• Aucun résultat trouvé

"A Full Bandwidth ATM Firewall"

N/A
N/A
Protected

Academic year: 2021

Partager ""A Full Bandwidth ATM Firewall""

Copied!
16
0
0

Texte intégral

(1)

OlivierPaul ??

,Maryline Laurent,andSylvainGombault

ENSTdeBretagne,2ruedelachataigneraie,35510Cesson-Sevigne,France.

fpaul|mlaurent|sylvaing@renn es.e nst-b reta gne. fr

Abstract. Inthispaperwedescribeanarchitectureprovidinganhigh

speedaccesscontrolserviceforATMnetworks.Thisarchitectureisbased

ontwo main components.The rst one is a signalling analyserwhich

takesthesignalling information asaninput andproducesdynamically

thecon gurationforoursecondmodule.ThissecondmodulecalledIFT

(Internet Fast Translator) is used to analyse the information located

in the ATM cells and currentlyoperates at 622 Mb/s. The complete

architectureprovidesthe access control at theATM,IP and transport

levelswithoutpacketreassembling.

1 Introduction

In the recent past, much attention has been paid developing security services

forATM networks.Thisresultedinthecreationofmanyworkinggroupswithin

(andoutside)thestandardisationbodies.OneofthemistheATMForum

secu-rityWorkingGroupcreatedin1995,whichreleaseditsversion1.0speci cations

inFebruary1999.Con dentiality,authentication,integrityandsomekindof

ac-cesscontrolhavebeenconsidered.Accesscontrolasde ned bytheISOin[1]is

asecurityserviceusedtoprotectresourcesagainstunauthoriseduse.TheATM

technologyhasbeenspeci edtotransportvariouskindsof owsandallowsusers

tospecifytheQoS(QualityofService)applyingtothese ows.Communications

areconnectionorientedandasignallingprotocolis usedto setup,control and

releaseconnections.Inthisarticleweshowthattheclassicalapproachsupplying

the access control service (commonly called rewall)is unable to preservethe

QoS.Wethen describeanewaccesscontrolarchitectureforATMand

IP-over-ATM networks.Thisarchitecture calledCARAT doesnotalter thenegotiated

QoS. The next section analyses current solutionsproviding the access control

serviceintheATMandIPoverATMnetworks.Section3describestheCARAT

architecture.Thisoneisbasedontwomain components.The rstoneisa

sig-nallinganalyserwhichtakesthesignallinginformationasaninputandproduce

dynamicallythecon gurationofoursecondmodule.Thissecondmodulecalled

IFT(InternetFastTranslator)isusedtoanalysetheinformationlocatedinthe

ATM cellsat 622Mb/s.Asaconclusionweperformacomparison betweenour

solution and other proposed approaches and we show that CARAT is agood

alternativetocurrentsolutions.

(2)

Several solutionshavebeen proposed in orderto provide somekind of

access-control in ATM and IP overATM networks. This section is divided into four

parts.Inthe rstpartweconsidertheadaptationoftheInternet"classical"

re-wallarchitecturetoATMnetworks.Inthesecondpartwedescribethesolution

proposed by the ATM Forum. Inthe third part we describe various solutions

proposedtoimprovethe"classical" rewallsolution.Finally,partfourcompares

existingsolutionsandhighlightsthemain problems.

2.1 Classical Solution

The rst solution[9] is to usea classical rewalllocated between the internal

andpublicnetworksinordertoprovideaccess-controlatthepacket,circuitand

application levels. As such the ATM network is considered as a level 2 layer

o eringpointtopointconnections.Asaresultaccess-controlat theATM level

isnotpossibleandendtoendQoSisnolongerguaranteed.AttheIPandcircuit

levels,IPpacketsarereassembledfromtheATMcells.Access-controlissupplied

usingtheinformationembedded intheTCP,UDPandIPheaders. Packetsare

lteredbycomparingthe eldsintheheaderssuchasthesourceanddestination

addresses,thesourceanddestinationports,thedirectionandtheTCP agswith

a pattern of prohibited and allowed packets. Prohibited packets are destroyed

whereas allowed packets are forwarded from one interface to the other. When

the sameQoS is negotiated on bothsides of the rewall, theend to end QoS

maybemodi edinthefollowingways:

{ Reassembly, routing, ltering and deassembly operations increasethe Cell

TransitDelay.

{ InternaloperationsdoneoverIPpacketsmayincreasetheCellLossRatio.

{ Thetime spent to reassemble and disassemble the packets is proportional

to thepacket sizes, which arevariable. As aresult, theCell Transit Delay

Variationmaybedi erentfromtheCDVTvaluenegotiatedoneachsideof

the rewall.

{ Routingand lteringactionsoperateatthesoftwarelevel.Thustheloadof

thesystemmaycausevariationsintheSustainableandMinimumCellRate.

