• Aucun résultat trouvé

Il est formellement interdit de quitter la salle avant la fin de l'épreuve

N/A
N/A
Protected

Academic year: 2022

Partager "Il est formellement interdit de quitter la salle avant la fin de l'épreuve"

Copied!
23
0
0

Texte intégral

(1)

Il est formellement interdit de quitter la salle avant la fin de l'épreuve . Aucun document n'est autorisé, la calculatrice n'est pas autorisée.

Sur l'ordinateur mis à service, seul le logiciel " maple " est utilisable : internet et intranet sont mis hors service, les moyens de communication sont coupés (mail, telnet, ...), la sauvegarde ainsi que l'accès aux documents personnel sont également exclus.

Le téléphone portable est évidemment interdit aussi.

Le compte-rendu est à rendre uniquement sur copie et manuscrit : pas de sortie imprimante.

Exercice 1 (trois points) Soit le polynôme p donné par

p(x)= .

Donner une forme entièrement factorisée de ce polynôme sur R .

> restart:

> p:=x->x^7-x^6*ln(2)+4*x^5-4*x^4*ln(2)-3*x^3+3*x^2*ln(2)-18*x+18*ln(2);

> factor(p(x));

est la forme décomposée en produit de facteurs premiers sur R [x] (en effet, n'admet pas de racine dans R ).

(2)

Exercice 2 (cinq points)

(a) Représenter graphiquement (graphiques à (re)produire sur la copie) les fonctions f qui à x de R associe f(x) = , et g qui à x de R associe g(x) =

, (sur l'intervalle ]-2,2[, par exemple, et surtout sur un même graphique).

(b) Emettre une conjecture sur le nombre de solutions réelles de l'équation (E) : f(x)=g(x) . Donner l'une de ces solutions réelles (il n'est pas demandé de donner explicitement toutes les solutions réelles).

> restart:

> f:=x->x^2+4*x+4:g:=x->x^7+4:plot({f(x),g(x)},x=-2..2);

(3)

Il semble donc qu'il y ait exactement trois racines réelles pour l'équation (E) on peut même les approcher par :

> fsolve(f(x)=g(x),x);

Effectivement, 0 est solution.

Exercice 3 (cinq points)

(4)

Soit E l’ensemble des nombres entiers naturels n qui vérifient les trois conditions suivantes : (i) le reste dans la division euclidienne de n par 17 est 11 ,

(ii) le reste dans la division euclidienne de n par 19 est 7 , (iii) le reste dans la division euclidienne de n par 23 est 17 .

(a) Donner une procédure "maple" permettant d'obtenir le plus petit élément de E . Quel est cet élement ?

(b) Donner une procédure "maple" permettant d’obtenir tous les éléments de E qui soient plus petits que 40 000 . Quels sont ces élements ?

> restart:

> k:=1: while irem(k,17)<>11 or irem(k,19)<>7 or irem(k,23)<>17 do k:=k+1 od: print(k);

Le plus petit est 5859.

> for k from 1 to 40000 do if irem(k,17)=11 and irem(k,19)=7 and irem(k,23)=17 then print(k) fi: od:

Les 5 nombres sont 5859, 13288, 20717,28146,35575.

Exercice 4 (sept points)

On sait démontrer en arithmétique, mais ce ne sont nullement des résultats faciles, que tout nombre entier naturel est une somme de ...

(5)

- 3 nombres triangulaires (i.e. de la forme avec n dans N )

- ou de 4 nombres carrés (i.e. de la forme avec n dans N )

- ou de 5 nombres pentagonaux (i.e. de la forme avec n dans N )

Le premier résultat est le théorème de Gauss, le deuxième est dû à Lagrange et le troisième est une variante due aussi à Gauss mais attribuée à Liouville (qui a donné avec Cauchy toute la lumière sur cela).

(a) Ecrire 2007 comme somme de trois nombres triangulaires.

(b) Ecrire 2007 comme somme de quatre nombres carrés.

(c) Ecrire 2007 comme somme de cinq nombres pentagonaux.

(d) Donner une procédure "maple" permettant d'obtenir les nombres de 1 à 2007 qui ne peuvent pas s'écrire comme somme de deux nombres triangulaires.

> restart:t:=n->(n^2+n)/2:c:=n->n^2:p:=n->(3*n^2-n)/2:

> fsolve(t(n)=2007,n);

ceci donne 62 comme valeur maximale pour les trois nombres triangulaires à sommer ...

> for i from 0 to 62 do for j from i to 62 do for k from j to 62 do if t(i)+t(j)+t(k)=2007 then print(i,j,k) fi:od:od:od:

(6)
(7)

> fsolve(c(n)=2007,n);

ceci donne 44 comme valeur maximale pour les quatre nombres carrés à sommer ...

> for i from 0 to 44 do for j from i to 44 do for k from j to 44 do for l from k to 44 do if c(i)+c(j)+c(k)+c(l)=2007 then print(i,j,k,l) fi:od:od:od:od:

(8)
(9)
(10)
(11)

> fsolve(p(n)=2007,n);

ceci donne 37 comme valeur maximale pour les cinq nombres pentagonaux à sommer ...

(12)

> for i from 0 to 37 do for j from i to 37 do for k from j to 37 do for l from k to 37 do for m from l to 37 do if p(i)+p(j)+p(k)+p(l)+p(m)=2007 then print(i,j,k,l,m) fi:od:od:od:od:od:

(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

12, 14, 15, 20, 20

12, 15, 16, 16, 22

13, 13, 15, 19, 21

> fsolve(t(n)=2007,n);

-63.85810919, 62.85810919

ceci donne 62 comme valeur maximale pour les trois nombres triangulaires à sommer ... Il s'agit cette fois d'une majoration à la louche !!

> L:=NULL:#liste pour stocker les nombres qui de 0 à 2007 ne sont pas somme de deux nombres triangulaires for i from 0 to 2007 do

propriete:=false:

for m from 0 to 62 do for n from m to 62 do

if t(m)+t(n)=i then propriete:=true fi:

od:

od:

if propriete=false then L:=L,i fi:

od:L;

>

5, 8, 14, 17, 19, 23, 26, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 13...

5, 8, 14, 17, 19, 23, 26, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 13...

(22)

5, 8, 14, 17, 19, 23, 26, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 13...

5, 8, 14, 17, 19, 23, 26, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 13...

(23)

> Fin (Philippe RYCKELYNCK & Denis VEKEMANS);

Error, missing operator or `;`

Références

Documents relatifs

On remarque que pour calculer C n il faut additionner les n premiers nombres impairs (c'est encore une conjecture). On doit lui ajouter une ligne et une colonne de n unités, et

Cela signifie entre les lignes que, modulo un certain nombre pair n, tous les nombres premiers unit´ es de n ne peuvent ˆ etre simultan´ ement tous des r´ esidus quadratiques de n

• l’article 78 des Recherches Arithm´ etiques : Le th´ eor` eme de Wilson peut ˆ etre rendu plus g´ en´ eral en l’´ enon¸ cant comme il suit : le produit de tous les

Action for Adolescent Health: Towards a

Sur l'ordinateur mis à service, seul le logiciel &#34; maple &#34; est utilisable : internet et intranet sont mis hors service, les moyens de communication sont coupés (mail,

Bruno joue à un jeu où l'on peut gagner ou perdre des points à la n de chaque partie, ce qui donne son niveau par rapport à ses adversaires.. Chaque samedi il joue deux parties de

[r]

Mon chiffre des dizaines vient juste après celui des centaines lorsque l'on compte.. Mon chiffre des centaines