ts ❥♦❜s ✐s s✉❝❤ t❤❛t

(47)

❈❤❛♣✐tr❡ ✸✳ ❖♣t✐♠❛❧ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s t❤❡ ❧❛r❣❡r t❤❡ r❡s♣♦♥s❡ t✐♠❡✳ ❚❤❡ ♠♦♥♦t♦♥✐❝✐t② ♦❢ t❤❡ t❛s❦ r❡s♣♦♥s❡ t✐♠❡ ❧❡❛❞s t♦ ❛ s✐♠✐❧❛r ❝♦♥❝❧✉s✐♦♥ ❛❜♦✉t t❤❡ ❞❡❛❞❧✐♥❡ ♠✐ss ♣r♦❜❛❜✐❧✐t② ✭❉▼P✮✳ ❈♦r♦❧❧❛r② ✶ ✭▼♦♥♦t♦♥✐❝✐t② ♦❢ ❉▼P ❛♥❞ DMR✮ ▲❡t Γ = {τ1, . . . , τn} ❜❡ ❛ s❡t ♦❢ ❝♦♥str❛✐♥❡❞✲❞❡❛❞❧✐♥❡ t❛s❦s ✇✐t❤ ♣r♦❜❛❜✐❧✐st✐❝ ✇♦rst ❝❛s❡ ❡①❡❝✉t✐♦♥ t✐♠❡s✱ s❝❤❡❞✉❧❡❞ ♣r❡✲❡♠♣t✐✈❡❧② ❛❝❝♦r❞✐♥❣ t♦ ❛ ✜①❡❞ ♣r✐♦r✐t② ❛❧❣♦r✐t❤♠✳ ▲❡t Φ1 ❛♥❞ Φ2 ❜❡ t✇♦ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥ts s✉❝❤ t❤❛t✱ t♦ ❣❡t ❢r♦♠ ♦♥❡ ❛ss✐❣♥♠❡♥t t♦ t❤❡ ♦t❤❡r✱ ♦♥❡ ♦♥❧② ❤❛s t♦ ❝❤❛♥❣❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ ♦♥❡ ✉♥✐q✉❡ t❛s❦ τi ✐♥ t❤❡ ❧✐st ✭♣r✐♦r✐t② s❡q✉❡♥❝❡✮✱ ❧❡❛✈✐♥❣ t❤❡ r❡❧❛t✐✈❡ ♦r❞❡r ♦❢ ❛❧❧ ♦t❤❡r t❛s❦s ✉♥❝❤❛♥❣❡❞✳ ■❢ t❤❡ ♣r✐♦r✐t② ♦❢ τi ✐s ❧♦✇❡r ✐♥ Φ1 t❤❛♥

✐♥ Φ2✱ t❤❡♥ DMPi,j(Φ1) ≥ DM Pi,j(Φ2) ❛♥❞ DMRi(a, b, Φ1) ≥ DM Ri(a, b, Φ2)✳

Pr♦♦❢ ✹ ❯♥❞❡r t❤❡ ❝♦♥❞✐t✐♦♥ st❛t❡❞ ✐♥ ❚❤❡♦r❡♠ ✷ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ t❤❡ ❣❡♥❡r✐❝ t❛s❦ τi ❝❛♥♥♦t ❞❡❝r❡❛s❡ ✇✐t❤ ❛ ❞❡❝r❡❛s❡ ✐♥ ✐ts r❡❧❛t✐✈❡ ♣r✐♦r✐t②✳ ❯♥❞❡r t❤❡ s❛♠❡ ❝♦♥❞✐✲

(48)
(49)
(50)

✸✳✷✳ ❙t❛t❡♠❡♥t ♦❢ t❤❡ s❝❤❡❞✉❧✐♥❣ ♣r♦❜❧❡♠s r❡♠♦✈❡❞ ❢r♦♠ t❤❡ s②st❡♠ ✐❢ t❤❡✐r ❝r✐t✐❝❛❧✐t② ✐s s✉✣❝✐❡♥t❧② ❧♦✇✳ ❙②st❡♠ r❡s❡t ❛t s②♥❝❤r♦♥♦✉s r❡❧❡❛s❡ ■♥ t❤✐s ❝❤❛♣t❡r ✇❡ ❝♦♥s✐❞❡r t❤❛t ❛t t❤❡ ❡♥❞ ♦❢ ❡❛❝❤ ❤②♣❡r✲♣❡r✐♦❞ ❛♥② ✐♥❝♦♠♣❧❡t❡ ❥♦❜ ✐s ❛❜♦rt❡❞✳ ❚❤✐s ✐s ❛ ❢♦r♠ ♦❢ r❡s❡t ♣r✐♦r t♦ s②♥❝❤r♦♥♦✉s❧② r❡❧❡❛s✐♥❣ ❛❧❧ ♦❢ t❤❡ t❛s❦s ❛t t❤❡ st❛rt ♦❢ t❤❡ ♥❡①t ❤②♣❡r✲♣❡r✐♦❞✳ ■♥ ❢✉t✉r❡ ✇♦r❦ ✇❡ ❛✐♠ t♦ r❡❧❛① t❤✐s ❛ss✉♠♣t✐♦♥ ❛♥❞ ♠♦✈❡ t♦✇❛r❞s ❛ ♠♦r❡ ❣❡♥❡r❛❧ ❝❛s❡✳ ❚❤❡ ❝♦♥s❡q✉❡♥❝❡ ♦❢ r❡s❡tt✐♥❣ t❤❡ s②st❡♠ ❛❢t❡r ❡❛❝❤ ❤②♣❡r✲♣❡r✐♦❞ ✐s t❤❛t ✇❡ ❝❛♥ ❢♦❝✉s ♦✉r ❛♥❛❧②s✐s ♦♥ t❤❡ ✜rst ❤②♣❡r✲♣❡r✐♦❞ [0, H] ✭✇✐t❤ H = lcm{T1, T2, · · · , Tn}✮ ✇❤✐❝❤ ❜❡❝♦♠❡s ❛ ❢❡❛s✐❜✐❧✐t② ✐♥t❡r✈❛❧✳