Application procedures are then ltered at the application level by proxy

applications in accordancewiththe securitypolicy.Like withtheIPorcircuit

level lters,theQoSisa ected,butmuchmorestrongly,sincethetraÆchasto

reachtheapplication level.Moreoversincethe lteringoperationsareprovided

in amultitasking environment,desynchronisationbetweenthe owscanoccur.

Thiskindofsolutionisreportedtohaveperformanceproblems inahigh speed

networkenvironment([3],[5]).Thelatesttests([6])showthatthisaccesscontrol

solutionisunsuccessfulat theOC-3 (155Mb/s) speed. Finally, [17]has shown

that load balancing techniques between several rewalls could partially solve

(3)

Theaccess-controlserviceasde nedin theATM Forum securityspeci cations

([10]) is based on the access- control service provided in the A and B orange

bookclassi edsystems.Inthisapproachonesensitivitylevelperobjectandone

authorisation level persubject are de ned. These levelsinclude a hierarchical

level (e.g. public, secret, top secret, etc.) and a set of domains modelling the

domainsassociatedwiththeinformation(e.g.management,research,education,

etc.).Asubjectmayaccessanobjectifthelevelofthesubjectisgreaterthanthe

leveloftheobjectandoneofthedomains associatedwiththesubjectincludes

oneofthedomainsassociatedwiththeobject.IntheATMForumspeci cations,

the sensitivity and authorisation levels are coded according to the NIST [4]

speci cationasalabel,whichisassociatedwiththedatabeingtransmitted.This

labelmaybesentembeddedintothesignalling,orasuserdatapriortoanyuser

dataexchanges.Theaccess-controlisoperatedbythenetworkequipmentwhich

veri es that the sensitivity level of the data complies with the authorisation

levelassigned to the links and interfacesoverwhich thedata are transmitted.

The main advantage of this solution is its scalability since the access control

decisionis made at theconnectionset-up and doesnotinterfere with theuser

data.Howeveritsu ersfromthefollowingdrawbacks:

{ Thenetworkequipmentisassumedtomanagesensitivityandauthorisation

levels.Thisisnotprovidedincurrentnetworkequipment.

{ Aconnectionshould beset upforeach sensitivitylevel.

{ Theaccess-control serviceasconsidered in traditional rewalls(i.e.

access-controltohosts,services)isvoluntarilyleftoutsidethescopeofthe

speci -cation.

2.3 Speci c solutions

Theabovelimitationshavebeenidenti edandmanyproposalshavebeenmade

in order to supply the "traditional" access-control service in ATM networks.

Thesesolutionsmaybeclassi edintotwoclasses:industrialandacademic

solu-tions.

Industrial solutions

The rst industrial solution(Cisco [14],Celotek,GTE)uses aclassical ATM

switch that is modi ed to lterATM connectionset up requestsbased onthe

source and destination addresses. Theproblem with this approach is that the

access-controlisnotpowerfulsincetheparametersareverylimited.Thesecond

one(Storagetek[13])isalso basedonanATM switch.Howeverthisswitchhas

beenmodi ed tosupply access-control at theIPlevel.Insteadof reassembling

cellsfor packet headers examination likein traditional rewalls, thisapproach

(4)

CAM(ContentAddressableMemory)designedto speeduptheresearchin the

access-controlpolicy.Thisapproachisthe rstonetakingintoaccountthe

lim-itations introduced by theclassical rewall approach. Howeversome problems

havenotyetbeensolved:

{ Access-controlislimitedto thenetworkandtransportlevels.ATMand

ap-plicationlevelsarenotconsidered.

{ IP packets including options are not ltered since options may shift the

UDP/TCP information in the second cell. This causes a serious security

aw.

{ Thedevice isnoteasyto manageespeciallywhen dynamicconnectionsare

required,sinceconnection ltershavetobecon gured manually.

{ Performances of the device are not very scalable. An OC-12 (622 Mb/s)

versionofthisproductwasannouncedin1996buthasnotbeenyetexhibited.

Academic solutions

Both academic solutions being proposed are based on the above Storagetek

architecture, but they introduce some improvements to cope with Storagetek

problems.

The rstapproach[2]usesanFPGAspecialisedcircuitassociatedwitha

mod-i ed switch architecture. At the ATM level, the access control at connection

establishmenttime isimprovedby providing lteringcapabilities basedonthe

source and destination addresses. This approach also allows ATM level PNNI

(PrivateNetworktoNetworkInterface)routinginformationtobe ltered.Atthe

IPandcircuitlevelstheaccess-controlserviceissimilartotheoneprovidedby

theStoragetekproduct.Thissolutionisinterestingsinceitisthemostcomplete

solutionbeingcurrentlyimplemented.Howeveritsu ersfrommanylimitations:

{ Special IP packets (e.g. packets withoptional elds in the header) arenot

processed.

