• Aucun résultat trouvé

NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries

N/A
N/A
Protected

Academic year: 2021

Partager "NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02879734

https://hal.archives-ouvertes.fr/hal-02879734

Submitted on 24 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries

Antonia Machlouzarides-Shalit, Nikos Makris, Gaston Zanitti, Valentin Iovene, Guillaume Lemaitre, Guillaume Favelier, Demian Wassermann

To cite this version:

Antonia Machlouzarides-Shalit, Nikos Makris, Gaston Zanitti, Valentin Iovene, Guillaume Lemaitre, et al.. NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries. Organization of Human Brain Mapping, Jun 2020, Montreal, Canada. �hal-02879734�

(2)

1

Introduction

Discussion & Conclusions

References

NeuroLang: Representing Neuroanatomy with

Sulcus-Specific Queries

Contact - antonia.machlouzarides-shalit@inria.fr

http://team.inria.fr/parietal/

PARIETAL - INRIA - FRANCE

4

[3]

- 6 subjects

1 Parietal Team, CEA, Inria Université Paris-Saclay, France

2 Psychiatry Neuroimaging Laboratory, BWH, HMS,Boston, United States

Top

Destrieux, C., Fischl, B., Dale, A. and Halgren, E. (2010). ‘Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.’ NeuroImage, 53(1), pp.1-15.

Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of

human brains. PLoS Computational Biology 13(3): e1005350.

Rademacher, J., Caviness, V., Steinmetz, H. and Galaburda, A., 1993. Topographical Variation of the Human Primary Cortices: Implications for Neuroimaging, Brain Mapping, and Neurobiology. Cerebral Cortex, 3(4), pp.313-329.

[1]

[2]

[4]

http://team.inria.fr/parietal/

OHBM 2020, Virtual

Poster explainer video:

https://youtu.be/bIgX-80mKKw

Acknowledgements

:

This work acknowledges the support of ANR NeuroRef and

ERC-StG NeuroLang

Materials & Method

2

3

Results

Antonia Machlouzarides-Shalit

1

, Nikos Makris

2

, Gaston Zanitti

1

, Valentin Iovene

1

,

Guillaume Lemaitre

1

, Guillaume Favelier

1

, Demian Wassermann

1

Objective: To identify and label subject-specific sets of sulci. We developed NeuroLang, a query-based mapping

language which labels sulci according to the spatial relationships to primary sulci. We assess sensitivity of our

sulcus-specific queries and prevalence of tertiary sulci in a population.

Sulci may vary greatly in morphology, while their relative

locations to primary sulci are what define them.

Template atlases use this characteristic to find landmarks of

the brain and wrap around it to label the same set of sulci for

any subject.

Tertiary sulci have high variability in their existence and

morphology, while their location remains relatively constant.

They are usually omitted from template atlases or else grouped with

their neighbouring gyri

1

.

Tertiary sulci can have relationships with cognitive functions,

comparative neuroanatomy or cytoarchitectonic boundaries

2

.

NeuroLang has 36 sulcus-specific queries which identify

and label sulci on an individual level, designed in relation to

each subject's primary sulci using the Destrieux atlas to

ensure reliability.

20 sulci had Destrieux atlas counterparts (secondary sulci)

and 16 were omitted from the Destrieux atlas or included as

part of their surrounding gyrus (tertiary sulci).

We present a new method for the labelling of a

subject-specific atlas of sulci, with varying sets of sulci according to

individual cortical organisation.

NeuroLang is intended as a complement to current

template-based methods for brain mapping.

0.0 0.2 0.4 0.6 0.8

Proportion

Q_anterior_occipital, No corresponding Destrieux sulcus Q_anterior_occipital, R_S_oc_temp_lat Q_callosomarginal, R_S_central Q_callosomarginal, No corresponding Destrieux sulcus Q_collateral, R_S_orbital_lateral Q_collateral, No corresponding Destrieux sulcus Q_inferior_frontal, No corresponding Destrieux sulcus Q_inferior_temporal, R_S_temporal_inf Q_inferior_temporal, L_S_temporal_inf Q_intralingual, No corresponding Destrieux sulcus Q_intraparietal, No corresponding Destrieux sulcus Q_jensen, No corresponding Destrieux sulcus Q_jensen, L_S_interm_prim_Jensen Q_middle_frontal, No corresponding Destrieux sulcus Q_middle_frontal, R_S_front_middle Q_middle_frontal, L_S_front_inf Q_occipitotemporal, L_S_temporal_inf Q_occipitotemporal, R_S_temporal_inf Q_olfactory, No corresponding Destrieux sulcus Q_orbital_H_shaped, No corresponding Destrieux sulcus Q_postcentral, L_S_central Q_postcentral, R_S_central Q_precentral, L_S_front_sup Q_precentral, R_S_precentral_sup_part Q_subparietal, L_S_subparietal Q_subparietal, R_S_subparietal Q_superior_frontal, L_S_front_sup Q_superior_frontal, R_S_front_sup Q_superior_rostral, No corresponding Destrieux sulcus Q_superior_temporal, L_S_temporal_sup Q_superior_temporal, R_S_temporal_sup