✸✳✷ ❙t❛t❡♠❡♥t ♦❢ t❤❡ s❝❤❡❞✉❧✐♥❣ ♣r♦❜❧❡♠s

❇❡❢♦r❡ ❞❡✜♥✐♥❣ t❤❡ s✉❜✲♣r♦❜❧❡♠s ✇❡ ❞❡❛❧ ✇✐t❤✱ ✇❡ ✜rst ✇❡ r❡♠✐♥❞ ❤❡r❡ t❤❡ ♠❡✲ tr✐❝s t❤❛t ✇❡ ❡♠♣❧♦② ✐♥ ♦r❞❡r t♦ ❞❡t❡r♠✐♥❡ t❤❡ ❢❡❛s✐❜✐❧✐t② ♦❢ t❤❡ s②st❡♠ ✉♥❞❡r ❛♥❛❧②s✐s✱ ♥❛♠❡❧② t❤❡ ❥♦❜ ❞❡❛❞❧✐♥❡ ♠✐ss ♣r♦❜❛❜✐❧✐t② ❛♥❞ t❤❡ t❛s❦ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦♥✳ ❉❡✜♥✐t✐♦♥ ✶✸ ✭❏♦❜ ❞❡❛❞❧✐♥❡ ♠✐ss✮ ❋♦r ❛ ❥♦❜ τi,j ❛♥❞ ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t Φ✱ t❤❡ ❞❡❛❞❧✐♥❡ ♠✐ss ♣r♦❜❛❜✐❧✐t② DMPi,j ✐s t❤❡ ♣r♦❜❛❜✐❧✐t② t❤❛t t❤❡ j✲t❤ ❥♦❜ ♦❢ t❛s❦ τi ♠✐ss❡s ✐ts ❞❡❛❞❧✐♥❡ ✿ DM Pi,j(Φ) = P (Ri,j(Φ) > Di). ✭✸✳✹✮ ❉❡✜♥✐t✐♦♥ ✶✹ ✭❚❛s❦ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦✮ ❋♦r ❛ t❛s❦ τi✱ ❛ t✐♠❡ ✐♥t❡r✈❛❧ [a, b] ❛♥❞ ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t Φ✱ t❤❡ t❛s❦ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ✐s ❝♦♠♣✉t❡❞ ❛s ❢♦❧❧♦✇s DM Ri(a, b, Φ) = P (R[a,b]i (Φ) > Di) n[a,b] = 1 n[a,b] n[a,b] X j=1 DM Pi,j(Φ), ✭✸✳✺✮

✇❤❡r❡ n[a,b]= ⌈b−aTi ⌉✐s t❤❡ ♥✉♠❜❡r ♦❢ ❥♦❜s ♦❢ t❛s❦ τi r❡❧❡❛s❡❞ ❞✉r✐♥❣ t❤❡ ✐♥t❡r✈❛❧ [a, b]✳

❉✉r✐♥❣ t❤❡ ✜rst ❤②♣❡r♣❡r✐♦❞ ♦❢ ❛ s❝❤❡❞✉❧❡✱ ✐✳❡✳✱ a = 0 ❛♥❞ b = H✱ t❤❡ t❛s❦ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ✐s ❞❡♥♦t❡❞ ❜② DMRi(Φ)❢♦r ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t Φ ❛♥❞ ❛ t❛s❦

τi✳ ❯♥❧❡ss s♣❡❝✐✜❡❞ ♦t❤❡r✇✐s❡✱ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✇❡ ❝♦♥s✐❞❡r t❤❡ ✐♥t❡r✈❛❧ [a, b] = [0, H]✳

(51)

❈❤❛♣✐tr❡ ✸✳ ❖♣t✐♠❛❧ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s ❚❤❡ DMP ❣✐✈❡s t❤❡ ♣r♦❜❛❜✐❧✐t② t❤❛t ❛ ❥♦❜ ♠✐ss❡s ✐ts ❞❡❛❞❧✐♥❡✱ ✇❤❡r❡❛s t❤❡ DMR ❣✐✈❡s t❤❡ ❛✈❡r❛❣❡ ♣r♦❜❛❜✐❧✐t② ♦✈❡r t❤❡ ❤②♣❡r♣❡r✐♦❞ t❤❛t ❛ ❥♦❜ ♦❢ t❤❡ t❛s❦ ✇✐❧❧ ♠✐ss ✐ts ❞❡❛❞❧✐♥❡✱ ❛♥❞ ❤❡♥❝❡ t❤❡ ❛✈❡r❛❣❡ ♣r♦❜❛❜✐❧✐t② ♦✈❡r t❤❡ ❡♥t✐r❡ ❧✐❢❡t✐♠❡ ♦❢ t❤❡ s②st❡♠✱ t❤❛t ❛ ❥♦❜ ♦❢ t❤❡ t❛s❦ ✇✐❧❧ ♠✐ss ✐ts ❞❡❛❞❧✐♥❡✳ ❋♦r ❡❛❝❤ t❛s❦ τi ✇❡ ❝♦♥s✐❞❡r ❛ s♣❡❝✐✜❡❞ ♣❛r❛♠❡t❡r pi ∈ [0, 1]✱ r❡❢❡rr❡❞ t♦ ❛s t❤❡ ♠❛①✐♠✉♠ ♣❡r♠✐tt❡❞ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦✳ ❲❡ ❞❡✜♥❡ t❤r❡❡ ♥❡✇ ♣r♦❜❧❡♠s ✿ ✶✳ ❇❛s✐❝ Pr✐♦r✐t② ❆ss✐❣♥♠❡♥t Pr♦❜❧❡♠ ✭❇P❆P✮✳ ❚❤✐s ♣r♦❜❧❡♠ ✐♥✈♦❧✈❡s ✜♥❞✐♥❣ ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t s✉❝❤ t❤❛t t❤❡ DMR ♦❢ ❡✈❡r② t❛s❦ ❞♦❡s ♥♦t ❡①❝❡❡❞ t❤❡ t❤r❡s❤♦❧❞ s♣❡❝✐✜❡❞✱ ✐✳❡✳ DMRi(Φ) ≤ pi✳ ❍❡♥❝❡✱ ✇❡ s❡❛r❝❤ ❢♦r ❛ ❢❡❛s✐❜❧❡ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t Φ∗ s✉❝❤ t❤❛t DMR i(Φ∗) ≤ pi, ∀i✳ ✷✳ ▼✐♥✐♠✐③❛t✐♦♥ ♦❢ t❤❡ ▼❛①✐♠✉♠ Pr✐♦r✐t② ❆ss✐❣♥♠❡♥t Pr♦❜❧❡♠ ✭▼P❆P✮✳ ❚❤✐s ♣r♦❜❧❡♠ ✐♥✈♦❧✈❡s ✜♥❞✐♥❣ ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t t❤❛t ♠✐♥✐♠✐③❡s t❤❡ ♠❛①✐♠✉♠ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ♦❢ ❛♥② t❛s❦✳ ❍❡♥❝❡✱ ✇❡ s❡❛r❝❤ ❢♦r ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t Φ∗

s✉❝❤ t❤❛t maxi{DM Ri(a, b, Φ∗)} = minΦ{maxiDM Ri(a, b, Φ)}, ∀i✳

✸✳ ❆✈❡r❛❣❡ Pr✐♦r✐t② ❆ss✐❣♥♠❡♥t Pr♦❜❧❡♠ ✭❆P❆P✮✳ ❚❤✐s ♣r♦❜❧❡♠ ✐♥✈♦❧✈❡s ✜♥❞✐♥❣ ❛ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t t❤❛t ♠✐♥✐♠✐③❡s t❤❡ s✉♠ ♦❢ t❤❡ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦s ❢♦r ❛❧❧ t❛s❦s✳ ❍❡♥❝❡✱ ✇❡ s❡❛r❝❤ ❢♦r ❛ ❢❡❛s✐❜❧❡ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t Φ∗ s✉❝❤ t❤❛t