{ Onlyasmall partof theinformation suppliedbythe signalling(i.e.source

anddestinationaddresses)isused.

{ Access-controlattheapplicationlevelisnotconsidered.

{ Onlyasmallpartof theproposalhasbeenimplemented.

The second approach [11] is the most complete architecture being currently

proposed.This solution provides many improvements in comparison with the

Storagetek architecture. The most interesting idea is the classi cation of the

traÆc. ThetraÆc isclassi edintofour classesdepending ontheATM

connec-tion QoS descriptors and on the processing allowed to be done over it. Class

AprovidesabasicATM access-control.ATMconnectionsare lteredaccording

(5)

ad-is blocked.Class Cis associatedwith packet ltering. IPandtransport packet

headersarereassembledfromtheATM cellsandanalysed.Duringthisanalysis

thelast cellbelonging tothe packet called LCH (Last CellHostage)is keptin

memorybytheswitch.Theanalysisshouldbeatleastfasterthanthetimespent

bythewholepacketcrossingtheswitch.Whenthepacketisallowed,theLCHis

released,butwhenthepacketisprohibitedtheLCHismodi edsothataCRC

erroroccursandthepacketisrejected.ForclassD,theaccesscontrolprocessing

issimilarto thatofthe rewallproxy.

Table 1.AccessControlClasses

Level/ApplicationWithQoS RequirementsWithoutQoSRequirements

ATM ClassA ClassA

TCP/IP ClassB ClassC

Application NoAccessControl ClassD

This classi cationexpects the switch to separate traÆc with QoS

require-mentsfrom traÆc withoutQoSrequirements.As such thetraÆc withQoS

re-quirementsis allowed to crossthe switch withoutbeingdelayed.Table1gives

the lteringoperationsdepending onthelevelimplementingtheaccess control

andthetraÆcQoSrequirements.

This approach is very interesting since it introduces many improvements

(traÆcclassi cation,LCH)overalltheotherproposals.Howeversomeproblems

remain:

{ Few parametersare used to supplythe access control serviceat the ATM

level.

{ Access control is not provided at the application level for applications

re-quiringQoS.

{ TraÆcmonitoringonlyappliestoconnectionorientedcommunications,and

UDPpacketscannotbe lteredusingthistechnique.

{ TheLCHtechniqueisuselessagainstinformationleakagesincean internal

usercandecidetobypasstheintegritychecksontwoendsystemson both

sidesofthe rewall.

{ Thisarchitectureiscomplex.Noimplementationhasbeenexhibited.

2.4 Conclusion

As a conclusion, table 2 compares all the competing approaches designed to

provide access control on both ATM and IP over ATM networks. The ATM

forum proposal has not been included in this comparison since this solution

requiresdeepchangesin theexistingequipment.

(6)

Property/ApproachClassical Filtering ATM McHenryXu CARAT

Firewall [9]Switch[14]Firewall[13]&al.[2] &al.[11]

ATMlevelA.C. No Poor No Poor Poor Good

TCP/IP A.C. Good No Average Average Average Average

ApplicationA.C. Good No No No Good No

ImpactontheQoS Large Low Low Low Low Low

Manageability Good Good Poor Poor Good Good

Implementation Yes Yes Yes Partly No Yes

Bandwidth(Mb/s) 150 622 155 155 / 622

to lter ATM connections on addresses. One of the goals of CARAT is solve

thisproblembyusinganimprovedsignallinganalyserwhichallowsthesecurity

oÆcertocontrolalmostalltheparametersthatcanbeusedtodescribeanATM

connection.

Anotherpointisthebalance betweenperformance, impactontheQoSand

qualityoftheaccesscontrol.Mostofthecurrentsolutionseitherprovideagood

security levelwhile o ering poor performance and large QoS modi cations or

providealowersecuritylevelwhileo eringgoodperformanceandsmallimpact

ontheQoS.ThegoalofCARATinthis eldistoreachasecuritylevelsimilar

to theoneprovided byatraditionalstateless packet lterwhileo eringbetter

performance than the existing cell basedproposals. Similarlyto [11],CARAT

can be easily extended to provide application level access control for

applica-tions withoutQoS requirements. As aconsequence the securitylevelprovided

by CARAT is at leastasgood astheXu and al. proposal which hasnot been

implemented.

