• Aucun résultat trouvé

2020 roadmap on two-dimensional materials for energy storage and conversion

N/A
N/A
Protected

Academic year: 2021

Partager "2020 roadmap on two-dimensional materials for energy storage and conversion"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-03206688

https://hal.archives-ouvertes.fr/hal-03206688

Submitted on 23 Apr 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

2020 roadmap on two-dimensional materials for energy

storage and conversion

Baolin Xu, Shihan Qi, Mengmeng Jin, Xiaoyi Cai, Linfei Lai, Zhouting Sun,

Xiaogang Han, Zifeng Lin, Hui Shao, Peng Peng, et al.

To cite this version:

Baolin Xu, Shihan Qi, Mengmeng Jin, Xiaoyi Cai, Linfei Lai, et al.. 2020 roadmap on two-dimensional

materials for energy storage and conversion. Chinese Chemical Letters, Elsevier, 2019, 30 (12),

pp.2053-2064. �10.1016/j.cclet.2019.10.028�. �hal-03206688�

(2)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

http://oatao.univ-toulouse.fr/27622

To cite this version:

Xu, Baolin and Qi, Shihan and Jin, Mengmeng [et al.]. 2020 roadmap on

two-dimensional materials for energy storage and conversion. (2019) Chinese

Chemical Letters, 30 (12). 2053-2064. ISSN 1001-8417

(3)

2020 roadmap on two-dimensional materials for energy storage

and conversion

Baolin Xua, Shihan Qia, Mengmeng Jinb, Xiaoyi Caic, Linfei Laib,c,**, Zhouting Sund,

Xiaogang Hand ,*, Zifeng Line,*, Hui Shaof,g,***, Peng Pengh, Zhonghua Xiangh,*,

Johan E. ten ElshofÏ·*, Rou Tanj, Chen Liuj, Zhaoxi Zhang\ Xiaochuan Duani·*,

Jianmin Maa,k,****

asd!ool of Physics and Electronics, Hunan University, Otangsha 410082, China

b Key Laboratory of Flexible Elearonics & lnstitute of Advanœd Materials (1AM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China

cSchool of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore dState Key Lab of Elearirol Insu lation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

e College of Materials Science and Engineering. Sichuan University, Otengdu 610065, China f Université Paul Sabatier, Laboratoire OR/MAT UMR CNRS 5085, Toulouse 31062, Franœ g Réseau sur le Stockage Elearodlimique de /'Energie (RS2E), CNRS 3459, Amiens, Fmnœ

h State Key Laboratory of Organic-lnorganic C omposites, Beijing University of Otemical Ted!nology, Beijing 100029, Otina 1 University of Twente, AE Enschede 7500, the Netherlands

J Pen-Tung Sah lnstitute of Micro-Nana Scienœ and Technology, Xiamen University, Xiamen 361005, China

k Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China

A RTI CLE I NFO

Keywords: Graphene Black phosphorus

MXenes

Covalent organic frameworks Oxides Chalcogenides Metal-air batteries Metal-sulfur batteries Metal-ion batteries Electrochemical capacitors • Corresponding authors. AB STR ACT

Energy storage and conversion have attained significant interest owing to its important applications that

reduce COi emission through employing green energy. Sorne promising technologies are included metal air batteries, metal sulfur batteries, metal ion batteries, electrochemical capacitors, etc. Here, metal

elements are involved with lithium, sodium, and magnesium For these devices, electrode materials are

of importance to obtain high performance. Two dimensional (2D) materials are a large kind of layered

structured materials with promising future as energy storage materials, which include graphene, black

phosporus, MXenes, covalent organic frameworks ( COFs ), 2D oxides, 2D chalcogenides, and others. Great

progress has been achieved to go ahead for 2D materials in energy storage and conversion. More

researchers willjoin in this research field. Under the background, it has motivated us to contribute with a

roadmap on 'two dimensional materials for energy storage and conversion.

© 2019 Chinese Chemical Society and Institute ofMateria Medica, Chinese Academy ofMedical Sciences.

1. Graphene and graphene-composites for energy storage applications

•• Corresponding author at Key Laboratory of Flexible Electronics & lnstitute of Advanced Materials (1AM}, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM}, Nanjing Tech University, Nanjing 2 10009, China.

Mengmeng Jin, Xiaoyi Cai, Linfei Lai**

1.1. Status

••• Corresponding author at: Université Paul Sabatier, Laboratoire CIRJMAT UMR CNRS 5085, Toulouse 31062, France.

•••• Corresponding author at: School of Pbysics and Electronics, Hunan University, Changsha 410082, China.

E-mai l addresses: iamlflai@njtech.edu.cn (L. Lai} xiaogang.han@xjtu.edu.cn (X Han}, linzifeng@scu.edu.cn (Z. Lin}, shao@chimie-ups-tlse.fr (H. Shao }, xiangzh@mail.buct.edu.cn (Z. Xiang}, j.e.tenelshof@utwente.nl O .E. ten Elshof),

xcduan@xmu.edu.cn (X. Duan}, nanoelechem@hnu.edu.cn

u.

Ma).

Graphene is a one atom thick two dimensional sheet corn

posed of sp

2

bonded carbon atoms that are densely packed in a

honeycomb crystal lattice. The 2D planar structure of single

layer graphene ensures high utilization of carbon atoms for the

electron transfer, high surface area, and tlexibility. Graphene and

https: / /doi.org/ 10.1016/j.cclet.2019.10.028

(4)

graphene based composites have been demonstrated to have

enhancedperformanceinvariousenergystorageandconversion

systems (Fig. 1), such as Li/Na ion batteries, supercapacitors, electrocatalysis,Li Sbatteries.

1.2.Currentandfuturechallenges 1.2.1.Li/Na ionbatteries

Asexcellent2Dcarbonmaterials,thehybridizationofgraphene withelectroactivematerialsforbothcathodeandanodeofLi/Na ionbatterieshavebeenvastlyreported,andsignificantlyimproved capacity,rateperformanceandcyclabilityhavebeenachieved[1]. Theultrathingraphenecanformastableconductingnetworkwith

low percolation threshold and enhanced the electrochemical

performanceofelectrodewitheventraceamountandisregarded asapromisingconductiveadditiveforbothcathodeandanodein Li ionbatteries.Forexample,0.2at%graphenewith1%superP(SP) wasreportedtohavebetterelectrodeconductivitywithmicrom eter sizedLiCoO2than3wt%ofSP[2].Grapheneasanodehasa

theoreticalcapacityoftwicethatofgraphite.However,mostofthe capacityofgraphenemaybecontributedbytheadsorptionofLi+

on edges, defects, and pores, together with the fast surface

reactionsongraphene,which maynot bebeneficialfor battery applicationsincetheycanleadtoalargeirreversiblecapacityloss initially.All graphene basedelectrodeshavehighcapacity,high rate,andlongcyclelife,however,thecapacitylossintheinitial

cycleis commonlyover50%,makingthemimpracticalin Li ion

batteryfullcells.The2Dfeatureofgraphenemakesitanexcellent candidateas a protectivecoating layerof Alfoil torestrictthe electrolytecorrosion during high rate cycling. The coating also

enhances the adhesion of electroactive materials with current

collector and assists in electron transportation. The excellent mechanicalpropertiesofgraphenemakeitapplicabletoprepare free standingelectrodeseitherwithorwithoutcompositingwith otherelectroactivematerials.

1.2.2.Supercapacitors

Supercapacitorsareahighlypromisingclassofenergystorage

devices due to their high power density and long life cycle.

Supercapacitorscanbebroadlyclassifiedintotwotypesbasedon thedifferentmechanismsofenergystorage:electricdoublelayer capacitors(EDLCs)andpseudocapacitors.Thespecificcapacitance ofEDLCsisdeterminedbysurfacearea,porestructureandpore sizedistribution ofcarbonaceous materials.Graphenestructure modulationbyKOHactivationtogeneratemicroporesorin plane poreopeningofgraphenebytemplate directedetchingtocreate

holey graphene with pore size from a few to hundreds of

nanometers are highly desirable for not only supercapacitors

but also batteries and electrocatalysis. As the energy storage mechanismofpseudocapacitorsreliesonthefastandreversible Faradaicredoxreactionsintheinterfacebetweenelectrolyteand

electrode, grapheneis usually combined withpseudocapacitive

materials,suchas transitionmetaloxides/sulphides/hydroxides, conductingpolymers,etc.Comparedwithothertypesofcarbon, suchasactivatedcarbonnanoparticles,rGOandGOfabricatedvia wetchemicalmethodshavethehighaccessiblesurfaceareaand

variety of surface functional groups for efficient loading of

pseudocapacitive materials. The graphene composites based

supercapacitive materials generally show excellent capacitance whichincludestheredoxchargeprovidedbypseudocapacitancein additiontotheEDLCchargeprovidedbyhighsurfacearearGO.The

surface functional groups of graphene contribute capacitance

valueundercharge accumulation,therationalsurfacemodified graphenecanchargeanddischargefastandresultinasignificant increaseinpseudocapacitance.