P

iDM Ri(a, b, Φ∗) = minΦ{PiDM Ri(a, b, Φ)}, ∀i✳

(52)
(53)
(54)
(55)
(56)
(57)

❈❤❛♣✐tr❡ ✸✳ ❖♣t✐♠❛❧ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s ✭❧♦✇ P✳✮ ← → ✭❤✐❣❤ P✳✮ t❛s❦s τΦg(4) τΦg(3) τΦg(2) τΦg(1) ❉▼❘ ✶✸ ✷✷ ✶✼ ✷✷ M ✕ m1= 3 ✕ m2 = 1 ❚❛❜❧❡ ✸✳✶ ✕ ❊①❛♠♣❧❡ ✜①❡❞ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ✇✐t❤ ❛ss♦❝✐❛t❡❞ DMRs ❛♥❞ M s❡t ❝❛s❡✳ ❉❡✜♥✐t✐♦♥ ✶✻ ✭❖♣t✐♠❛❧ ❛❧❣♦r✐t❤♠s ❢♦r ▼P❆P✮ ▲❡t Γ ❜❡ ❛ s❡t ♦❢ ❝♦♥str❛✐♥❡❞✲ ❞❡❛❞❧✐♥❡ t❛s❦s ✇✐t❤ ♣r♦❜❛❜✐❧✐st✐❝ ❡①❡❝✉t✐♦♥ t✐♠❡s✱ ✇❤❡r❡ ❡❛❝❤ t❛s❦ ✐s ❝❤❛r❛❝t❡r✐③❡❞ ❜② t❤❡ ♣❛r❛♠❡t❡rs (Ci, Ti, Di)✳ ❆ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠ P ✐s ♦♣t✐♠❛❧ ✇✐t❤ r❡s♣❡❝t t♦ ▼P❆P ✐❢ t❤❡ ♣r✐♦r✐t② ♦r❞❡r✐♥❣ ❞❡t❡r♠✐♥❡❞ ❜② ❛❧❣♦r✐t❤♠ P✱ ❢♦r ❛♥② ❛r❜✐tr❛r② t❛s❦s❡t Γ✱ ❤❛s ❛ ♠❛①✐♠✉♠ ❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ❢♦r ❛♥② t❛s❦✱ ✇❤✐❝❤ ✐s ♥♦ ❧❛r❣❡r t❤❛♥ t❤❛t ♦❜t❛✐♥❡❞ ✇✐t❤ ❛♥② ♦t❤❡r ♣r✐♦r✐t② ♦r❞❡r✐♥❣✳ ❚❤❡♦r❡♠ ✺ ❚❤❡ ▲❛③② ❛♥❞ ●r❡❡❞② ❆❧❣♦r✐t❤♠ ✭▲●❆✮ ✐s ♦♣t✐♠❛❧ ✇✐t❤ r❡s♣❡❝t t♦ ▼P❆P✳ Pr♦♦❢ ✽ ▲❡t ✉s ❝♦♥s✐❞❡r ❛ ♣r♦❜❧❡♠ ✇✐t❤ n t❛s❦s τ1, . . . , τn✳ ▲❡t Φg ❜❡ t❤❡ s♦❧✉t✐♦♥ r❡t✉r♥❡❞ ❜② t❤❡ ▲❛③② ❛♥❞ ●r❡❡❞② ❆❧❣♦r✐t❤♠ ✭Φg ✐s ❛ ♣❡r♠✉t❛t✐♦♥ ♦✈❡r 1..n✱ ❛♥❞ Φg(i) ✐s t❤❡ ✐♥❞❡① ♦❢ t❤❡ i✲t❤ t❛s❦ ❜② ♦r❞❡r ♦❢ ♣r✐♦r✐t②✮✳ ▲❡t M ❜❡ t❤❡ s❡t ♦❢ ♣♦s✐t✐♦♥s ✐♥ Φg ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ✐t❡♠s ✇✐t❤ t❤❡ ♠❛①✐♠✉♠

❞❡❛❞❧✐♥❡ ♠✐ss r❛t✐♦ ✿ M = arg maxiDM RΦg(i)(Φg) = {m1, . . . , m|M |}✱ ❛s ✐❧❧✉str❛t❡❞

(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

❈❤❛♣✐tr❡ ✸✳ ❖♣t✐♠❛❧ ♣r✐♦r✐t② ❛ss✐❣♥♠❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❜❛❜✐❧✐st✐❝ r❡❛❧✲t✐♠❡ s②st❡♠s

(66)
(67)
(68)
(69)
(70)

✹✳✹✳ Pr♦❜❛❜✐❧✐st✐❝ ❢❡❛s✐❜✐❧✐t② ❛♥❛❧②s✐s ✿ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ ✇❤❡r❡ t❤❡ ❜❧♦❝❦✐♥❣ t❡r♠ Bi= maxk∈lp(i)Ck✳ ❆s ✐♥ t❤❡ ❞❡t❡r♠✐♥✐st✐❝ ❝❛s❡ t❤❡ ✐t❡r❛t✐✈❡ ❛❧❣♦r✐t❤♠ st❛rts ✇✐t❤ t(0) i = Ci ❛♥❞ ✐t st♦♣s ❛t st❡♣ k ✐❢ t (k) i = t (k−1) i ✳ Pr♦❜❛❜✐❧✐st✐❝ Qi

❋♦r ❛ ♠❡ss❛❣❡ τi ✇❡ ❝♦♠♣✉t❡ Qi ✇✐t❤ Jk = Jkmax, ∀k ∈ hp(i) ∪ {i}✱ t❤✉s ✐♥ t❤❡

(71)
(72)