The last point is that current cell based proposals rely on the caching of

accesscontroldecisionsinordertospeed-upthecellclassi cationprocess.This

cacheis lledthroughaslowcellclassi cationprocess that analysescells that

can notbeclassi edthroughtheinformationlocatedin thecache.However,as

demonstrated in [18],these kindof architecture is subject to denial of service

attacks because hackers can produce a traÆc that will always generate cache

misses thus forcing the cell classi cation process to work at the speed of the

slow softwareclassi cation scheme. These attackscanreduce dramaticallythe

performanceofcachebasedproposals.Ontheotherhand,CARATsucceedsto

store the complete access control policy ([15]) by using a policy compression

techniqueandapatentedstoragemethod. ConsequentlyCARATisnotsubject

to similarDoS attacks.

3 Proposed solution

As depicted in gure1, CARAT is basedon two main parts.The rst partis

(7)

ATM

IFT

IFT

Signaling

Analyser

Manager

ATM

IFT

Driver

ATM Switch

Internal Network

External Network

Controller

Sun Workstation

PC Station

Daemon

Fig.1.Controllerprototypearchitecture

theATM cells.Thissecondpartisableto retrievetheATM,IPand transport

levelinformationin ordertodecidewhetheracommunicationhastobeallowed

or denied. The con gurationof the whole controller is made througha single

language.

3.1 An AccessControl Policy De nitionLanguage

Inordertoexpresstheaccesscontrolpolicywede neanAccessControlPolicy

Description Language(ACPDL).This language is basedon draft proposal for

apolicy descriptionlanguage[7] which hadbeende ned in 1998by thepolicy

workinggroupattheIETF.Inthislanguageanaccesscontrolpolicyisdescribed

byasetofrules.Eachruleconsistsofasetofconditionsandoneactionwhichhas

to beexecutedwhen theconditionsaremet. ThefollowingBNF(Backus-Naur

Formalism)expressiondescribestherulesyntax.Rule::=IF<Conditions>THEN

<Action>Alltheconditionshavethesamegenericstructure(BNFnotation):

Condition ::= <ACCESS CONTROL PARAMETER> <RELATIONAL OPERATOR>

<VALUE>

Dependingonthelevelin theprotocolstack,variousaccesscontrol

parame-tersmaybeused:

{ AttheATMlevelusefulaccesscontrolparametershavebeendescribedin[8],

whichincludethetraÆctype,connectionidenti ers,addressinginformation,

QoSdescriptorsandserviceidenti ers.

{ Atthetransportlevelmostoftheincludedparametersarecommonlyusedto

(8)

Action ::= <ACTION> <ACTION LEVEL>

The actioncan beto permit orto deny thecommunication. The level

de-scribesthelayer(i.e.ATM,Transport)wheretheactionhasto beexecuted.

IF ( SRC ADDRESS = 47.007300000000000000002402.08002074E457.00 ) AND

( DST ADDRESS = 47.007300000000000000002404.0800200D6AD3.00 ) AND

(BHLI TYPE = 04 ) AND ( BHLI ID = 00A03E00000002 ) THEN DENY.

Fig.2.AccessControlRuleExample

Figure2providesanexampleofhowaruleprohibitingconnectionsbetween

twoATM devicesfortheVideoOnDemandservicecanbeexpressedusingthe

ACPDL.Inthisexamplebothdevicesareidenti edbytheirATMaddressesand

thevideoserviceisidenti edbytheBroadbandHigherLayerIdenti er(BHLI).

3.2 The Manager

Thepolicyde nedbythesecurityoÆcerusingthislanguageisusedtocon gure

thetwopartsofouraccesscontroller.Howeverthepolicycannotbeuseddirectly

byouraccesscontrol tools.Asaresultthemanagerhastotranslatetheaccess

controlpolicyinrelevantaccesscontrolcon gurationsforbothourcomponents.

Thewholetranslationprocessisdescribedin gure3.

Cell−level Information

Dynamic TCP/IP and

Dynamic Cell−level

Access Control Policy

TCP/IP Generic

Static Cell−level

Access Control Policy

Signaling Access

Control Policy

Signaling

Information

Access Control Policy

Access Control Policy

Access Control Policy

Cell−level

Fig.3.AccessControlPolicyGenerationProcess

(9)

communicationsthathavetobecontrolled.Eachcommunicationisdescribed

byasetofInformation Elements(IEs)and anaction(DENYorALLOW).

Thiscon gurationissenttothesignallinganalyser.

{ AttheTCP/IPlevel,thecon gurationincludesadescriptionofpacketsthat

haveto becontrolled. This partof the policy is genericwhich means that

thiscon gurationisnotdedicatedtoaspeci c ATMconnection.

{ At the celllevel, the con guration includes adescription of the cells that

havetobecontrolled.Thesecellsaredividedintoaset of elds.Theset of

valuesthateach eldcantakeisdescribedthroughatree.Thiscon guration

isdirectlysenttotheIFTmodules.