1.2.3.Electrocatalysis

Typical energy conversion devices, i.e., metal air batteries and fuel cell rely on the efficiency of oxygen reduction (ORR)

and evolution reaction (OER), while electrolysis involves

hydrogenevolutionand OER.Holeygraphenewithin planpore

(5)

size in meso/macro pore range could further facilitate mass

diffusion of reactants. Graphene based materials can induce

favorablecatalyst supportinteractionandactivityenhancements forpreciousmetalcatalysts nanoparticles,thereby,leadingtoa

reduced loading mass, thus saving cost. Graphene with heter

oatomsdopingorcompositingwithothernanostructuredcarbon

arealsoeffectivestrategiestoachieveexcellentcatalyticperfor

mance. As planar ultrathin 2D carbon materials with tunable

surfacechemistryandhighconductivity,italsoaffordsastrong

backbonetoearth abundantmetalbasednanoparticlestomini

mize the agglomerations of these nonprecious metal catalyst

and enhance the stability [3]. Free standing graphene and

graphene composites as catalysts, gas diffusion, and current

collector integrated air electrodes are promising for energy

conversion devices. The pore volume density, pore diameter,

and thenumber of defectsin the graphenenanoplateletshave

critical effects on the electrochemical performance of these

devices.Forexample,althoughZn airbatteriesandLi O2batteries

havedifferentreactionmechanismstowardOER,thebi/trimodal

porous graphene are reported to effectively accommodate

intermediate products and facilitate the electrolyte and ions

diffusion. Graphene show superior performance not only in

fundamental electrocatalysis measurement but also in some

energyconversiondevicesdue totherationalizedstructureand

composition. N doped graphene has a slightly lower kinetic

activityin fast forced convectiveelectrolyte but a much larger rate capability(nearly 1.5 timesof powerdensity)inquiescent electrolytethanthat ofcommercial20%Pt/CcatalystforZn air batteries[4].

1.2.4.Li Sbatteries

Li S batteries are promising alternative for next generation

energy storage system due to the preferred high theoretical

capacities of Li (3861mAh/g) and sulfur (1675mAh/g) [5].

Heteroatoms doped graphene or compositing with selected

transition metals/carbon nanomaterials may lead to a strong

bindingstrengthwithpolysulfidewhichcanbetterrestricttheloss ofsulfurduringcyclingandensureshighsulfurloading.Graphene

has been applied as a sulfur wrapping substrate to restrict

polysulfideshuttling. Graphenethin layercoating eitheronthe

membrane or cathode side efficiently barrier the diffusion of

polysulfides. 1.2.5.Solarcells

Graphenehasshowngreatpotentialintransparentelectrodes forsolarcells.Ultrathin andflexiblesolarcells canbeachieved withgraphene’sgoodconductivity,transparency,andmechanical strength.Currentresearchmainlyfocusesonfunctionalizationand

doping to improve the efficiency of graphene containing solar

cells.

1.3.Advancesinscienceandtechnologytomeetchallenges

Among the mass production of graphene in mechanical

exfoliationmethods includingballmilling,ultrasonication,fluid dynamics,supercriticalfluids,etc.,supercriticalfluidsmethodhas

shown advantages in terms of high yield and environmental

friendliness.However,howtoimprovetheyieldofmono/fewlayer grapheneandenhanceexfoliationefficiencyremainsahottopic [6,7]. Theprelithiationofgraphene basedLielectrodestooffset theirlow initialcycleefficiencyhavebeenexplored,yetnotbeen developedforindustrialproduction.Athigherconcentrationsover 5 10mg/mL,thechemicallyreducedgrapheneslurryturnsviscous

for processing, and its high porosity makes the electroactive

materialseasily detachfrom thecurrent collectorunless more insulatingbinder isapplied.Therestackingofgrapheneleadsto

lowcross planediffusivityofLiorNaionsstericeffectresultin increasedpolarizationathighcharge/dischargeratesfornanosized electrodematerials.Structuremodulationbyetchingtogenerate in planeholes, orusingunconventional dryingprocess,suchas spraydrying,freezedryingareeffectivetorestricttherestacking. Thelowdensityandporousstructureofgraphenecouldlowerthe volumetricpowerandenergydensitiesofenergystoragedevices, theinterfacialmodulationofgrapheneandelectroactivematerials

need to be explored. The residual of O containing functional

groups ofgrapheneand theiradsorbedwatermayleadtohigh

leakage current and gas evolution for EDLC type nonaquoues

supercapacitors [8]. Recent research has developed plenty of graphene basedhigh performancecatalystbutstillfailtoreplace the noble metal based catalysts. Therefore, rational control of synthesisconditioniscriticaltoachievenotonlyreasonablehigh capacitancevaluebutalsoultralongdurationcyclelife.Moreover,

most of the OERand ORR electrocatalysts function only under

alkaline conditions [9], graphene based catalyst for all pH

electrocatalysts are highly desirable. The catalytic mechanisms

for some of the catalysts are well known, but the synergistic

mechanismbetweencatalystsandgraphenesubstratearestillnot fully understandable. Despite the excellentbarrier effect of 2D graphene,thelowdensityandhighsurfaceareaofgraphenelimit thearealloadingofsulfurandbringchallengestotheelectrolyte control.Itisalsoworthtonotethatwhenprocessedintoelectrode

films via various methods, graphene layers tend to stack and

aggregate inhibiting electrolyte access. The packing density of grapheneelectrodepreparedinconventionalwetcastingproce dureislow,andnewprocessingtechnology,suchasspraydrying, in situ sintering, vacuum filtration. The residual O containing functionalgroupsonthelong durationcyclabilityofbatteriesneed toberevisitedastheundefinedfunctionalgroupscouldaffectthe agingproperties.Therefore,adjustmentofgrapheneporestructure

and surface chemistry to construct a fast ion and electron

conductingnetworkifofhighsignificance. 1.4.Concludingremarksandprospects

Graphenehasthepotentialtogreatlyenhancemanyofcurrent energyapplications.However,thecurrentlyavailablegraphenecan possess variousproperties,suchasporosity,purityandamount and typeof dopants,whichneedstobeclearly investigatedfor eachapplication.Manyofgraphene’sproblemsintheapplication

come from their porosity and low density. Development of

methods toimprovegrapheneelectrode’s densityandcolumbic

efficiencyonthefirstcyclewillgreatlyimprovetheapplicationof grapheneinenergydevices.

2.Blackphosphorousforenergystorage

ZhoutingSun,XiaogangHan*

2.1.Status

A 2D material black phosphorous (BP) is one of the most

promisingmaterialforenergystoragearea:(1)Itsintrinsicbad gap(0.34eV),reasonabledensity(2.69g/cm3)andhightheoreti

cal capacity (2596mAh/g for lithium ion batteries) are also

advantageous for achieving high energy density and power

density [10]. (2)Its largelateral size andultra thinproperties provide an ultra high specific surface area.Combined with its

excellent electronic conductivity (102 S/m), the content of

conductiveagentintheelectrodecouldbedecreased.Environ

mentalfriendliness and theabundance ofphosphorus are also

importantreasonsforitbeinganimportantcandidatematerial forenergystoragedevices.

(6)

2.2.Currentandfuturechallenges

BP is considered anexcellent active materialin lithium ion batteries,sodiumionbatteries,magnesiumionbatteriesandsuper capacitors(Fig.2).AlthoughBPhasattractedgreatattentioninthe fieldof energy storage,it still hasmanychallengesin practical applications.

TheBPusedinthecurrentenergystoragefieldispeelofffrom bulk BP. Conventional preparation methods include "top down methods" (mechanical cleavage, liquid exfoliation, etc.) and "bottom up methods" (e.g., chemical vapor deposition (CVD)

andwet chemistry).Thesemethodsaregenerallyexpensiveand

timeconsuming. Thisproduction challengepartiallyoffsetsthe

superiority of black phosphorus performance. In addition,

phosphorene,anatomic thicknessBP,degradesunderair,which preventsitsuseinenergystoragedevices.