✹✳✺✳ ❱❛❧✐❞❛t✐♦♥✱ ❝♦rr❡❝t♥❡ss ❛♥❞ ❝♦♠♣❧❡①✐t② Pr♦♦❢ ✶✶ ■♥ ❆❧❣♦r✐t❤♠ ✶ ♦♥❧② t❤❡ ❧♦♦♣ ❝❛❧❝✉❧❛t❡s ♥❡✇ ✈❛❧✉❡s ❢♦r t❤❡ ❞✐str✐❜✉t✐♦♥ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ✉s✐♥❣ ❊q✉❛t✐♦♥ ✭✹✳✻✮✳ ■♥ t❤❡ ❝❛s❡ ♦❢ ❛❧❧ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ❤❛✈✐♥❣ ♦♥❡ ✉♥✐q✉❡ ✈❛❧✉❡ Ji = Ji 1 ! , ∀i✱ t❤❡♥✱ Wi(q) ❛s ✇❡❧❧ ❛s Ri ❤❛✈❡ s✐♥❣❧❡ ✈❛❧✉❡s✳ ❋r♦♠ ❚❤❡♦r❡♠ ✽ ✇❡ ♦❜t❛✐♥ ❞✐r❡❝t❧② t❤❡ ✈❛❧✐❞❛t✐♦♥ ♦❢ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥ ♣r❡s❡♥✲ t❡❞ ✐♥ ❙❡❝t✐♦♥ ✺✳✸✳ ▼♦r❡♦✈❡r✱ ❚❤❡♦r❡♠ ✽ ❛❧s♦ ❣✉❛r❛♥t❡❡s t❤❡ ✇♦rst✲❝❛s❡ ❝♦♥❞✐t✐♦♥ ♦❢ ❙❡❝t✐♦♥ ✺✳✸ ❛s t❤❡ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ ♣r♦✈✐❞❡❞ ❜② t❤❡ ❞❡t❡r♠✐♥✐st✐❝ ❛♥❛❧②s✐s ❜❡✐♥❣ ✐♥❝❧✉❞❡❞ ✐♥ t❤❡ r❡s✉❧t✐♥❣ ♣r♦❜❛❜✐❧✐st✐❝ r❡s♣♦♥s❡ t✐♠❡✳ ❚❤❡♦r❡♠ ✾ ✭❈♦rr❡❝t♥❡ss✮ ▲❡t τ ❜❡ ❛ s❡t ♦❢ s②♥❝❤r♦♥♦✉s ❝♦♥str❛✐♥❡❞ ❞❡❛❞❧✐♥❡ ♠❡ss❛❣❡s✳ ❆❧❣♦r✐t❤♠ ✶✱ ✇❤✐❝❤ s♦❧✈❡s ✐t❡r❛t✐✈❡❧② ❊q✉❛t✐♦♥ ✭✹✳✻✮✱ ♣r♦✈✐❞❡s ❢♦r ❡❛❝❤ ♠❡ss❛❣❡ τi ❛ ♣r♦❜❛❜✐❧✐st✐❝ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ Rouri ✇❤✐❝❤ ✐s ♣❡ss✐♠✐st✐❝ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❡①❛❝t r❡s♣♦♥s❡ ❞✐str✐❜✉t✐♦♥ ♦❢ τi ♦❜t❛✐♥❡❞ ❜② ❡①❤❛✉st✐✈❡❧② ❡♥✉♠❡r❛t✐♥❣ ❛❧❧ ♣♦ss✐❜❧❡ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❥✐tt❡r ✈❛❧✉❡s t❤❛t t❤❡ ♠❡ss❛❣❡s ✐♥ τ ❝♦✉❧❞ ❡①♣❡r✐❡♥❝❡✳ Pr♦♦❢ ✶✷ ❚♦ ♣r♦✈❡ t❤❡ ❝♦rr❡❝t♥❡ss ♦❢ ♦✉r ❛♣♣r♦❛❝❤ ✇❡ ❛♥❛❧②③❡ ❛❧❧ t❤❡ st❡♣s ♦❢ t❤❡ ❛♣♣r♦❛❝❤ ✿ ■✮ ❈♦♠♣✉t❛t✐♦♥ ♦❢ ti ❛♥❞ Qi ❙✐♥❝❡ ❊q✉❛t✐♦♥ ✭✹✳✹✮ ✐s ❡q✉✐✈❛❧❡♥t t♦ ❊q✉❛t✐♦♥ ✭✹✳✶✮✱ t❤❡♥ t❤❡ ❜✉s② ♣❡r✐♦❞ ❝♦rr❡s✲ ♣♦♥❞✐♥❣ t♦ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ✐s t❤❡ s❛♠❡ ✐♥ ❝❛s❡ ♦❢ t❤❡ ♣r♦❜❛❜✐❧✐st✐❝ ❛♥❞ ♦❢ ❞❡t❡r♠✐✲ ♥✐st✐❝ ❛♥❛❧②s✐s✳ ❚❤❡ ♥✉♠❜❡r ♦❢ ♠❡ss❛❣❡ ✐♥st❛♥❝❡s Qi = ⌈ ti+Jimax Ti ⌉ ✐s t❤❡ s❛♠❡ ❢♦r ❛❧❧ t❤❡ ❛♥❛❧②s❡s ✇✐t❤ Jmax i = Ji ❛♥❞ Qi= ⌈ti+JTi i⌉✳ ■■✮ ❈♦♠♣✉t❛t✐♦♥ ♦❢ Wi✳ ❚❤❡ ❢♦r♠✉❧❛t✐♦♥ ✇❡ ♣r♦♣♦s❡ ✐♥ ❊q✉❛t✐♦♥ ✭✹✳✻✮ ❝♦♥s✐❞❡rs ❛❧❧ t❤❡ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ♠❡ss❛❣❡ ❥✐tt❡rs✱ ✐♥❝❧✉❞✐♥❣ Jmax i ❛♣♣❧✐❡❞ t♦ t❤❡ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡✱ ❛s ✐♥ ❊q✉❛t✐♦♥ ✭✹✳✸✮✳ ▼♦r❡♦✈❡r✱ t❤❡ ❝♦♥✈♦❧✉t✐♦♥ ♦♣❡r❛t♦r ❛♣♣❧✐❡❞ ✐♥ ❆❧❣♦r✐t❤♠ ✶ ❡♥s✉r❡s t❤❛t t❤❡ ♦❜t❛✐♥❡❞ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ❝♦♥t❛✐♥s t❤❡ ✇♦rst✲ ❝❛s❡ q✉❡✉✐♥❣ ❞❡❧❛② ❛s ✇❡❧❧ ❛s ❛❧❧ ♦t❤❡r ♣♦ss✐❜❧❡ q✉❡✉✐♥❣ ❞❡❧❛②s Wi(q) ✭✇✐t❤ Wi(q) < Wmax i ✮ t❤❛t ♠✐❣❤t r❡s✉❧t ❢r♦♠ ❞✐✛❡r❡♥t ❥✐tt❡r ❝♦♠❜✐♥❛t✐♦♥s✳ ■■■✮ ❈♦♠♣✉t❛t✐♦♥ ♦❢ Rour i ✳ ❚❤❡ r❡s♣♦♥s❡ t✐♠❡ Rouri (q)❝♦♠♣✉t❡❞ ❜② ❊q✉❛t✐♦♥ ✭✹✳✽✮ ❜② ❛♣♣❧②✐♥❣ Wi✱ t❛❦❡s ✐♥t♦ ❛❝❝♦✉♥t t❤❡ ✇♦rst✲❝❛s❡ q✉❡✉✐♥❣ ❞❡❧❛② ❛♥❞ ♦t❤❡r Wi ✈❛✲ ❧✉❡s t♦ ❝♦♠♣✉t❡ t❤❡ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥✳ ■t ✐♥❝❧✉❞❡s t❤❡ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ Rmax i ✳ ■❱✮ ❈♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ❡♥✈❡❧♦♣❡✳ ❆❝❝♦r❞✐♥❣ t♦ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❡♥✈❡❧♦♣❡ ❢♦r ❞✐✛❡r❡♥t qi ✐♥st❛♥❝❡s✱ ✭s❡❡ ❊q✉❛t✐♦♥ ✭✹✳✽✮✮✱ t❤❡ ✇♦rst✲❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ Rimax ✐s