Thesecond part ofthe con gurationprocess occurs when aconnection

re-questisreceivedbythesignallinganalyser.Oncetheaccesscontrolprocesshas

beencompleted,thesignallinganalysersendstothemanagerthepiecesof

infor-mationneededtocompletethedynamiccon gurationoftheIFTs.Thisdynamic

con guration process is important since it allowsthe size of thecon guration

storedintheIFTstobereducedincomparisontoastaticcon guration.Thesize

of thecon gurationis animportantissue becausethe delay introduced bythe

IFTduring theaccesscontrol processdependsonit.Theinformationprovided

bythesignallinganalyserincludes:

{ TheVciandVpiconnectionidenti ers.

{ ThesourceanddestinationATM addresses.

{ Theservicedescriptor(ClassicalIPoverATM(CLIP),NativeATM

Applica-tion).WhenanadditionallayerisusedabovetheATMmodel,thesignalling

analyseralsoprovidestheencapsulation(withorwithoutSNAP/LLC

head-ers).

{ Thedirection ofthecommunication.

InaCLIP environment,themanagerusestheATM sourceand destination

addressesto ndthecorrespondingIPaddresses.Thistranslationisdonedirectly

by using a local le describing the matching betweenATM and IP addresses.

HoweverthisprocesscouldbeimprovedbytakingadvantagefromanATM

Ad-dressResolutionProtocolServers.ThemanagerthenusestheTCP/IPgeneric

accesscontrolpolicyto ndamatchbetweentheIPaddressesandtheTCP/IP

levelaccess control rules. The subset of matching rulesis used along with the

otherpiecesofinformation(addresses,encapsulation,connectionidenti ers,

di-rection)tocompletethecon gurationoftheIFTcards.Theyarekeptduringthe

connectionlife.Attheconnectionrelease,themanagerreceivesamessagefrom

thesignallinganalyserto recon gureIFTscards andclean theircon guration.

Themanagerthendestroystheinformationassociatedtotheconnection.

3.3 The SignallingAnalyser

(10)

redi-todecomposethesemessagesaccordingto theUNI3.1speci cation[12] andto

forwardordropthemaccordingtotheaccesscontrolpolicydescriptionprovided

bythemanager.

ATM Switch

SUN Workstation

0

1

6

1

3

2

Internal

Network

External

Network

Fig.4.ATMSwitchCon guration

Inorder to redirect thesignalling, the ATM switch hasto be recon gured

to redirect signalling messages to the SUN workstation as described in gure

4. This con guration can be achieved by disabling the signalling protocol on

interfaces1,2,3and6.AVirtualPathhasthentobede nedbetweeneachpair

ofinterfacesforeachpossiblesignallingvirtualchannel.These virtualchannels

areidenti edbythevciconnectionidenti er5.

SUN Workstation

Kernel Space

Filter

Signaling Module Message

Parsing

Signaling Module Message

Construction

User Space

Q93B Module

SSCOP Module

SSCOP Module

ATM Interface 0

ATM Interface 1

Fig.5.SignallingFilteringProcess

(11)

ex-scribedby gure5,allsignallingmessagesareusuallymultiplexedbytheQ93B

module whose goal is to establish, manage and release ATM connections. In

order to preventsignallingmessagesfrom beingrejected bytheQ93B module,

this module has to be modi ed to forward all the signalling messages to the

lterapplicationlocatedin theuserspacewithoutfurtheranalysis.Inorder to

di erentiatethe lteringprocessforincomingandoutgoingmessages,signalling

messagesareassociatedwiththeoriginatingATMinterface.Thisinformationis

providedtothesignalling lterbytheQ93Bmodule.

Whensignallingmessagesarereceivedbythesignallinganalyser,these

mes-sagesareparsedbythemessageparsingmoduleintoInformationElements(IEs)

accordingtotheUNI3.1speci cation.IEsarethenparsedintobasicconnection

descriptorssuchasaddresses,connectionidenti ers,callreference,QoS

descrip-tors andserviceidenti ers. Theanalyserthen checkswhether themessagecan

beassociatedwithanexisting connectionthroughthetypeofthemessageand

thecallreferenceinformation.Iftheconnectionisnew,aconnectiondescription

structure is constructed. When the connection already exists, the structure is

updatedaccordingtothenewconnectiondescriptionparameters.Theresulting

set ofparametersisassociatedwith theconnectionstate,theoriginating

inter-face and identi ed by aconnectionidenti er. Thewhole structureis then sent

to the lterforanalysis.

Whenthe lterreceivesanewconnectiondescriptor,itcomparesthe

connec-tionparameterswiththeset ofcommunicationsdescribedbytheaccesscontrol

policy. If a match is found, the lter applies the action described by the

ac-cess control policy. When the action is to deny the communication, the lter

destroysthecorrespondingconnectiondescriptionstructure.Otherwisethe

con-nection identi er is sentto themessage construction module. ForCONNECT

signallingmessages,asubsetoftheconnectionparametersissenttothemanager

as described in the previous section so that thedynamic partof the cell-level

accesscontrol policy canbegenerated:

{ VciandVpiareretrievedfromtheConnectionIdenti erIE.