BPcanreactwiththreelithiumatomstoformaLi3Pcompound,

correspondingtoaveryhightheoreticalspecificcapacity (2596 mAh/g).AlthoughBPisanimportantcandidateforanodematerials in lithium ion batteries, it still has several shortcomings. For example,layered BPwillre stack due tovander Waalsforces,

which will result in additional electrolyte consumption. And,

volumeexpansionfromamorphousLi3.3PtocrystallineLi3Pduring

thedischargingprocessleadstopulverizationoftheanode.The lossofelectricalcontactcausedbyelectrodecrackingandthelow electron conductivity of Li3P all make the reversibility of the

discharge process worse, further resulting in low Coulombic

efficiencyandcapacityretentionofthefirstcycle[11].

Sodiumionswithalargerionicradius(0.106nm)havedifferent embeddingbehaviorthanlithiumions(0.076nm).BPhasalarger interlayerchannelsize(3.08Åvs.1.86Åofgraphite),whichmeans thatsodiumismoreeasilystoredbetweenthe2DBPlayers.In addition,the2DBPexhibitsextremelyhighcapacityandfastion diffussionchannelsduring sodiumalloying. However,therapid declineincapacitycausedbythelargevolumechange(300%) duringchargingand dischargingstill hinders theapplicationof blackphosphorusinsodiumionbatteries.

The current applicationof blackphosphorus incapacitors is limitedbycapacitiveperformance.Thespecificsurfaceareaand

poresizedistributionstillsignificantlyaffecttheperformanceof theelectrodematerial.Inaddition,blackphosphorusisalsousedin magnesiumionbatteriesandpotassiumionbatteries.

2.3.Advancesinscienceandtechnologytomeetchallenges Highmaterialcostsandlimitedproductioncapacitypreventthe applicationofblackphosphorus.BPthatissimpletoprepareand scalable is urgently needed. Recently, a technique of applying

pressure to synthesize BP at a normal temperature has been

reportedforuseinanopticaldevice[12].However,theanisotropic

volume expansion of 2D BPduring the reactionrequires other

conductivetwo dimensional materials(suchas redoxgraphene

GO)forbuffering.Liuetal.developedasimpleandscalablemethod

for synthesizing BP/GO composites by pressurizing at room

temperature[13]. Ata currentdensity of1A/g, thecapacityof thecompositestabilizedat1250mAh/gafter500deepcycles.

Enhancing the stability of the electrode structure is an

important meanstosolve thevolume changeand thecapacity

attenuationcausedbytheelectricalcontactloss.Thisstrategyis

usually achieved by couplingconductive carbon (carbon black,

carbonnanotubes,graphene,etc.)withBPtoformaphosphorus carbonbond.Sunetal.proposeastrategyforformingstrongP C bondsbetweenBPandgraphene,whichisachievedbyHEMMinan

argon atmosphere of 1.2MPa [14]. The P C bond effectively

decreasesthevolumechangeduringlithiationanddelithiationand increasesthecoulombicefficiencyofthecycle.

Whenappliedtoacapacitor,2DBPisstilllimitedbyitslower capacitance.Duetothelargespecificsurfacearea,there stacking of 2D BP is inevitable, and its electronic conductivity is also

impaired due to the absorption of impurities and defects. The

constructionof3DBPcaneffectivelyavoidthere stackingof2DBP and promote theeffective diffusionof electrolyte. Atthe same time,closecontactbetweenthe2DBPlayerscanprovideafastand

continuous electron transport path. Wu et al. proposed a

heterostructuredBP/CNTs hybrid material.The CNTsembedded

in the BP layer can promote interlayer electron conduction,

reducethestacking of BPnanosheets,and enhancemechanical

stability[15].

The mechanical flexibility of phosphorene and graphene

compositespowers wearable electronics[16]. Thehighpacking densityisduetotheclosecontactofphosphorenewithgraphene, buttheBPinphosphorene graphenecompositesiseasilyoxidized. Therefore,atpresent,therearefewreportsonphosphoreandBP basedstrategiesasanode.

The interlayer distanceof black phosphorus (5.4Å)is larger than thatof graphite(3.4Å),meaningthat it iseasier toinsert

larger ions between them, so the feasibility of BP applied to

magnesiumionbatteriesandpotassiumionbatteriesisalsowidely

reported. BP hasbeenproven tohave a capacity over graphite

materialsforuseinpotassiumionbatteries.Sultanaetal.proposed a potassiumion batteryanodematerialthat encapsulatesblack

phosphorus in a carbon based material and measured a high

capacityof600mAh/g[17].BasedontheBPalloyformedbythe expectedalloyingmechanism,thetheoreticalcapacityofBPcanbe ashighas843mAh/g.Moresimulationresultshaveconfirmedthat

BP can be used as an electrode material for magnesium ion

batteries,whichcanstoremagnesiumatomsinMg2P.Thesingle

layerofphosphorenemaintainsitsstructuralstabilityintheform ofMg0.5P[18].

2.4.Concludingremarksandprospects

With its intrinsic superior performance, BP is one of the

promisingmaterialsinthefieldofenergystorage.Theinterfacial interactionbetweenBPandothermaterialsisanimportantfactor Fig.2.2DBPusedforelectrochemicalenergystorage.Copiedwithpermission[10].

(7)

inimproving theelectrical performanceof batteriesand super

capacitors. But at present, BP still faces many challenges.

ImpuritiesanddefectsintroducedduringBPpreparationadversely affectelectrochemicalproperties.Inaddition,theelectrochemical propertiesof2DBParehighlydependentonthenumberoflayers, sothemanufactureof2DBPwithadjustablelayercountisvery

important. The current complex and expensive manufacturing

processisalsoanimportantfactorhinderingBP'sexpansionand furtherapplication.Therefore,competitiveprocessingtechnology shouldbedevelopedtoimproveproductquality,reduceproduc tioncosts,andpromoteBP'sapplicationinenergystorage.Inthe

field of energy storage, most of the research focuses on the

preparationandcharacterizationofelectrodematerials,andthere isstillinsufficientresearchonthemechanismofactionofblack

phosphorusto improvechemical properties. Fullystudying the

mechanismanddevelopingthefullpotentialofblackphosphorus isatoppriority.

Blackphosphorus is a very attractivenew two dimensional

material, but it still facesmany challenges. A large number of

theoretical calculations and experimental studies have been

reported,hopingtomakeevengreaterbreakthroughsinthefuture. 2.5.Acknowledgment

Thisworkis supportedby KeyResearchProgramofShaanxi

Province(No.2017ZDXM GY 035).

3. MXenematerialsforelectrochemicalenergystorage

ZifengLin,HuiShao*** 3.1.Status

2Dtransitionmetalcarbides,carbonitrides,andnitrides,known asMXenes,areproducedbyselectiveremovalofaatomlayersfrom

MAX phaseprecursorsusing aqueousfluoride containing acidic

solutions astheetchants.MAXphases areternarycarbidesand nitrides,withageneralformulaofMn+1AXn(n=1 3),whereMisa

transition metal (such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo), A representselementsfromthegroup13and14oftheperiodictable andXiscarbonand/ornitrogen.ThemetallicM Abondsofthe MAXphasescanbebreakbytheetchant,resultinginmultilayered Mn+1XnTxmaterials,and Txrepresentssurfacefunctional groups

(suchashydroxyl,oxygenandfluorine)thatareobtainedfromthe etchingprocess.Afterward,multilayeredMXenescanbedelami nated into single flakes via intercalation of organic molecules

and/or metal ions, followed with mechanical vibration or

sonication inwater. Since 2011,Gogotsi etal. reportedthefirst MXene material Ti3C2Txthat was synthesizedby removingAl

atomsfromTi3AlC2MAXphaseinconcentratedHF(Fig.3),todate,

morethan20differentMXenematerialsaresuccessfullyprepared, anddozensofmoreMXeneshavebeentheoreticallypredicted[19]. MXenescanhaveatleastthreedifferentformulas:M2X,M3X2

andM4X3,whereMisanearlytransitionmetalandXiscarbon

and/ornitrogen.Theycanbemadeinthreedifferentforms:mono Melements(forexample,Ti2CandNb4C3);asolidsolutionofat

least two different M elements (for example, (Ti,V)3C2 and

(Cr,V)3C2);orordereddouble Melements,inwhichonetransition

metaloccupiestheperimeterlayers,andanotherfillsthecentralM layers(forexample,Mo2TiC2andMo2Ti2C3,inwhichtheouterM

layersareMoandthecentralMlayersareTi).Solidsolutionsonthe Xsiteproducecarbonitrides.NA,notavailable[19].

