• Aucun résultat trouvé

DX and i!:DX

N/A
N/A
Protected

Academic year: 2022

Partager "DX and i!:DX"

Copied!
5
0
0

Texte intégral

(1)

t-exact.

(ii) The functorsj!:DU −→ DX andi :DX −→DY are right t-exact (but not t-exact in general).

(iii) The functors j :DU −→ DX and i!:DX −→ DY are leftt-exact.

Proof. Consider first i :DY −→ DX. As ii

−→ id and ji = 0 one has iDY≤0 ⊂ D≤0X by definition ofD≤0X . As id−→ i!i andj!i = 0 one hasiDY≥0 ⊂ DX≥0. Hencei ist-exact (hence pi :CY −→ CX is exact and i commutes with H0).

Consider next j :DX −→ DU. This time jD≤0X ⊂ DU≤0 and jDX≥0 =j!D≥0X ⊂ DU≥0 by definition of the t-structure on DX and the result.

For (ii) : As id−→ jj! one hasjj!D≤0U ⊂ D≤0U . As ij! = 0 this impliesj!D≤0U ⊂ D≤0X . On the other hand iD≤0X ⊂ DY≤0 by definition.

Statement (iii) is dual to (ii).

Corollary 0.0.2. We have the following diagram of adjunctions

H0j!

CU

H0j

H0i

CX

j!=j

OO

H0i!

CY

i=i!

OO

satisfying the following identities

id−→ j!(H0j!) , j(H0j)−→ id ,

(H0i)i

−→ id , id−→ (H0i!)i! ,

ji = 0 hence (H0i!)(H0j) = (H0i)(H0j!) = 0 . Let us now study what the distinguished triangles in D

(1) j!j!F −→ F −→iiF −→+1 and

(2) i!i!F −→ F −→jjF −→+1 become in C.

Lemma 0.0.3. Let F ∈ C. One has the following exact sequences in C : (3) 0−→piH−1iF −→pj!pjF −→ F −→pip

iF −→0 and

(4) 0−→pi!pi!F −→ F −→pjp

jF −→piH−1i!F −→0 .

1

(2)

Proof. From the triangle (1) one deduces the long exact sequence :

· · · −→H−1F −→H−1iiF −→H0j!j!F −→H0F −→H0iiF −→H1j!j!F −→ · · · . As F ∈ C one has H−1F = 0 and H0F = F. As i commutes with H0 (hence with Hi, i ∈ Z) the exact sequence (3) will follow from H1j!j!F = 0. As F ∈ DX≤0 one has j!F ∈ D≤0U . As j! is right t-exact it follows that j!j!F ∈ DX≤0 henceH1j!j!F = 0.

The proof of (4) starting from (2) is similar.

Corollary 0.0.4. (a) The essential image of pi :CY −→ CX is {F ∈ CX / F 'H0iiF }={F / jF = 0} . (b) The essential image ofpj =H0j :CY −→ CX identifies with

{F / F 'H0jjF}={F / H0i!F =H1i!F = 0} .

Proof. IfF ' iG then H0iF ' G by adjunction hence F ' iH0iF =H0iiF as H0 commutes with i. We deduce from the sequence (4) that F −→ H0iiF if and only if

pj!pjF = 0. As id −→ j!pj! the functor pj! is fully faithful and F −→ H0iiF if and only if pjF = 0.

Similarly : if F ' pjF then as j∗pj

−→ id one has jF ' G hence F ' H0jjF.

Contemplating the sequence (3) shows this is the case if and only ifpi

pj!F =piH1i!F = 0, hence if and only if H0i!F =H1i!F = 0 as pi is fully faithful.

Lemma 0.0.5. Let F ∈ CX. The exact sequences 0−→iH0i!F −→ F and

F −→iH0iF −→0

obtained from the sequences (3) and (4) are respectively the biggest subobject and the biggest quotient of F contained in the essential image of CY.

Proof. Let G ∈ CY. Then Hom(iG,F) = Hom(G, H0i!F) = Hom(iG, iH0i!F) where the first equality follows from adjunction and the second one from the fact that i is fully faithful.

The second statement is dual to the first one.

1. Intermediate extensions

Definition 1.0.6. Let G ∈ CU. One says that F ∈ CX extends G if jF −→ G. Example 1.0.7. Both H0j!G and H0jG extend G.

Proposition 1.0.8. There exists a pair (F ∈ CX, α : jG −→ G), unique up to unique isomorphism, extending G and satisfying

(i) iF ∈ DY<0. (ii) i!F ∈ DY>0.

It will be called the intermediate extension of G and denoted j!∗G.

(3)

Proof. First notice that :

iF ∈ DY<0 ⇐⇒ H0iF = 0

⇐⇒ any quotient ofF inCY is 0 by lemma (0.0.5).

Similarlyi!F ∈ D<0Y if and only if H0i!F = 0, if and only if any subobject ofF inCY is 0.

Let us prove first the unicity of the intermediate extension. Supposeα :jF −→ G and α0 : jF0 −→ G are two such intermediate extension. Applying Hom(F,·) to the exact triangle

i!i!F0 −→ F0 −→jjF0 −→+1 one obtains the long exact sequence :

· · · −→Hom(iF, i!F0)−→Hom(F,F0)−→Hom(jF, jF0)−→Hom(iF, i!F0[1]) −→ · · · . As iF ∈ DY<0 and i!F0 ∈ D>0Y (thusi!F0[1]∈ D≥0Y ) we obtain

Hom(F,F0)−→ Hom(G,G) .