{ Sourceanddestination addressesareretrievedfromtheCalledandCalling

PartyIdenti erIEs.

{ Theservicedescriptorscanberetrievedfrom theBroadbandHigher Layer

Identi er(BHLI)andBroadbandLowerLayerIdenti er(BLLI) IEs.

{ Thedirectionisprovidedbytheinterfacenameassociatedwiththe

connec-tionidenti er.ForRELEASECOMPLETEmessages,theconnection

iden-ti erissenttothemanager.Thecommunicationsbetweenthe lterandthe

managerare realised by using ashared memorysegment which allowsthe

managertosendtheaccesscontrolpolicytothesignallinganalyserandthe

lterto sendtheresultsfromthe lteringprocesstothemanager.

Whenthemessageconstructionmodulereceivesaconnectionidenti ersfrom

(12)

tion state associated to the connection identi er indicates that a RELEASE

COMPLETEmessagehasbeensenttoreleasetheconnection,theconstruction

module freestheresourcesassociatedwiththecorrespondingconnection.

Another functionality provided by the message composition module is the

abilitytomodifytheATM sourceaddresswhenthecommunicationcomesfrom

theinternal networkto hide thestructureof thenetwork.This functionality is

providedbychangingthesourceaddressintotheATMaddressoftheworkstation

externalATMinterface.

Thedelayintroducedbythewholesignallinganalysisprocesshasfewimpact

onthecommunicationsincethestandardisedsignallingtimeoutvalueshavebeen

greatlyoversized(forexamplea14secondsdelayisallowedbetweenSETUPand

CONNECTmessages).

3.4 IFT cards

The Internet Fast Translator(IFT) card ([15], [16]) isa productdesigned and

manufacturedbytheresearchbranchofourindustrialpartner.Thesecardhave

beenoriginallydesignedto implementanhigh speedIPpacketroutingengine.

Howeverthiscardintegratesseveralinterestingfeaturesthatcanbeusedbyour

ATM rewall:

{ Itallowsthe rstcelloftheAAL5frametobeanalysedandtheconnection

identi erstobemodi edaccordingtotheanalysis.

{ Thecurrentprototypeworksat622Mb/sthankstoapatentedcellanalysis

scheme.

{ Thedelay introducedby the cellanalysis process canbebounded and

de-pendsonthecellanalysis con guration.

{ Itcanbecon gureddynamicallyduringthecellanalysiswithout

interrupt-ingongoingoperations.

{ Itcanbeintegratedintoano theshelfpersonalcomputerusingtheSolaris

x86operatingsystem.

Table 3 describes the information available for analysis in the rst ATM

cell with the CLIP and CLIP (without LLC-SNAP encapsulation) protocols.

TheUDandTD eldsindicatethebeginningofUDPandTCPdatasegments.

However optional elds such as IP options have not been indicated and may

shift TCP or UDP related information in a second ATM cell. Our policy for

thesekindofcellsiscurrentlyto dropallthepacketsincludingIPoptions.One

mayconsiderthispolicytobeaseverelimitation,howeversimilaraccesscontrol

policiesareusually implementedontraditional rewallssincetheseoptionsare

used most of the time by hackersto generate DoS attacks or bypassexisting

routingmechanisms.

The rstpartofthecell-levelaccesscontrolprocess istodirectallthe

(13)

Byte 1 2 3 4 5 6 7 8 9 10 11 12

CLIP1 ATMHeader AA AA 03 00 00 00 08

CLIP2 ATMHeader 45 Length

Byte 13 14 15 16 17 18 19 20 21 22 23 24

CLIP1 XX 45 Length P

CLIP2 P SrcIPAddr DstIP

Byte 25 26 27 28 29 30 31 32 33 34 35 36

CLIP1 SrcIPAddr Dst IPAddr SrcPort Dst

CLIP2 Addr SrcPort DstPort UD

Byte 37 38 39 40 41 42 43 44 45 46 47 48 CLIP1 Port UD D CLIP2 D TD Byte 49 50 51 52 53 CLIP1 CLIP2

signallinganalysisprocess.Asaresulttheswitchhastobecon guredtocreate

avirtualchannelforeachvalueofvcidi erentfrom5and31betweeneachpair

ofinterfaces(1,4and5,6).Virtualchannelsidenti edbya31vcivalueandlater

called trash VCs are voluntarily left uncon guredto allow theswitch to drop

cellsbelongingto acommunicationthat hastobedenied.