Withthemeritsofmetallicconductivity,uniquetwo dimen

sional structure and rich chemistry, MXenes have attracted

significant attention as electrode materials of rechargeable

batteriesandelectrochemicalcapacitors.Thecalculatedtheoreti calcapacities ofLi,Na,KandCaionsbatteriesbasiconvarious oxygenterminatedMXenenanosheetsare447.8,351.8,191.8and

319.8mAh/g, respectively [20]. Experimentally, MXene film

electrodes typically deliver capacities less than 200mAh/g for

(8)

Li+ storageand even less for Na+ and othermetal ion storage. MXenecomposite or surface functionalized electrodeis able to

enhancetheelectrochemicalperformance greatly. Ontheother

hand,MXenesexhibitoutstandingcapacitiveorpseudocapacitive performance,especiallyinaqueouselectrolytes.Highgravimetric

capacitance up to 350F/g as well as the high volumetric

capacitanceof 1500F/cm3 can be obtainedfrom a Ti

3C2Txfilm

electrodein3mol/LH2SO4electrolyte;theredoxpeaksidentified

inFig.4aindicatesapseudocapacitivecontributionthathasbeen wellconfirmedbyX rayabsorptionanalysis[21].

3.2.Currentandfuturechallenges

TopushforwardtheapplicationofMXenesinenergystorage, severalchallengesneedtobeaddressed.Alargenumberofnovel

MXene compositions with interesting properties have been

theoreticallypredicted,andmoreexperimentaleffortsshouldbe takentoremovethegaps.Anotherconcernisthatthehazardous aqueousfluoride containingacidicsolutions,suchashydrofluoric acidorlithiumfluoridemixedinhydrochloricacid,arethemost

commonusedetchantstoprepare MXenes.Asafeandefficient

route for MXene synthesis is important to further practical

applications.Inaddition,thestabilityofMXenesremainsanother challenge.MXenessufferfromeasyoxidation,thusbringdifficul tiestothelong termreservation.Ithasbeendemonstratedthatthe

oxidation of MXene flakes starts from the edges, and the

manufacturing procedure can affect the stability. Restacking is oneofthemainchallengesnotonlyexistinMXenesbutalsoother 2Dmaterialswhenfilteredasfilmelectrodes,whichwillimpede

electrolytemigration andlimitpowerperformanceasshownin

Fig.4b[22].Onepossibleapproachtopreventtherestackingissue istoincorporatepolymerswithpolarfunctionalgroupswithinthe

interlayers. Although MXene electrodes demonstrated a high

capacitanceinaqueouselectrolytes,performancesinnon aqueous systemsareinadequate.Itiscrucial toincreaseMXenescapaci tanceinnon aqueouselectrolytessincenon aqueoussystemscan

offeralargervoltagewindow(>2.5V),thusleadtohighenergy

density. Besides, in the battery applications of MXenes, the

irreversiblecapacityoftheinitialcycleshouldbeminimizedfrom thepracticalpointofview.

3.3.Advancesinscienceandtechnologytomeetchallenges LotsofeffortsarededicatedtothesynthesisofnovelMAXphase precursorsandMXenecompositionsinthelastfewyears.Ti4N3Tx

MXenewaspreparedbyheatingTi4AlN4inamoltenfluoridesalt,

makingitaninterestingHF freeapproachtoprepareMXenes[23]. Very recently, a new series of Zn based MAX phases (Ti3ZnC2,

Ti2ZnC,Ti2ZnN,and V2ZnC)weresynthesizedbya replacement

reaction[24].ThenaLewisacidicmoltensaltwasusedtoextract

Znatom of theas preparedMAX phases,resulting inthe first

reportedCl terminatedMXenes.Ithasbeenconfirmedthatsurface terminationsplayacrucialroleinenergystorageapplications[25]. SomerecentstudieshaveindicatedthatClfunctionalizedgroups canenhancetheelectrochemicalbehavior[24].

Thearchitecturaldesignoftheelectrodeisaneffectivemethod to address the restacking issue. Xia et al. reported a vertical alignmentTi3C2Txelectrode(Fig.4c),whichexhibitsanoutstand

ingthickness independentrateperformanceinaqueouselectro lyte[22].Over200F/gisretainedatahighscanrateof2000mV/s

with electrode thickness even up to 200

m

m. Moreover, 3D

macroporousMXene film (Fig.4d) werefabricated to enhance

theiontransport.Byusingthismacroporousdesign,Ti3C2Tx,V2CTx,

and Mo2CTxelectrode deliver high rate electrochemical perfor

manceandlongcyclingstabilityinNa ionstorage[26].

Correctly coupling organic electrolytes with electrodes can

furtherpush forward theelectrochemical performance in non

aqueoussystems[27].Therecentreportprovedsolventisthekey factorincontrollingthechargestoragemechanismintheTi3C2Tx

electrode.AspresentedinFigs.4eandf,thefulldesolvationofLi+

inpropylenecarbonatesolventleadstomuchbetterelectrochem icalperformancethaninothersolventswithlessdesolvation. Fig.4.(a)Cyclicvoltammetryprofilesofper-intercalatedTi3C2Txfilmin3mol/LH2SO4atscanratesfrom2mV/sto200mV/s.Copiedwithpermission[21].Copyright2017, NaturePublishingGroup.(b,c)SchematicillustrationofiontransportinTi3C2TxMXenefilms.(b)Iontransportinhorizontallystackedand(c)verticallyalignedTi3C2TxMXene

films.Thebluelinesindicateiontransportpathways.Copiedwithpermission[22].Copyright2018,NaturePublishingGroup.(d)SEMimageofmacroporoustemplated

Ti3C2Txelectrodecross-section.Scalebars:5mm.Insetsshowsschematicallytheioniccurrentpathwayinelectrodes.Copiedwithpermission[21].Copyright2017,Nature PublishingGroup.(e)CVcurvesofmacroporousTi3C2Txelectrodewith1mol/LLiT-FSIinDMSO,ACNandPCorganicelectrolytesand(f)schematicofasupercapacitorusing2D MXeneasanegativeelectrodewithsolvatedordesolvatedstatues.TheOCVs(markedbyarrows)are 0.13V(black), 0.32V(blue)and 0.12V(red)versusAgforDMSO,ACN andPC-basedelectrolytes,respectively.Copiedwithpermission[27].Copyright2019,NaturePublishingGroup.

(9)

3.4.Concludingremarksandprospects

MXenes with advantages of metallic conductivity and 2D

structure are emerging as excellent electrode materials for

batteriesandelectrochemicalcapacitors.Breakthroughsinmate rialssynthesis, electrode structure design, and a better under standingofchargestoragemechanismhavegreatlyimprovedthe

electrochemical performance of MXene electrodes. Despite the

remained challenges, it can be provisioned that MXenes will

becomecompetitiveelectrodematerialsfromthepracticalpointof viewandwilldevelopfastinenergystorageapplications. 3.5.Acknowledgments

Z.LinissupportedbytheFundamentalResearchFundsforthe CentralUniversities(No.YJ201886).H.Shaowassupportedbya grantfromtheChinaScholarshipCouncil.

4.2Dcovalentorganicframeworksforenergyconversionand

storage

PengPeng,ZhonghuaXiang*

4.1.Status

SinceYaghiandco workersdiscoveredthetopologicalframe worksin2005[28],adiversityof2Dcovalentorganicframeworks

(COFs) have emerged towards versatile applications. With

preciselycontrollable capacitiessuchaswell defined structures androbust tailoringheteroatoms[29],2D COFshavepresented superior potentials for energy storage and conversion devices.

Through hightemperature treatment, COFs are widely used to

prepare hetero doped catalysts for oxygen reduction reaction

(ORR), oxygenevolution reaction(OER)etc.,which arevital for

clean and renewable energy technologies such as metal air

batteries and fuel cells [30]. To date, numerous COFs derived highlyefficient energy electrocatalystshave been reported. For example,benefitedfromwell defined2Dstructuresandcomplex

ation of non noble metals (such as Fe, Co, Mn), carbon based

catalystsaredevelopedwithoutstandingcatalyticperformancefor oxygenreductioninbothalkalineandacidmedia[31].