❛♠♦♥❣ t❤❡ ✈❛❧✉❡s ♦❢ Ri,j ✭✇✐t❤ Ri,j < Rmaxi ✮✳

(73)
(74)
(75)
(76)
(77)
(78)
(79)

❈❤❛♣✐tr❡ ✺✳ ❘❡s♣♦♥s❡✲t✐♠❡ ❛♥❛❧②s✐s ♦❢ s②st❡♠s ✇✐t❤ ♠✉❧t✐♣❧❡ ♣r♦❜❛❜✐❧✐st✐❝ ♣❛r❛♠❡t❡rs ❋✐❣✉r❡ ✺✳✶ ✕ ❚❤❡ ❛rr✐✈❛❧ ❞✐str✐❜✉t✐♦♥ ❞❡✜♥❡❞ ♥✉♠❜❡r ♦❢ ❛rr✐✈❛❧s ✐♥ ❛ ❣✐✈❡♥ ✐♥t❡r✈❛❧ ♠❛② ❝♦rr❡s♣♦♥❞ t♦ ❞✐✛❡r❡♥t s✐t✉❛t✐♦♥s✳ ✕ Pr♦❜❛❜✐❧✐st✐❝ ♥✉♠❜❡r ♦❢ ❛rr✐✈❛❧s ✿ ❢r♦♠ t = 0 t♦ t = 12 t❤❡ ♥✉♠❜❡r ♦❢ ❛rr✐✈❛❧s ♦❢ τ∗ 1 N1= 1 2 4 0.4 0.3 0.3 ! ✐s ♣r♦✈✐❞❡❞ ❜② t❤❡ ♠♦❞❡❧✳

✺✳✷ ❘❡s♣♦♥s❡ t✐♠❡ ❛♥❛❧②s✐s

■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ✐♥tr♦❞✉❝❡ ❛♥ ❛♥❛❧②s✐s ❝♦♠♣✉t✐♥❣ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❛ ❣✐✈❡♥ t❛s❦✳ ❙✐♥❝❡ t❤❡ s②st❡♠ ✉♥❞❡r ❝♦♥s✐❞❡r❛t✐♦♥ ✐s ❛ t❛s❦✲❧❡✈❡❧ ✜①❡❞✲♣r✐♦r✐t② ♣r❡❡♠♣t✐✈❡ ♦♥❡✱ t❤❡♥ ❛ ❣✐✈❡♥ t❛s❦ ✐s ♥♦t ✐♥✢✉❡♥❝❡❞ ❜② t❛s❦s ♦❢ ❧♦✇❡r ♣r✐♦r✐t② ❜✉t ♦♥❧② ❜② t❤♦s❡ ♦❢ ❤✐❣❤❡r ♣r✐♦r✐t②✳ ❚❤✉s✱ ✇❡ ❝♦♥s✐❞❡r ✇✐t❤♦✉t ❧♦ss ♦❢ ❣❡♥❡r❛❧✐t②✱ t❤❡ t❛s❦ ♦❢ ✐♥t❡r❡st t♦ ❜❡ t❤❡ ❧♦✇❡st ♣r✐♦r✐t② t❛s❦✱ τn✱ ✐♥ ❛ s❡t ♦❢ n t❛s❦s✳ ❇❡❢♦r❡ ✇❡ ♣r♦❝❡❡❞ t♦ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❛♥❛❧②s✐s ❢♦r t❛s❦s t❤❛t ❤❛✈❡ ♣❲❈❊❚ ❛s ✇❡❧❧ ❛s ♣▼■❚✱ ✇❡ ✜rst r❡❝❛❧❧ ❤❡r❡ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❛♥❛❧②s✐s ❢♦r t❛s❦s t❤❛t ❤❛✈❡ ♦♥❧② t❤❡ ❲❈❊❚ ❞❡s❝r✐❜❡❞ ❜② ❛ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❬❉í❛③ ❡t ❛❧✳✱ ✷✵✵✷❪✳ ❚❤❡ r❡s♣♦♥s❡ t✐♠❡ Ri,j ♦❢ ❛ ❥♦❜ τi,j t❤❛t ✐s r❡❧❡❛s❡❞ ❛t t✐♠❡ ✐♥st❛♥t λi,j ✐s ❝♦♠♣✉t❡❞ ✉s✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣

❡q✉❛t✐♦♥ ✿

Ri,j = Bi(λi,j) ⊗ Ci⊗ Ii(λi,j), ✭✺✳✶✮

(80)
(81)
(82)
(83)
(84)