ATM Switch

PC Workstation

0

Internal

Network

1

5

6

4

1

Network

External

Fig.6.ATMSwitchCon guration

IFTcardsallowonlyunidirectional owstobecontrolled.Thismeans that

incomingandoutgoing owshavetobeseparated.Thisoperationisparticularly

simplewhendealingwithaMonoModeFibberphysicalsupportsinceemission

andreception bbersarephysicallyseparated.Figure6showshowemissionand

(14)

ATM Cell

5

A

E

F

3

1

5

6

2

4

7

F

E

B

3

8

A

5

Fig.7.AnalysisExample

Thesecondpartisthecon gurationoftheIFTstoprovidetheaccesscontrol

service. This con guration is done bythe manager. IFTs have been originally

designedtobemanaged remotelybyconcurrentmanagers.AsaresultanRPC

daemonhasbeendevelopedtoserialisecon gurationrequeststotheIFTdriver.

On the manager side, a library gives access to con guration functions. This

library translates the local calls to remote calls on the Solaris PC. The

com-municationbetweentheworkstationandthePC aredonethroughadedicated

externalEthernetnetwork.

TheIFT analysis process is basedon thetrie memory([19]). Triememory

is especially interestingin orderto takeadvantageof theredundancy thatcan

befoundinaccess controlpolicies.Thecon gurationof thisprocessreliesona

descriptionof thecommunicationsasaset oftrees. Each branch within atree

describesa4bitvaluethatcanbematchedduringtheanalysisprocess.Theroot

of each tree describesa gateby which to begin the treeanalysis. An example

ofanalysis isprovidedin gure7.Additionalinformation canbeprovided ina

nodetoallowtheanalysistojumpfromonetreetoanotherortoterminatethe

analysis and return theconnectionidenti ers valuesthat haveto be modi ed.

Con guration functions allow the manager to build, update and remove this

set of treesand entries within agiven treewhile the IFTs are operating. The

translation between the information provided by the dynamic cell-level policy

generationprocessandtreescanbedoneasfollows:

{ Eachpossible eldiscodedintoatree.Thevaluesdescribedbythesecurity

policyarethenslicedin4bitwordsandattributedtothenodesofthetree.

Rangedescribed by multiple conditionsonthesame eld canbedescribed

bygeneratingthenodesforeachpossiblewordinsidetherange.

{ An ANDoperation betweentwoconditionsontwodi erent eldsis coded

asajump fromonetreetoanother.

(15)

action is coded by directing the frame to a trash virtual channel on the

switch. An ALLOW action is coded by leaving the connection identi ers

eldsunmodi ed.

Preliminary experimental results ([15]) show that the use of trie memory

makesitpossibletostorethecompleteTCP/IPlevelaccesscontrolpolicyfrom

a well know French ISPin 2.8M 4bits words. This is far behind the capacity

ofthecurrentIFTprototypewhichis4M4bitswords.Additionalresults([16])

showthat theworstcasedelayintroduced bytheaccess controlprocessduring

thetestwas around1.7s.

4 Conclusion

In this article, we describe in detail how an ATM rewall can be constructed

byusingexisting components.ThisATM rewallhastheabilitytoprovidethe

access control service at the ATM, IP and transport levels at 622Mb/s while

maintainingtheQoSthat hasbeennegotiated.Aswecansee,ourapproachhas

thefollowingadvantages:

{ GoodaccesscontrolattheATMlevel.

{ SmallimpactontheQoSthankstoaboundeddelaycelllevelaccesscontrol

process.

{ Improvedaccesscontrolspeedatthecelllevel.

{ Is notsubjectto performance DoS attacks likeexisting cache based

archi-tectures.

{ Caneasilybeadaptedtoprovidetheaccesscontrolserviceforotherkindsof

ATM usage(LANE,MPOA,MPLS)withreducedsoftwaredevelopments.

Ourproposalcouldbeimprovedinthefollowingdirections:

{ Application level access control could be easily provided for applications

withnoqualityofservicerequirementsbyusingtheIFTstodirectthe ows

generatedbytheseapplicationstoaclassical rewallwherethese owscould

beanalysedindepth.The lterwouldhavetobemodi edtosendaQoS ag

tothemanageralongwiththesetof parameterscurrentlyused todescribe

theconnection.ThissolutionwouldalsoprovideananswertotheIPoptions

problem.

{ Themanager and the message lter could be modi ed to provide ltering

capabilitiesforother kindsofATM usagesuchasLANEmulation,MPOA

orMPLS.

{ Theaccesscontrolspeedcouldbeimproved.Ourindustrial partner is

(16)

TheauthorswouldliketothankallthepeoplethatareinvolvedintheCARAT

project,namelyYveslePapeAnthonyLucas,BenoitMartinandJean-Jacques

Maret at DGA, PierreRolin, Christian Duret, Joel Lattmannand Jean-Louis

SimonatCNETfortheirsupportandusefulcomments.