4.2.Currentandfuturechallenges

Eventherapiddevelopmentof2DCOFshaspredictedabright future,challengesofCOFstowardsenergyapplicationsstillexist. Toaddressthepracticalapplicationsof2DCOFsinenergydevices, researchersinthefieldshouldfocusonthesechallengesoutlined in (Fig.5).Firstly, theinsufficient stability orlimited durability remainsagrandchallenge.FornotonlyCOFs derivedcatalysts,but also most carbon based catalysts, significant performance loss (50%)occuroverafewhundredsofhoursinthepresenceofO2at

more practical potentials (>0.6V) [32]. In both aqueous acidic electrolyteandsolid stateelectrolyte basedMEAs,carbonstruc tureswouldbecorrodedunderthechemicalattackofH2O2and

radicalsthroughtheFentonreaction,whichcouldalsodrivethe demetallation of the active sites. Besides, collapse of carbon structures generates additional barriers for mass transfer and

charge transport, leading to limited performance in practical

scenarios.

Anotherissuethatprecludesthewideapplicationof2DCOFsis their poor processing ability. The inherent cross linked frame worksorreticularnetworksresultintoinsolublenatureandpoor three phaseinterfaces,incurringdifficultiesforthepreparationof electrodesandunstablefactorssuchasstripingoff.Asinsoluble powders,COFs cannot bereliably interfacedonto electrodes or incorporatedintodevices.Forthefabricationof electrodeswith insolubleCOFs,extracomponents(bindersorconductiveagents) arealwaysnecessary,whichalsohinderthechargetransportand masstransfer.

Last but not the least, the pyrolysis free construction of functional2DCOFswithintrinsiccatalyticpropertyisimperative. Inordertopromotethepracticallyusefulperformancelevelsof2D COFstowardsenergydevices,itisveryimportanttoilluminatethe catalystdegradationmechanismsandelucidatetherolesofeach components.Nevertheless,pyrolysistreatmentisalwaysneeded toimprovetheconductivityandstabilityofCOFs basedprecursors,

which unfortunately bring unpredictable and undetectable

changestothestructures.Onthecontrary,pyrolysis freederived

2D COFs would provide valuable information for the optimal

structures and components in a predictive manner. Thus, the

developmentofpyrolysis freesynthesiswouldbeinstructivefor translating the experimental activity and stability into device performance.

4.3.Advancesinscienceandtechnology

Recentyearshavewitnessednumerouseffortsinexplorationof 2DCOFsforfunctionalapplicationsandseveralapproacheshave been made tomeet those challenges. In terms of the stability, researchershavefoundthatFentonreactionsinvolvingmanganese ionsarenearlynegligibleandthusMn basedcatalystsmayprovide anewopportunitytoachieveenhancedstability[33].Meanwhile, increasingtheratioofhighlygraphitizedcarbonalsobenefitsthe durability byenhancingcorrosion resistance in electrochemical oxidativeenvironments.However,highergraphitizationmakesit hardertoaccommodateactivesitessuchastransitionmetalandN dopants.Itremainsachallengetofindthebalancebetweenactivity andstability.

Interms oftheprocessability,evennumerousattemptshave beenutilizedtoprepareprocessableCOFnanosheetsorfilms,only limitedachievementshavebeenobtained.Thematuresynthesisof solution processable COFs still remains a grand challenge. For example, physical approaches, including ultrasonication, ball milling,andmechanicaldelaminationusuallybreaktheCOFsinto

small pieces with decreasing properties. Chemical approaches

suchasinterfacialpolymerizationallowstheformationoffilm like 2DCOFs,butitistoodifficulttoscaleup.Recentlydevelopedionic Fig.5.Challengesfor2DCOFsintheareaofenergydevices:insufficientstability,

(10)

COFswhich couldbeexfoliatedintonanosheetsuponmixingin special solvent still demonstrate rather limited solubility with smallsizesoftheexfoliatednanosheets.Althoughissuesstillexist, thesedevelopmentshavepavedpathwaysforrealizingprocess

able 2D COFs. It should be noted that researchers have also

developedmethodstowithstandtheinter layer

p p

stackingor theinter layer interactionsof2D COFlayersviaencodinghigh densityelectrostaticrepulsionintotheskeletonorsimplein situ chargeexfoliationpathway.Bythismeans,highlysoluble2DCOFs andstabletruesolutionsof2DCOFshavebeenreported[34].

In terms of thedevelopment of COFs based electrocatalysts withoutpyrolysis,consideringthecombinationofactivesitesand

conductive backbone, several possible approaches have been

explored.Onewayis todesign and synthesizeCOFscombining

fully conjugatedstructureswithactivecenters.Researchershave reporteda2DCOFswithdelocalizedconnectionsandactiveknots,

which demonstrate outstanding performance for ORR catalysis

[35].Anotherpromisingwayisformingthehybridelectrocatalysts byself assemblingpristine COFswithmatrixthat containlarge conjugatedsystemandhighchargemobility.Forexample,ithas beenreportedthataftercombiningwithreducedgrapheneoxide (rGO),electricalconductivityofthehybridizedmaterialssignifi

cantlyincreasebymore thansevenordersofmagnitude, along

with the enhanced ORR activities [36]. Very recently, by

constructing the intermolecular conjugatedstructures, carbon basedcatalystswithnitrogen coordinatedsingleatomshavealso beenachievedviapyrolysis freepathway(Fig.6),demonstrating superioractivities and long termstabilities when assembled in zinc air batteries [37]. As one can expect, thedevelopment of

pyrolysis free approach not only paves a new and promising

avenuetoatomicallyoptimizethecatalysts,but alsoprovides a platformfortheaccuratetheoreticalpredictioncalculations.Based onthewell definedstructuresof2DCOFs,thistechniquemakesit possibletodevelop moreexcellent catalysts forvarious energy conversionandstoragedevicesbesidesoxygenreduction. 4.4.Concludingremarksandprospects

2D COFs represent a newsynthetic era of the catalysts for

energy applications. Their unique features, such as flexible

moleculardesign and diverse buildingblocks provide 2D COFs

with promising potentials in further applications for energy

storageandconversiondevices.Therapiddevelopmentinthisarea

has, therefore, attracted increasing interest from scientific

researchers. The 2D COFs combining with the pyrolysis free

techniquesallowresearcherstomodulateactivesitesandcontrol thedensityofactivestiesatthemolecularlevel,offeringpiratical possibilitiestostudytheoptimalstructures,degradationmecha

nisms and kinetics of energy electrocatalysis. 2D COFs with

enhancedstabilityandprocessabilityholdgreatpromiseforthe

bettersolution for energy and environmental issues. Although

currently2D COFstowards energyapplicationsarein itsinfant

stages,thenewadvancesinscienceandtechnologyencouragethat itwillgrowintoarichandbroadareaofgreatimportance. 4.5.Acknowledgments

WeacknowledgethefinancialsupportfromtheNaturalScience FoundationofChina(No.21676020);theBeijingNaturalScience Foundation(No.17L20060);theYoungEliteScientistsSponsorship

ProgrambyCAST(No.2017QNRC001);theTalentCultivationand

Open Project (No. OIC 201801007) of State Key Laboratory of

Organic Inorganic Composites; the Distinguished Scientist Pro gramatBUCT(No.buctylkxj02);Double First ClassConstruction Projects(Nos.XK180301,XK1804 02)andthe111ProjectofChina (No.B14004).

5. 2Dmetaloxidenanosheet-basedelectrodesforcharge

storagedevices JohanE.tenElshof*

Fig.6. Constructionofnitrogen-coordinatedsingleatomcatalystthroughpyrolysis-freepath.(a)Atomicallyrivetthewell-designedCOFnetworkscontainingFe-N-Ccenters ontographenematrixviaintermolecularvanderWallsinteractions;(b)as-obtainedcatalystswithplentifulFeatoms(brightdots)anchoredonthegraphenematrix.Copied

withpermission[37].Copyright2019,AmericanAssociationfortheAdvancementofScience.

Fig.7.Threeexamples ofoxidenanosheets. Copiedwithpermission[38–40].