✺✳✷✳ ❘❡s♣♦♥s❡ t✐♠❡ ❛♥❛❧②s✐s Ri n= k M j=1 Ri,j n ✭✺✳✺✮ ✇❤❡r❡ i ✐s t❤❡ ❝✉rr❡♥t ✐t❡r❛t✐♦♥✱ k ✐s t❤❡ ♥✉♠❜❡r ♦❢ ✈❛❧✉❡s ✐♥ t❤❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ r❡♣r❡s❡♥t✐♥❣ t❤❡ ♣▼■❚ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ t❛s❦✱ j ✐s t❤❡ ❝✉rr❡♥t ✈❛❧✉❡ t❛❦❡♥ ✐♥t♦ ❝♦♥s✐❞❡r❛t✐♦♥ ❢r♦♠ t❤❡ ♣▼■❚ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ t❛s❦✱ ❛♥❞ Ri,jn ✐s t❤❡ jth ❝♦♣② ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ❛♥❞ ✐t ✐♥t❡❣r❛t❡s t❤❡ ♣♦ss✐❜❧❡ ♣r❡❡♠♣t✐♦♥ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✇❛② ✿ Ri,j n = (Ri−1,headn ⊕ (Ri−1,tailn ⊗ Cmpr)) ⊗ Ppr ✭✺✳✻✮ ✇❤❡r❡ ✿ ✕ n ✐s t❤❡ ✐♥❞❡① ♦❢ t❤❡ t❛s❦ ✉♥❞❡r ❛♥❛❧②s✐s ❀ ✕ i ✐s t❤❡ ❝✉rr❡♥t st❡♣ ♦❢ t❤❡ ✐t❡r❛t✐♦♥ ❀ ✕ j r❡♣r❡s❡♥ts t❤❡ ✐♥❞❡① ♦❢ t❤❡ ❝✉rr❡♥t ✈❛❧✉❡ t❛❦❡♥ ✐♥t♦ ❝♦♥s✐❞❡r❛t✐♦♥ ❢r♦♠ t❤❡ ♣▼■❚ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ t❛s❦ ❀ ✕ Ri−1,head n ✐s t❤❡ ♣❛rt ♦❢ t❤❡ ❞✐str✐❜✉t✐♦♥ t❤❛t ✐s ♥♦t ❛✛❡❝t❡❞ ❜② t❤❡ ❝✉rr❡♥t ♣r❡❡♠♣t✐♦♥ ✉♥❞❡r ❝♦♥s✐❞❡r❛t✐♦♥ ❀ ✕ Ri−1,tail n ✐s t❤❡ ♣❛rt ♦❢ t❤❡ ❞✐str✐❜✉t✐♦♥ t❤❛t ♠❛② ❜❡ ❛✛❡❝t❡❞ ❜② t❤❡ ❝✉rr❡♥t ♣r❡❡♠♣t✐♦♥ ✉♥❞❡r ❝♦♥s✐❞❡r❛t✐♦♥ ❀ ✕ m ✐s t❤❡ ✐♥❞❡① ♦❢ t❤❡ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦ t❤❛t ✐s ❝✉rr❡♥t❧② t❛❦❡♥ ✐♥t♦ ❛❝❝♦✉♥t ❛s ❛ ♣r❡❡♠♣t✐♥❣ t❛s❦ ❀ ✕ Cpr m ✐s t❤❡ ❡①❡❝✉t✐♦♥ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ❝✉rr❡♥t❧② ♣r❡❡♠♣t✐♥❣ t❛s❦ ❀ ✕ Ppr ✐s ❛ ❢❛❦❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ✉s❡❞ t♦ s❝❛❧❡ t❤❡ jth ❝♦♣② ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ✇✐t❤ t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ t❤❡ ❝✉rr❡♥t ✈❛❧✉❡ i ❢r♦♠ t❤❡ ♣▼■❚ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ t❛s❦✳ ❚❤✐s ✈❛r✐❛❜❧❡ ❤❛s ♦♥❡ ✉♥✐q✉❡ ✈❛❧✉❡ ❡q✉❛❧ t♦ 0 ❛♥❞ ✐ts ❛ss♦❝✐❛t❡❞ ♣r♦❜❛❜✐❧✐t② ✐s ❡q✉❛❧ t♦ t❤❡ ith ♣r♦❜❛❜✐❧✐t② ✐♥ t❤❡ ♣▼■❚ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ ❥♦❜✳ ❋♦r ❡❛❝❤ ✈❛❧✉❡ vj

m,i✐♥ T(m,j) ❢♦r ✇❤✐❝❤ t❤❡r❡ ❡①✐sts ❛t ❧❡❛st ♦♥❡ ✈❛❧✉❡ vn,i✐♥ Ri−1n

(85)
(86)

✺✳✸✳ ❱❛❧✐❞❛t✐♦♥ ♦❢ t❤❡ ♠❡t❤♦❞ k ❛♥❞ ✇❡ ❤❛✈❡ R k i,j pscenariok ! ✳ ❋♦r ❡❛❝❤ ♦❢ t❤❡s❡ ❞❡t❡r♠✐♥✐st✐❝ s②st❡♠s ✇❡ ❦♥♦✇ ❢r♦♠ ❬▲✐✉ ❛♥❞ ▲❛②❧❛♥❞✱ ✶✾✼✸❪ t❤❛t t❤❡ ❝r✐t✐❝❛❧ ✐♥st❛♥t ♦❢ ❛ t❛s❦ ♦❝❝✉rs ✇❤❡♥❡✈❡r t❤❡ t❛s❦ ✐s r❡❧❡❛s❡❞ s✐♠✉❧t❛♥❡♦✉s❧② ✇✐t❤ ✐ts ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s✳ ❚❤✉s ✇❡ ❤❛✈❡ t❤❛t Rk

i,1 ≥ Rki,j, ∀k, j > 1 ❛♥❞ ✇❡ ♦❜t❛✐♥ Ri,1  Ri,j ❛s t❤❡ ❛ss♦❝✐❛t❡❞ ♣r♦❜❛❜✐❧✐t✐❡s ♦❢

(87)
(88)
(89)

❈❤❛♣✐tr❡ ✺✳ ❘❡s♣♦♥s❡✲t✐♠❡ ❛♥❛❧②s✐s ♦❢ s②st❡♠s ✇✐t❤ ♠✉❧t✐♣❧❡ ♣r♦❜❛❜✐❧✐st✐❝ ♣❛r❛♠❡t❡rs ❆❧❣♦r✐t❤♠ ✷ ❲♦rst ❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ❝♦♠♣✉t❛t✐♦♥ ■♥♣✉t✿ Γ ❛ t❛s❦ s❡t ❛♥❞ target t❤❡ ✐♥❞❡① ♦❢ t❤❡ t❛s❦ ✇❡ ❛♥❛❧②③❡ ❖✉t♣✉t✿ Rtarget t❤❡ ✇♦rst ❝❛s❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ♦❢ τtarget Rtarget= Ctarget❀✴✴✐♥✐t✐❛❧✐③❡ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ✇✐t❤ t❤❡ ❡①❡❝✉t✐♦♥ t✐♠❡ ♦❢ t❤❡ t❛s❦ ✉♥❞❡r ❛♥❛❧②s✐s ❢♦r (i = 1; i < target; i + +) ❞♦ Rtarget= Rtarget⊗ Ci❀✴✴❛❞❞ t❤❡ ❡①❡❝✉t✐♦♥ t✐♠❡s ♦❢ ❛❧❧ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦s ❡♥❞ ❢♦r ❢♦r (i = 1; i < target; i + +) ❞♦ Ai = Ti❀✴✴✐♥✐t✐❛❧✐③❡ t❤❡ ❛rr✐✈❛❧s ♦❢ ❡❛❝❤ ❤✐❣❤❡r ♣r✐♦r✐t② t❛s❦ ✇✐t❤ t❤❡✐r ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡s ❞✐str✐❜✉✲ t✐♦♥ ❡♥❞ ❢♦r ❢♦r (i = 1; i < max(Ttarget); i + +) ❞♦ ❢♦r (j = 1; j < target; j + +) ❞♦

✐❢ max(Rtarget) > min(Aj) ❛♥❞ min(Aj) = it❤❡♥

Rtarget = doP reemption(Rtarget, Aj, Cj)❀✴✴✉♣❞❛t❡ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ✇✐t❤ t❤❡ ❝✉r✲ r❡♥t ♣♦ss✐❜❧❡ ♣r❡❡♠♣t✐♦♥

Aj = Aj⊗ Tj❀✴✴t❤❡ ♥❡①t ❛rr✐✈❛❧ ♦❢ τj

❡♥❞ ✐❢ ❡♥❞ ❢♦r ❡♥❞ ❢♦r

Rtarget= sort(Rtarget)