References

1. ISO, ISO7498-2:1989, Informationprocessing systems{OpenSystems

Intercon-nection{BasicReferenceModel{Part2:SecurityArchitecture,1989.

2. J. McHenry, P. Dowd, F. Pellegrino, T. Carrozzi, W. Cocks, An FPGA-Based

Coprocessor forATMFirewalls,inproceedingsofIEEEFCCM'97,April1997.

3. D. Newman, H. Holzbaur, and K. Bishop, Firewalls: Don't Get Burned, Data

Communications,March1997.

4. NationalInstitute ofStandardsand Technology,StandardSecurity Label for

In-formation Transfer, Federal Information Processing Standards Publication 188,

September1994.

5. J.Abusamra,ATMNetManagement:MissingPieces,DataCommunications,May

1998.

6. Keylabs inc., Firewall Shootout Test Final Report, Networld+Interop'98, May

1998.

7. J.Strassner,S.Schleimer,PolicyFrameworkDe nitionLanguage,

draft-ietf-policy-framework-pfdl-00.txt,InternetEngineering TaskForce,November1998.

8. O. Paul, M. Laurent, S.Gombault, Manageable Parameters to improve Access

Control inATMNetworks,inproc.ofthe5thHPOVUAWorkshop,April1998.

9. M. Ranum, Anetwork rewall, inproc.of theWorldConference onSystem

Ad-ministrationandSecurity,1992.

10. TheATMForumTechnicalCommittee,ATMSecurity Speci cationVersion1.0,

February1999.

11. J.Xu,M.Singhal,Designofahigh-performanceATMFirewall,inproc.ofthe5th

ACMConferenceonComputer&CommunicationsSecurity,1998.

12. The ATM ForumTechnicalCommittee, ATM User-NetworkInterface

Speci ca-tion,Version3.1(UNI3.1),July1994.

13. B. Kowalski, Atlas Policy Cache Architecture, White paper, Storagetek Corp.,

1997.

14. CiscoCorp., LightStream1010MultiserviceATMSwitchOverview,1999.

15. M.Accarion,C.Boscher,C.Duret,J.Lattmann,Extensivepacketheaderlookup

atGb/sspeedforanapplicationtoIP/ATMmultimediaswitchingrouter,inproc.

oftheWTC/ISS2000Conference,May2000.

16. CentreNationald'EtudedesTlcommunications-FranceTelecom,IPFast

Trans-lator,FT.BD/CNET/DSE/SDL/226/CD, December1999.

17. C.Benecke,AparallelPacketScreenforHighSpeedNetworks,inproc.ofthe15th

AnnualComputerSecurityApplicationsConference,December1999.

18. T.V. Laksham, D. Stiliadis, High-Speed Policy-based Packet Forwarding Using

EÆcient Multi-Dimensional Range Matching, in proc. of ACM SIGCOMM'98,

September1998.

19. E. Fredkin,Trie Memory,Communicationsof the ACM, Vol3,September1960,

Figure

Table 1. Access Control Classes
Fig. 1. Controller prototype architecture
Fig. 2. Access Control Rule Example
Fig. 5. Signalling Filtering Process
+3

Références

Documents relatifs

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

The policies above show that defining the access control requirements of our example requires to deal with several types of policies (see taxonomy in [7]): prerequisite

This taxonomy identifies eight types of RBAC policies: prerequisite [4, 23], cardinality [2], precedence and dependency [24], role hierarchy [23], separation of duty (SoD) [3,

A relevant feature of our approach is that the right to access a resource R can be transferred from the subject who is the current right holder, say S i , to another subject, say S j

A simple, accurate and rapid UHPLC-DAD method was developed as the first report of a simultaneous determination of three main phenolic compounds, chosen as

أ ﺿوﻣ ذﺧأ ـ موﻠﻌﻟا ﻰﺗﺷ ﻲﻓو ﺔﯾدﻘﻧﻟاو ﺔﯾرﻛﻔﻟا تﺎﺑﺎﺗﻛﻟا ﻲﻓ ةزرﺎﺑ ﺔﯾﻣھأ رﺧﻵاو ﺎﻧﻷا عو ﺔﯾﻧﺎﺳﻧﻹا و ﺎﮭﻌﻣ رارﻣﺗﺳﺎﺑ رﺿﺎﺣﻟا رﺧﻵا لﻼﺧ نﻣ ﻻإ ﻲﺗﺄﯾ ﻻ ﺎﻧﻷا نﻋ

Costs were calculated from the hospital perspective for both mothers and children using their diagnostic related group and the French national cost study.. After adjustment

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334