(11)

5.1.Status

The high specific surface areas and well defined surface

terminationsoftwo dimensionaloxideandhydroxidenanosheets,

combined with their semiconducting nature, makes these

materialsattractiveasbuildingblocksforconstructionofultrathin

porous electrode architectures for future generation faradaic

supercapacitorsandlithium ionbatteries.Techniquestochemi callyexfoliatelayeredmetaloxidesandlayereddoublehydroxides (LDH)intocolloidalunilamellar,single crystallineplateletswith thicknessesinthe0.5 3nmnanometer rangeandlateraldimen sionsof50nm 50

m

mhavebeenoptimizedandgeneralizedover

thepastyears.Examplesofwell knownnanosheetcompositions

areTi1-xO2,Ca2Nb3O10,MnO2,V2O5,TaWO6,Ni(OH)2andCo(OH)2

[38 40],asshowninFig.7.Dozensofothercompositionshavealso beenrealized,dependingonlyontheavailabilityoflayeredparent compoundsthatcanbechemicallyexfoliated.

Owingtotheir2Dnature,nanosheetstendtorestackduring electrodeformation,therebyreducingtheireffectivesurfacearea and generating slit shaped porosity. The in plane orientational disorderofelectrodesmadefromrestacked2Dcrystallitescanhelp

tosuppress phase transformations during charging/discharging

andthusimprovecyclelife.Theionstoragecapacityisdetermined byboth thespecificsurface areaand thepore sizeswithin the electrodes.Inprinciple,largeporesizesfacilitatefastlithiumion transportation and yield high rate capacities. Pillaring, i.e., incorporationofadditionalentitiessuchasnanoparticles,nano wiresandnanoplateletsbetweenrestackednanosheets,hasbeen shownavalidapproachtopreventorslowdowntheirstructural collapseandtorealizestructurallystableelectrodearchitectures withdischargecapacitiesevenupto860mAh/g[41].

Mostofthemetaloxidenanosheetcompositionsmadesofarby exfoliationmethodsarebasedonoxidescontainingTi,Taand/or Nb.Theyaretypicallywidebandgapsemiconductorsexhibiting poorconductivity[38]. Pillaringphasesarethereforepreferably highlyconductive,e.g.,Agnanoparticles,(reduced)grapheneoxide

(rGO) or carbon nanotubes. Synergistic phenomena have been

observed in some of these nanocomposites, e.g., spontaneous

electroncharge transfer fromgrapheneintoTi1-xO2 nanosheets

resultinginoverallconductivityenhancement,orfavorablecharge separation atthe interface betweentwo suchphases,i.e., a Li+

accepting phase and an electron accepting phase, thereby

providingadditionallithiumstoragesites[42].

Faradaic pseudocapacitors based on 2D transition metal

hydroxides utilize (surface) redoxreactions to chemicallybind

andstoreions.Onlysurfaceatomsplayaroleinpseudo capacitive processes.ThebestcandidatematerialisRuO2(700F/g),butsince

itisrareandexpensive,researchhasbeenfocusingonmorereadily available cheaperalternativessuchas2DNi(OH)2,Co(OH)2 and

MnO2.Specificcapacitancesupto1100 1300F/g(at1A/g)have

beenreported[38].

Ithasalsobeendemonstratedthatthefractionofelectrochem icallyactiveatoms inmonolayer andmultilayer nanosheetthin

film electrodes is higher than in precipitated nanosheet based

powders. Use of nanosheets as thin film electrodes in small

(flexible)devicesisthereforeoneofthepotentiallymostpromising areasofapplicationofthese2Dmaterials.Multilayerarchitectures ofoxidenanosheetsandoptionallyothermaterialscanberealized withanunsurpasseddegreeofcontrolovertheassemblyprocess using layer by layer (LbL) Langmuir Blodgett deposition [43].

Heterostructures made by sandwiching metal oxide or LDH

derivednanosheetswithe.g.,GO,rGOandCoOOHnanowireshave

shown reasonable togoodperformances when testedas Li ion

batteryorpseudocapacitorelectrodes.LbLassemblyisalsouseful forthinfilmdevicefabricationonsoftsubstrates,inparticularfor devices consisting of a limited number of layers. Interestingly, flexiblepaper likenanocompositesconsistingoflithiatedTi1-xO2

nanosheetsandcarbon,withacapacityof150mAh/ghavealso beendemonstrated[44],asshowninFigs.8aandb.

5.2.Currentandfuturechallenges

Oneofthemaincurrentchallengesconcernsthesynthesisof nanosheetsonlargescale.Becauseofthemicron sizedradiusof gyrationofnanosheets,colloidalnanosheetdispersionsarevery dilute,typicallyintherangeof1 10g/L.Largereactionvolumesare thusrequiredtoproducerelativelysmallamountsof2Dmaterial.

Under more concentrated conditions, non ideal separation of

sheetsandrestackedclusterswilldominatethestructureofthe colloidaldispersions.

Otherchallengesincludegettingmorecontroloverthesizeof the intergallery spaces, and further increasing the structural stabilityoftheelectrodes.Inmanycases,restackedhostmaterials oftensufferfromslowkineticsresultingfromtheincompatibility betweenthesizeoftheintercalatingionsandthelimitedlattice spaceavailableintheintergalleryspace.Moreover,theelectrode architectures that are essentially composed of loose stacks of

isolated sheets, appear to degrade relatively quickly as a

consequence of repeated electrochemical exchange reactions.

Thestructuralcoherencythereforeneedstobeimproved,ideally withoutoveralllossofelectrodeflexibility.

Whilehybridizationofoxidenanosheetsandmoreconductive

second phases as a route to getting materials with improved

electricalconductivityhasbeenstudiedinsomedepth,theuseof controlleddefectengineeringstrategies,e.g.,aliovalentdopingin 2Doxidelattices,asatooltoimprovethelateralconductivityof

nanosheets as well as their surface redox properties, and

consequently alsotheir performance, has been explored much

less[46].Asystematicunderstandingoftheinfluenceoftransition

metal ion doping into 2D nanosheets on their conductivity,

electrontransfer(redox)propertiesandcapacitytoelectrochemi callystoreLi+,willhelptoboosttheperformanceofnanosheet basedelectrodesinbatteriesandsupercapacitors.

5.3.Advancesinscienceandtechnologytomeetchallenges

The prospect of massive scale production of nanosheets as

would be required for their commercial application in larger

energy storage systems seems unlikely on the short and

intermediate term.Their mostlikelyapplication is therefore in theareaof(flexible)thinfilmbatteriesandsupercapacitorswith

Fig.8.(a)Opticalimageofaself-standinglithiumtitanatenanosheetelectrode

underbending.(b)Cross-sectionofthesamefilm.Copiedwithpermission[44].

Copyright 2013, WILEY-VCH. (c) Optical images of MnO2 nanosheet-based

microsupercapacitoronpolyimidesubstrateunderdifferentbendingangles.The

(12)

centimeter to micrometer sized lateral dimensions. Industrial scalefabricationofthinfilmstoragedevicesrequiresmuchfaster

electrodeassemblymethodsthantheLangmuir Blodgettmethod.

Takingtheabove mentionedchallengesinmind,researchintothe useof inkjetprintingof oxidenanosheetsand 2Dmaterialsin

general is currently ongoing and shows good prospects [47].

Devicesofsomewhatlargedimensionscouldbemadeviascreen

printing. Given the ability to mass produce layered thin film

devices via screen printing, the application of this production methodseemslikely.

An advantageof employingnanosheets incombination with

wet chemicalprocessingmethodsisthatnohightemperaturesare requiredintheelectrodeformationprocess.Theprecursorinkcan thuscontainorganicandothersensitivecomponentsthatremain

in the as dried films and can serve a specific purpose. More

importantly,italsoimpliesthattemperature sensitivesubstrates suchasflexibleplasticsubstratescanbealsousedasaplatformfor deviceconstructdeviceson(Fig.8c)[45].Paralleltothefurther

development of nanosheet based electrodes, there is a more

general needfor saferelectrolytesin next generation batteries. Replacementof liquid and gel electrolytesby solid electrolytes

wouldbeamajorstepforward.Thedevelopment ofnovel thin

solidelectrolytes,includingoptimizationoftheelectrolyte nano sheetelectrodeinterface,isthereforeneeded.

5.4.Concludingremarksandprospects

Oxide nanosheetsarepromisingcandidatematerialsfor thin

film charge storage device electrodes. Various scalable low

temperaturedepositiontechniquesforthinandthickfilmdevice fabricationlike inkjet and screenprinting are available. While

showingreasonableperformance intermsofenergyand power

density,thenanosheet basedelectrodearchitecturesneedfurther

structural improvements to extend their cycling lifetime, and

improvedcontrolovertheporesizesinthematerialinorderto improveion diffusionand storagecapacity. Hybridization with conductivesecondphasestoimproveconductivityhasshowntobe successful, in particular a systematic exploration of aliovalent dopingstrategies canhelptoenhance both theconductivityin nanosheets,andimprovetheirelectrontransferandsurfaceredox properties.