Query Name, Most Common Match

Hemisphere

Left Right

Seconday queries

(Fig. 2)

Queries were assessed

by the proportion of the

most common

Destrieux match with

the query result.

Some query results had

no match with a

Destrieux sulcus,

possibly due to the fact

that the extracted sulci

had a wider variety in

shape and size.

NeuroLang includes the identification and labelling of

lesser-labelled sulci which can contribute to the uniqueness of a brain.

Individually, subject-specific sulci sets may shed more light on

structure-function relationships3.

On the population level, tertiary sulci statistics may aid in

understanding the evolution of the human brain4.

Mindboggle

3

was used to extract an average of 33 sulci per

hemisphere in 52 subjects of the Human Connectome Project.

Fig 1. Example of the 33 (LH) and 37 (RH) unlabelled folds in subject 212823 of the

Human Connectome Project, extracted using mindboggle

3

.

Fig 2. Bar plot of results for secondary queries. Each

query is labelled, next to the Destrieux sulcus which was

most often matched with the result of the query.

Fig 3.

Probability

maps of the

results of

some of the

tertiary

queries,

thresholded

at 0.1, and

the

proportion

of subjects

with results.

Armstrong, E., Zilles, K., Curtis, M. and Schleicher, A., 1991. Cortical folding, the lunate sulcus and the evolution of the human brain. Journal of

Human Evolution, 20(4), pp.341-348.

Tertiary queries

(Fig. 3)

Queries were

assessed by success

of their locations in

the probability maps.

Examples from each

lobe are shown, with

the proportion of

subjects with a result.

x=-14 x=-10 x=-40 Left Q_paracingulate, 0.85 x=-14 x=-10 x=-40 Left Q_cingulate, 0.88 L R y=-45 L R y=-15 L R y=-83 Left Q_lunate, 0.81 L R z=32 L R z=50 L R z=14 Left Q_superior_parietal, 0.85 L R z=0 L R z=24 L R z=-26 Left Q_inferior_occipital, 0.81 L R z=-30 L R z=-6 L R z=-32 Left Q_rhinal, 0.77 x=34 x=38 x=10 Right Q_paracingulate, 0.83 x=10 x=12 0 0.25 0.5 0.75 1 x=8 Right Q_cingulate, 0.94 L R y=-87 L R y=-85 L R y=-89 Right Q_lunate, 0.19 L R z=-6 L R z=18 L R z=-32 Right Q_inferior_occipital, 0.98 L R z=46 L R z=70 L R z=20 Right Q_superior_parietal, 0.15 L R z=-36 L R z=-12 L R z=-38 Right Q_rhinal, 0.9

(open in internet

Références

Documents relatifs

To investigate which brain regions and networks showed activity related to attenuation processes, we designed a functional magnetic resonance imaging (fMRI) paradigm allowing

However, the superior performance of the marking agents as compared to ants on the same foraging task clearly indicates that computing a wave-front while exploring is more efficient:

In the present work, diffusion tensor imaging analysis on seeds derived from functional magnetic resonance imaging during a task on point-light biological motion perception uncovers

Aussi, les Bonnes Pratiques de Pharmacie Hospitalière (BPPH) [1] soulignent que la " qualité de la préparation des dispositifs médicaux stériles dépend, dans une grande

Ces méthodes de retenue de l'eau font également partie du plan de drainage permanent, mais elles peuvent aussi être utilisées pour contrôler le ruissellement pendant les

In the past two decades, carbon based materials and their hybrid nanocomposites have been the focus of considerable efforts in energy conversion and storage because of their

The problem is modeled by a single Schr¨odinger equation, in a bounded domain Ω with homogeneous Dirichlet boundary conditions, coupled to the Poisson equation for the

The haptics of the toric forms of Sulcoflex ® and Add-On ® (HumanOptics, Erlangen, Germany) lenses are modified and crenelated to prevent postoperative rotation and ensure the