(90)

✺✳✹✳ ■♠♣❧❡♠❡♥t❛t✐♦♥ ❛♥❞ ❡✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ ♠❡t❤♦❞ ❆❧❣♦r✐t❤♠ ✸ ❞♦Pr❡❡♠♣t✐♦♥ ❢✉♥❝t✐♦♥ ■♥♣✉t✿ R t❤❡ ❝✉rr❡♥t r❡s♣♦♥s❡ t✐♠❡✱ At❤❡ ❛rr✐✈❛❧ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ ❥♦❜ ❛♥❞ C t❤❡ ❡①❡❝✉t✐♦♥ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ♣r❡❡♠♣t✐♥❣ ❥♦❜ ❖✉t♣✉t✿ R t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥ ✉♣❞❛t❡❞ ✇✐t❤ t❤❡ ❝✉rr❡♥t ♣r❡❡♠♣t✐♦♥ Rintermediary ❂ ❡♠♣t② ❀ Af ake ❂ ❡♠♣t② ❀ ❢♦r (i = 1; i < length(A); i + +) ❞♦ ✴✴❝♦♥str✉❝t✐♥❣ t❤❡ ❢❛❦❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❣✐✈✐♥❣ t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ t❤❡ ♣r❡❡♠♣t✐♦♥ ♦❝❝✉rr✐♥❣ Af ake✳✈❛❧✉❡ ❂ 0 ❀✴✴t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❢❛❦❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ Af ake✳♣r♦❜❛❜✐❧✐t② ❂ A✭✐✮✳♣r♦❜❛❜✐❧✐t② ❀✴✴t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ t❤❡ ❢❛❦❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❙♣❧✐t R ✐♥t♦ ❤❡❛❞ ❛♥❞ t❛✐❧ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ♣r❡❡♠♣t✐♦♥ ✈❛❧✉❡ ❀ ✐❢ t❛✐❧ ✦❂ ❡♠♣t② t❤❡♥ t❛✐❧ = t❛✐❧ ⊗ C ❀ ❡♥❞ ✐❢ Rintermediary ❂ ❤❡❛❞ ⊕ t❛✐❧ ❀

Rintermediary= Rintermediary⊗ Af ake❀

(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)

❈❤❛♣✐tr❡ ✻

❘❡✲s❛♠♣❧✐♥❣ ♦❢ ♣❲❈❊❚

❞✐str✐❜✉t✐♦♥s

✻✳✶ ■♥tr♦❞✉❝t✐♦♥

■♥ t❤✐s ❝❤❛♣t❡r ✇❡ ❝♦♥s✐❞❡r s②st❡♠s t❤❛t ❤❛✈❡ t❤❡ ❡①❡❝✉t✐♦♥ t✐♠❡ ❣✐✈❡♥ ❛s ❛ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ✐♥ ♦r❞❡r t♦ ♠❛❦❡ t❤❡ ❛♥❛❧②s✐s tr❛❝t❛❜❧❡ ❜② ♠❡❛♥s ♦❢ r❡❞✉❝✐♥❣ t❤❡ ❞✐str✐❜✉t✐♦♥s ❛♥❞ ❤❡♥❝❡ t❤❡ ❛♠♦✉♥t ♦❢ t✐♠❡ ✐t t❛❦❡s t♦ ♣❡r❢♦r♠ ❝♦♥✈♦❧✉t✐♦♥s t♦ ♦❜t❛✐♥ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ♦❢ ❛ t❛s❦✳ ❚❤❡ ❛♥❛❧②s✐s ✉♥❞❡r ❝♦♥s✐❞❡r❛t✐♦♥ ✐s t❤❛t ♦❢ ❝♦♠♣✉t✐♥❣ r❡s♣♦♥s❡ t✐♠❡ ❞✐str✐❜✉t✐♦♥s ❢♦r ❥♦❜s ✉♥❞❡r ❛ ♣r❡❡♠♣t✐✈❡ ✉♥✐✲♣r♦❝❡ss♦r ✜①❡❞✲♣r✐♦r✐t② s❝❤❡❞✉❧✐♥❣ ♣♦❧✐❝② ❛s ✐♥tr♦❞✉❝❡❞ ✐♥ ❬❉í❛③ ❡t ❛❧✳✱ ✷✵✵✷✱ ▲♦♣❡③ ❡t ❛❧✳✱ ✷✵✵✽❪ ❛♥❞ ✇❤✐❝❤ ✇❡ ❤❛✈❡ ❛❧s♦ ♣r❡s❡♥t❡❞ ✐♥ ❙❡❝t✐♦♥ ✸✳✶ ❛♥❞ ✐s s✉♠♠❛r✐s❡❞ ❛s ❢♦❧❧♦✇s ✿

Ri,j = Wi,j(λi,j) ⊗ Ci⊗ Ii, ✭✻✳✶✮

✇❤❡r❡ ❛❧❧ t❤❡ ♣❛r❛♠❡t❡rs ❛r❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ❛♥❞ t❤❡ r❡❧❡❛s❡ t✐♠❡ λi,j ♦❢ t❤❡

❥♦❜ τi,j ✐s ❞❡t❡r♠✐♥✐st✐❝✳ ❍❡r❡ Wi,j(λi,j) ✐s t❤❡ ❜❛❝❦❧♦❣ ❛t t✐♠❡ λi,j ♦❜t❛✐♥❡❞ ❛s t❤❡

✇♦r❦❧♦❛❞ ♦❢ ❤✐❣❤❡r ♣r✐♦r✐t② ❥♦❜s t❤❛♥ τi,j t❤❛t ❤❛✈❡ ♥♦t ②❡t ❜❡❡♥ ❡①❡❝✉t❡❞ ✐♠♠❡❞✐❛✲

t❡❧② ♣r✐♦r t♦ λi,j✳ ❊q✉❛t✐♦♥ ✭✻✳✶✮ ✐s s♦❧✈❡❞ ✐t❡r❛t✐✈❡❧② ✐♥ ❬▲♦♣❡③ ❡t ❛❧✳✱ ✷✵✵✽❪✳ Ci ✐s t❤❡

❡①❡❝✉t✐♦♥ t✐♠❡ ♦❢ ❥♦❜ τi,j ❛♥❞ Ii,j ✐s t❤❡ ✐♥t❡r❢❡r❡♥❝❡ ✐♥ τi,j ♦❢ ❛❧❧ ❤✐❣❤❡r ♣r✐♦r✐t② ❥♦❜s

t❤❛♥ τi,j✱ hp(i)✱ r❡❧❡❛s❡❞ ❛t ♦r ❛❢t❡r τi,j✱ Ii =Pτk,l∈hp(i)Ck✳

❚❤❡ ❛♥❛❧②s✐s t❛❦❡s ❛s ✐♥♣✉t t❤❡ ❞✐str✐❜✉t✐♦♥s Ci ♦❢ ❛❧❧ t❛s❦s ❛♥❞ ❝♦♠♣✉t❡s t❤❡ r❡s✲