6.Verticallyalignednanosheetsaselectrodematerialsfor

high-performancerechargeablebatteries

RouTan,ChenLiu,ZhaoxiZhang,XiaochuanDuan*

6.1.Status

The developmentof electrode materialswith well designed

architecturespromiseshigh performancerechargeablebatteries. Inpursuitofbetterelectrodekineticsandmasstransportation,3D nanostructuredelectrodescomposedbyverticallyalignednano sheets(VANS) havebeen receivingincreasingresearchinterest.

Combined witha highlyconductive carbon basedsubstrate(or

metallic thin film), VANS electrodes areendowed with several

merits,suchaslargesurfacearea,superiorelectroncapability,and

excellent mechanical strength. In this roadmap, various VANS

electrodeswithdifferentcomposition thatcanbeused asfree

standing electrodes for the high performance rechargeable

batteries are highlighted. Recent advances regarding the novel

synthetic method for VANS electrodes and the speculative

mechanism for the enhanced electrochemical properties are

reviewed. In addition, the emerging challenges and some

perspectivesontheprogressofVANSelectrodesforrechargeable batteriesareincluded.

6.2.Currentandfuturechallenges

ThestudyofVANSoriginatedfromtheriseoftheapplicationof 2Delectrodematerialsinthefieldofenergystorage.Compared withthebulkelectrodematerials,theultra thinstructureof2D electrode materials thoroughly facilitates the electrochemical reaction,whilebeingabletominimizeoreliminatethevolume changeoftheelectrodematerialsinthecharge/dischargecycles. Therefore,2Delectrodematerialscangenerallyexhibithighactual specific capacity and structural stability. Previous studies have provided that 2D electrode materials tend tohave a reversible capacityexceedingthetheoreticalcapacityduetotheirsmallsizes andlargenumberofexposedsurfaces.Inaddition,theultra thin structure of 2D electrode materialsfacilitatethe rapidand full immersion of theelectrolyte,which caneffectively shortenthe electrontransport andion diffusiondistance,therebyachieving fastchargeanddischargeforrechargeablebatteries[48].

Itiswell knownthattherearesizeeffectandstrongvander

Waals force in the nanomaterials, making the nanostructured

electrodesextremelyeasytoformirreversiblestackedaggregates [22].Inparticular,theultra highspecificsurfaceareaandstrong interlayerforcesof2Dnanomaterialspromotetheoccurrenceof agglomeration,whichgreatlyreducesthestructuraladvantagesof 2D nanomaterials. This stacked structure is detrimental to the

rapid transfer of electrons and ions when used as electrode

materialsforenergystorage.AsshowninFig.9a,theclosestacking ofactivematerialsformsaparallelelectrodestructure,resultingin poor wettability of the electrolyte, which in turn leads to an

increase in ion transport distance [49]. However, if the 2D

nanomaterials canbedesigned a verticallyaligned structure as showninFig.9b,thereisa largeamountofporesbetweenthe

open ended nanosheets. This vertical structure expands the

contactareabetweentheactivematerialsandelectrolyte,which isbeneficialtoachieve rapidextractionandembeddingofions. Therefore, controlling the vertical orientation assembly of 2D materialsisanimportantmeanstopromotetheirelectrochemical energystorageapplications.

Fig.9.Schematicdepictionofthestackedgeometry(a)andtheverticallyaligned

structure(b).Copiedwithpermission[49].Copyright2011,AmericanChemical

(13)

6.3.Advancesinscienceandtechnologytomeetchallenges Carbon basedmaterialsareusuallyadoptedasthesubstratefor theconfigurationofVANS.Inthepasttwodecades,carbon based materialsandtheirhybridnanocompositeshavebeenthefocusof considerableeffortsinenergyconversionandstoragebecauseof their unique properties, featured by unique porous structures, superiorelectricalproperties,fastionandelectrontransportation,

etc. In pursuit of optimal performance, various well designed

architectures have been developed for carbon based materials,

includingsomeinterestingsurfacemultilevelstructures(branched nanorodsor nanosheets) and inner multilevel structures (core/

shell or multichannel nanostructures). However, traditional

preparation processes for carbon based materialsor electrodes

often lead to random restacking of loading materials, which

reducesactive sites and limits ion transport. This shortcoming keepsthemawayfromtheoriginalintentionofdesign,oftenfails

to achieve the desired performances. To this end, vertical

alignment of 2D nanostructures on carbon based substrate

guaranteeseffectiveactivesitesanddirectionaliontransportthat canleadtosuperiorperformances.Nevertheless,owingtothebad compatibilityofcarbon basedmaterialswithothersubstancesand strict synthesis conditions for 2D nanostructures, only limited

successinvolvingcomplexsynthesis methodhasbeenreported

heretofore.Asaproofofconcept,Xieetal.proposedahierarchical

electrode structure consisting of MoS2 nanosheets vertically

aligned on carbon paper, as shown in Fig.10 [50]. This VANS structureisconducivetosufficientelectrode/electrolyteinterac tionandfastelectrontransmission,enablinghighinitialCoulombic efficiency,highratecapability,andlongcyclelifeforsodium ion batteries.

Despite VANS electrodes demonstrate exhilarating perfor

manceforenergystoragedevices, theirprecisesynthesisisstill

a huge challenge. In most cases, the VANS electrodes were

prepared by chemical vapor deposition with relatively high

technicalrequirements(i.e.,PECVD)ormultistepprocesses[51]. InordertopromotetheapplicationofVANSelectrodesforhigh

performance rechargeablebatteries, more convenient synthesis

methodswillbethefocusofresearchinthisfield.Encouragingly, someconcisesyntheticmethodsprovedtobeabletosynthesize well designedVANSstructures,presentingnewopportunitiesfor futureresearch.

6.3.1.Salt templatingmethod

Fellinger and co workers successfully prepared vertically

alignedgraphiticcarbonnanosheets(CNS)andmetalcarbide@CNS compositesusing afacilesalttemplatinginduced self assembly [52].Theresultingelectrodesmanifestultralowthickness,excel lent structural tobustness,and porous structure,which enables

large contact between electrode and electrolyte and shortens

electron/iondiffusionpathways,renderingtheirexcellentelectro chemicalperformanceswhenusedaselectrodematerialsforLi ion batteries.

6.3.2.Electrochemicalassemblymethod

Lietal.adoptedatunablecyclicvoltammetry(CV)processto fabricateverticallyalignedsulfur graphene(S G)nanowallsonto

electrically conductive substrates [53]. The S G VANS with

hierarchicalandmacroporousstructuresenablethefastdiffusion bothoflithiumandelectron,therebyachievingsuperiorelectro chemicalperformancesincludinghighreversiblecapacity,excel lent rate capability, and outstanding cyclability when used as electrodesforlithium sulfurbatteries.

6.3.3.Hydrothermalandsolvothermalmethod

Wangetal.patternedverticallyalignedMoS2nanosheetsonto

exfoliatedgraphenenanosheetsviaascalablesolutionsynthesis strategy[54].Thisuniquearchitecturecombinestheadvantagesof

vertically aligned structure and 2D geometry, endowing the

features of good mechanical stability, highutilization of active materials, andfastcapacitive energystoragebehavior. Liuet al. reportedanelectrostatic attractionstrategytopreparethefew layered ReS2 nanosheets vertically aligned on rGOsurfaces via

hydrothermal method [55]. By mean of the synergistic effect

betweenfew layeredReS2nanosheetsandthegraphenesubstrate

with the sandwich like structure, the outstanding excellent

sodiumstorageperformancecanbeobtained. 6.4.Concludingremarksandprospects

Here,wegiveabriefreviewofthestructure,synthesismethods

and electrochemical properties of VANS electrode materials.

Compared to other 2D material architecture, VANS electrode

materialswithinterconnectednetworkandeffectiveexposureof

active materials enable high mechanical integrity and fast

chargetransportkinetics.Althoughsomemeaningfulprogresses

achieved, there are great challenge still remaining for VANS

electrode materials. First, the controllable synthesis of

VANS electrode materials withdesired composition, as wellas

facile and scale up synthesis methods, still need to befurther

explored. Second, the relationship between the structures of

VANSelectrodesandtheirrelatedelectrochemicalperformances

or electrochemistry mechanism, is yet be fully understood in

depth.Astheresearchprogresses,theunexploredadvantagesof VANSstructureswillbemoredeveloped.Theuniqueandversatile electrochemicalpropertiesofVANShavemadeitagreatpromise aselectrodematerialsforenergystorageinthefuture.