♣♦♥s❡ t✐♠❡ ✭❛s ❛ ❞✐str✐❜✉t✐♦♥ ♦❢ ✈❛❧✉❡s ❛♥❞ ♣r♦❜❛❜✐❧✐t✐❡s✮ ❜② ❛♣♣❧②✐♥❣ t❤❡ ❝♦♥✈♦❧✉t✐♦♥ ♦♣❡r❛t♦r ♦✈❡r P❋s✱ ❤❡r❡ ❞❡♥♦t❡❞ ❛s ⊗✳ ❚❤❡ ❝♦♠♣❧❡①✐t② ♦❢ t❤❡ r❡s♣♦♥s❡ t✐♠❡ ❝♦♠♣✉✲

(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)

✻✳✺✳ ❘❡✲❙❛♠♣❧✐♥❣ ✿ ❚❡❝❤♥✐q✉❡s ❆❧❣♦r✐t❤♠ ✺ ❆❧❣♦r✐t❤♠ t♦ ❝♦♠♣✉t❡ t❤❡ ♣❡ss✐♠✐s♠ ❛ss♦❝✐❛t❡❞ ✇✐t❤ r❡♣❧❛❝✐♥❣ ❛ r❛♥❣❡ ✇✐t❤ ❛ s✐♥❣❧❡ ✈❛❧✉❡ ■♥♣✉t✿ C ❛♥❞ (x, y) ❛ r❛♥❣❡ ♦❢ ✈❛❧✉❡s ❀ ❖✉t♣✉t✿ p ♣❡ss✐♠✐s♠ ❀ shif ted = (Py

i=xCi.probability) × Cy.value❀

original =Py

i=x(Ci.probability × Ci.value)❀

p = shif ted − original❀

❆❧❣♦r✐t❤♠ ✻ ❆❧❣♦r✐t❤♠ ❢♦r s❡❧❡❝t✐♥❣ ✈❛❧✉❡s ✇❤✐❝❤ ❝r❡❛t❡ t❤❡ ❧❡❛st ♣❡ss✐♠✐s♠ ✇❤❡♥ r❡✲s❛♠♣❧✐♥❣ ■♥♣✉t✿ C ❛ ❞✐str✐❜✉t✐♦♥ ❛♥❞ k t❤❡ ♥✉♠❜❡r ♦❢ ✈❛❧✉❡s t♦ ❜❡ s❡❧❡❝t❡❞ ❖✉t♣✉t✿ Cnew Q = ∅❀ ✴✴ Pr✐♦r✐t② q✉❡✉❡ r = (1, C.size)❀ ✴✴ ❋✉❧❧ r❛♥❣❡ ♦❢ C p = pessimism(C, r)❀ Q.add(r, p)❀ ✴✴ ❆❞❞ r t♦ Q ✇✐t❤ ♣r✐♦r✐t② p ✇❤✐❧❡ Q.size < n ❞♦ r = Q.remove❴first ❀ (a, b) = split(r)❀ ✴✴ ❙♣❧✐t ✐♥t♦ t✇♦ ❡q✉❛❧ s✉❜✲r❛♥❣❡s Q.add(a, pessimism(C, a))❀

Q.add(b, pessimism(C, b))❀ ❡♥❞ ✇❤✐❧❡

Cnew= resample(C, Q.upper❴bounds) ❀

(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)

❈❤❛♣✐tr❡ ✻✳ ❘❡✲s❛♠♣❧✐♥❣ ♦❢ ♣❲❈❊❚ ❞✐str✐❜✉t✐♦♥s

(122)
(123)
(124)
(125)
(126)

❆♣♣❡♥❞✐①

(127)

❆♣♣❡♥❞✐①

(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)

✷✳ ❆ st❡♣ ❜② st❡♣ ❡①❛♠♣❧❡ ♦❢ ❛♣♣❧②✐♥❣ t❤❡ ❛♥❛❧②s✐s ❢♦r s②st❡♠s ✇✐t❤ ♠✉❧t✐♣❧❡ ♣r♦❜❛❜✐❧✐st✐❝ ♣❛r❛♠❡t❡rs ✭❛✮ R3,1 2 ✭❜✮ R 3,0 2 ❋✐❣✉r❡ ✸ ✕ P❛rt✐❛❧ r❡s✉❧ts ❢♦r R3 2 R3,12 =  3 4 5 6 7 8 9 0.42 0.162 0.0126 0.2014 0.16632 0.030336 0.005292  ⊕  10 0.002052  ⊗  1 2 0.7 0.3  ⊗  0 0.001  =  3 4 5 6 7 8 9 11 12

42e5 162e6 126e7 2014e7 16632e8 30336e9 5292e9 14364e10 6156e10

(137)

❆♣♣❡♥❞✐①

❋✐❣✉r❡ ✹ ✕ R2

R2 =



3 4 5 6 7 8 9 11 12

42e5 162e6 126e7 2014e7 16632e8 30336e9 5292e9 14364e10 6156e10

(138)
(139)

❆♣♣❡♥❞✐①

(140)
(141)
(142)
(143)

❚❛❜❧❡ ❞❡s ✜❣✉r❡s

(144)
(145)

▲✐st❡ ❞❡s t❛❜❧❡❛✉①

(146)
(147)
(148)

❆❜str❛❝t

(149)

❆❜str❛❝t

(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)

Références

Documents relatifs

Il s’agit donc d’une entit´e `a double localisation : le site de Marne-la-Vall´ee (12 professeurs, 1 profes- seur ´em´erite, 18 Maˆıtres de conf´erences, 1 Directeur de

Universit´ e de Nantes Ann´ ee 2004-2005 D´ epartement de Math´ ematiques Licence de Maths Classiques, module M62.. Liste d’exercices n

Exercice 7 Etudier les applications lin´eaires suivantes puis r´eduire leur matrice

Calculer la forme polaire de q puis la matrice associ´ee dans la base canonique.. Donner la signature et le rang

Expliquer pourquoi un seul perceptron n’est pas suffisent pour calculer cette fonction.. Question 3: Etant donn´ ees deux fonctions bool´ ennes f et g sur un ensemble de vari- ables X

On peut par exemple supposer que les cellules d’association ne peuvent d´ ependre que d’au plus d cellules de la r´ etine (perceptron ` a “domaine born´ e”) ou, dans un

Appliquer la m´ ethode de model-checking de LTL bas´ ee sur les automates pour montrer que l’´ etat q 0 de M ne satisfait pas ψ 1.. (On ne demande pas d’utiliser l’algorithme

Notons, par exemple, que certains modules de Brown et Gitler, le module de Carlsson K(1), l’alg` ebre de Carlsson, la cohomologie modulo 2 des espaces d’Eilenberg et MacLane de Z /2 Z