6.5.Acknowledgments

This study was supported by the National Natural Science

Foundation of China (No. 21601148) and the Natural Science

FoundationofFujianProvince(No.2017J05090).

Declarationofcompetinginterest

Theauthorsdeclarethatthereisnointerestforthismanuscript.

Fig.10.Schematic illustrationof thepaths for thesodium-ion diffusionand

electrontransmissioninVANSstructure.Copiedwithpermission[50].Copyright

(14)

References

[1]X.Cai,L.Lai,Z.Shen,J.Lin,J.Mater.Chem.A5(2017)15423–15446. [2]R.Tang,Q.Yun,W.Lv,etal.,Carbon103(2016)356–362.

[3]N.Suen,S.Hung,Q.Quan,etal.,Chem.Soc.Rev.46(2017)337–365. [4]L.Tian,J.Yang,M.Weng,etal.,ACSAppl.Mater.Interfaces9(2017)7125–7130. [5]M.Rana,S.A.Ahad,M.Li,etal.,EnergyStorageMater.18(2019)289–310. [6]M.Yi,Z.Shen,J.Mater.Chem.A3(2015)11700–11715.

[7]N.Pu,C.Wang,Y.Sung,Y.Liu,M.Ger,Mater.Lett.63(2009)1987–1989. [8]C.Yang,Q.Nguyen,T.Chen,etal.,ACSSustainable.Chem.Eng.6(2017)1208–

1214.

[9]M.Tahir,L.Pan,F.Idrees,etal.,NanoEnergy37(2017)136–157. [10]S.Wu,K.Hui,K.Hui,Adv.Sci.5(2018)1700491.

[11]S.Jung,Y.Han,J.Phys.Chem.C119(2015)12130–12137. [12]X.Li,B.Deng,X.Wang,etal.,2DMater.2(2015)031002. [13]Y.Liu,Q.Liu,A.Zhang,etal.,ACSNano12(2018)8323–8329. [14]J.Sun,G.Zheng,H.Lee,NanoLett.14(2014)4573–4580. [15]X.Wu,Y.Xu,Y.Hu,etal.,Nat.Commun.9(2018)4573.

[16]P.Li,D.Zhang,J.Wu,Y.Cao,Z.Wu,Sensor.Actuat.B-Chem.273(2018)358– 364.

[17]I.Sultana,M.Rahman,T.Ramireddy,Y.Chen,A.Glushenkov,J.Mater.Chem.A5 (2017)23506–23512.

[18]K.Hembram,H.Jung,B.Yeo,etal.,Phys.Chem.Chem.Phys.18(2016)21391– 21397.

[19]B.Anasori,M.Lukatskaya,Y.Gogotsi,Nat.Rev.Mater.2(2017)16098. [20]D.Er,J.Li,M.Naguib,Y.Gogotsi,V.Shenoy,ACSAppl.Mater.Interfaces6(2014)

11173–11179.

[21]M.Lukatskaya,S.Kota,Z.Lin,etal.,Nat.Energy2(2017)17105. [22]Y.Xia,T.S.Mathis,M.Zhao,etal.,Nature557(2018)409–412.

[23]P.Urbankowski,B.Anasori,T.Makaryan,etal.,Nanoscale8(2016)11385– 11391.

[24]M.Li,J.Lu,K.Luo,etal.,J.Am.Chem.Soc.141(2019)4730–4737. [25]Y.Xie,M.Naguib,V.N.Mochalin,etal.,J.Am.Chem.Soc. 136(2014)6385–6394.

[38]J.E.tenElshof,H.Yuan,P.GonzalezRodriguez,Adv.EnergyMater.6(2016) 1600355.

[39]H.Tan,W.Sun,L.Wang,Q.Yan,Chem.NanoMat.2(2016)562–577. [40]J.Mei,T.Liao,L.Kou,Z.Sun,Adv.Mater.29(2017)1700176. [41]J.Kang,S.Paek,J.Choy,Chem.Commun.48(2012)458–460. [42]Q.Wu,J.Xu,X.Yang,etal.,Adv.EnergyMater.5(2015)1401756. [43]T.Yamaki,K.Asai,Langmuir17(2001)2564–2567.

[44]N.Li,G.Zhou,F.Li,L.Wen,H.Cheng,Adv.Funct.Mater.23(2013)5429– 5435.

[45]Y.Wang,Y.Zhang,D.Dubbink,J.E.tenElshof,NanoEnergy49(2018)481–488. [46]S.Kim,I.Kim,S.Patil,etal.,Chem.Eur.J.20(2014)5132–5140.

[47]J.E.tenElshof,Y.Wang,SmallMethods3(2019)1800318. [48]X.Duan,J.Xu,Z.Wei,etal.,SmallMethods1(2017)1700156. [49]J.Yoo,K.Balakrishnan,J.Huang,NanoLett.11(2011)1423–1427. [50]X.Xie,T.Makaryan,M.Zhao,etal.,Adv.EnergyMater.6(2016)1502161. [51]Z.Zhang,C.Lee,W.Zhang,Adv.EnergyMater.7(2017)170678. [52]J.Zhu,K.Sakaushi,G.Clavel,J.Am.Chem.Soc.137(2015)5480–5485. [53]B.Li,S.Li,J.Liu,B.Wang,S.Yang,NanoLett.15(2015)3073–3079. [54]G.Wang,J.Zhang,S.Yang,etal.,Adv.EnergyMater.8(2018)1702254. [55]S.Liu,Y.Liu,W.Lei,etal.,J.Mater.Chem.A6(2018)20267–20276.

[26]M.Zhao,X.Xie,C.Ren,etal.,Adv.Mater.29(2017)1702410. [27]X.Wang,T.Mathis,K.Li,etal.,Nat.Energy4(2019)241–248. [28]A.Cote,A.Benin,N.Ockwig,etal.,Science310(2005)1166–1170. [29]B.Zhang,H.Mao,R.Matheu,etal.,J.Am.Chem.Soc.141(2019)11420–

11424.

[30]P.Peng,Z.Zhou,J.Guo,Z.Xiang,ACSEnergyLett.2(2017)1308–1314. [31]Z.Xiang,Y.Xue,D.Cao,etal.,Angew.Chem.Int.Ed.53(2014)2433–2437. [32]X.Wang,M.Swihart,G.Wu,Nat.Catal.2(2019)578–589.

[33]J.Li,M.Chen,D.Cullen,etal.,Nat.Catal.1(2018)935–945. [34]L.Wang,C.Zeng,H.Xu,etal.,Chem.Sci.10(2019)1023–1028. [35]P.Peng,L.Shi,F.Huo,etal.,ACSNano13(2019)878–884.

[36]J.Guo,C.Lin,Z.Xia,Z.Xiang,Angew.Chem.Int.Ed.57(2018)12567– 12572.

Figure

Fig. 3. MXenes reported so far. Copied with permission [19]. Copyright 2017, Nature Publishing Group.
Fig. 4. (a) Cyclic voltammetry profiles of per-intercalated Ti 3 C 2 T x film in 3 mol/L H 2 SO 4 at scan rates from 2 mV/s to 200 mV/s
Fig. 6. Construction of nitrogen-coordinated single atom catalyst through pyrolysis-free path
Fig. 9. Schematic depiction of the stacked geometry (a) and the vertically aligned structure (b)
+2

Références

Documents relatifs

Coupez et coller le prochain object qui devrait apparaitre dans la

Fig. Comparison of experimental data and simulations of the charge of a photo-supercapacitor system as a function of the charge time. Evolution a) of the voltage across the solar

Median estimates and 95% credible interval estimates of probability of response, conditional probability of correct response and probability of correct response of click train

presents the output power of electrostrictive materials as a function of strain rate for P(VDF-TrFE-CFE) terpolymer, neat PU and C nanofilled composites at its resonance frequency

Illustration of compositional abstraction of N cascade composable transition systems using notion of µ- approximate cascade composition and (ε, µ)-approximate (alternating)

- les caractérisations rhéologiques de différents bétons autoplaçants réalisées à l’aide de la sonde Viscoprobe implantée dans un malaxeur planétaire et

A decrease in brown adipose tissue activity is associated with weight gain during chemotherapy in early breast cancer patients... This study aimed to investigate the impact