Hence there exists a unique isomorphism between F and F0 compatible with α and α0. Let us show the existence of the intermediate extension. Considering the adjunctions (j!, j!=j, j) we get a canonical morphism j!G −→jG in D which induces the identity of G once composed withj. Applying H0 we obtain a canonical morphism

H0j!G −→H0jG

inC inducing the identity ofG once composed withj. Define the intermediate extension M as the image of this morphism :

M r

$$I

II II II II

H0j!G

;;;;

xx xx xx xx

//H0jG .

ObviouslyjM =G. It remains to show thatM satisfies the conditions (i) and (ii) for intermediate extensions.

First (H0i)(H0j!G) = 0 hence H0j!G has no quotient in CY. A fortiori M has no such quotient.

Dually H0jG has no subobject in CY hence also M. Example 1.0.9. If D=Dc(ZX) with its standard t-structure then j!∗G =j!G.

Lemma 1.0.10.

j!∗G =H0j!G/iH0i!j!G whereiH0i!j!Gis the biggest subobject of H0j!GinCY ,

= ker(H0jG −→iH0ijG) whereiH0ijGis the biggest quotient ofH0jGinCY .

(4)

Proof. PutF =jG in the triangle j!j!F −→ F −→iiF −→+1 . On the other hand put F =j!G in the triangle i!i!F −→ F −→jjF −→+1 . One gets the diagram

j!G // jG //iijG −→

i!i!j!G //j!G // jG //i!i!j!G[1]−→

Hence iijG −→ i!i!j!G[1]. As i is fully faithful on D we deduce : ijG −→ i!i!G[1].

Applying H0 to the second line of the previous diagram we obtain the exact sequence : H0(jG[−1]) = 0−→iH0i!j!G −→H0jG −→iH0ijG −→H1(j!G) .

As jG ∈ D≥0X one has H0(jG[−1]) = 0. Similarly j!G ∈ DX≤0 hence H1(j!G) = 0 which

gives the result.

Proposition 1.0.11. Simple objects in CX are the piF, where F ∈ CY is simple, and the j!∗G, G simple in CU.

Proof. Follows immediately from the exact sequence of Abelian categories : 0−→ CY −→ CX −→ CU −→0 .

2. Application to perverse sheaves

Recall our setting :

X =Xm ⊃Xm−1 ⊃ · · · ⊃X0 ⊃X−1

is an evenly stratified space with dimCXi = i and we consider the middle perversity for simplicity.

We define the perverse t-structure on Dcb(X) inductively on m:= dimCX as follows :

• if m = 0 we consider the standard t-structure. Hence a perverse sheaf is just a sheaf.

• the inductive step works as follows. Consider the diagram Xm−1  / //X oo 0 ? _X\Xm−1

Y  / //X oo 0 ? _U

.

By induction hypothesis we have the perverse t-structure on DY := Dcb(Y). On DU :=Dcb(U) we put the standard t-structure shifted bymU := dimCU :

(p

D≤0U :=stDU≤−mU,

pD≥0U :=stDU≥−mU.

We then define the perverse t-structure on DX := Dbc(X) by glueing the two t- structures onDY and DU.

Let us show that we recover our previous definition of perverse sheaves.

(5)

Proposition 2.0.12. Let F ∈ Dcb(X). Then : (1)

F ∈pDX≤0

⇐⇒ ksF ∈stDX≤−mS

for any stratumkS :S −→X

⇐⇒ dimCsuppHiF ≤ −ifor anyi∈Z. (2)

F ∈pDX≥0 ⇐⇒ k!SF ∈stDX≥−mS for any stratum kS :S−→X

⇐⇒ kSDXF ∈stDX≤−mS for any stratumkS :S−→X

⇐⇒ dimCsuppHiDXF ≤ −ifor anyi∈Z.

(3) F ∈ CX if and only F is a perverse sheaf in the sense of the definition ??.

Proof. The proof is by induction on m:= dimCX.

Ifm = 0 this is obvious.

The inductive step works as follows. With the above notations F ∈pDX≤0 if and only

if (

jF ∈pDU≤0, iF ∈pDY≤0.

By definition of the t-structure on DU and by induction hypothesis this is equivalent to saying that kSF ∈stDS≤−mS for any stratum S. This proves (1).

The proof of (2) is similar and (3) follows.

2.1. Intermediate extension for perverse sheaves. Once more consider the situation U  0 //X oo / ? _Y and let E be a local system on U (hence E[m] is a perverse sheaf on U). Recall that the intermediate extension j!∗E[m] is the unique extension F ∈Perv(X) ofE[m] such thatiF ∈pDY<0 andi!F ∈pDY>0. Let us check it coincides with Deligne’s extension.

Notice that :

iF ∈pDY<0 ⇐⇒ iF[−1]∈pDY≤0

⇐⇒ dimCsuppHjiF[−1]≤ −j for anyj ∈Z

⇐⇒ dimCsuppHjiF <−j for anyj ∈Z

⇐⇒ dimCsuppHjF ≤ −j for anyj ∈Z with strict inequality forj 6=−m.

Similarly for i!F replacing F by DXF.

Hence the result.

Références

Documents relatifs

Tappo per peso Endcap for weight bar Bouchon pour barre de lestage Endkappe Für Beschwerungsprofil Tapón para contrapeso.

Le mouvement n’est donc pas absolu : deux observateurs différents, placés dans deux référentiels en mouvement relatif, décriront de façon différente le

une fonction fuchsienne de t, et rdciproquement; la question est ainsi ramende ~ la recherche des condi- tions ndeessaires et suffisantes pour que l'intdgrale

This posthumous paper was prepared for publication by Vilhelm Adolfsson and Peter Kumlin.. Here IEI denotes the Lebesgue measure of the measurable set

Actually Sali6 proves only the first inequality.. Almqvist &amp; Wiksells

◊ remarque : ceci se généralise aux cas où les bornes dʼintégration aussi dépendent du paramètre (ici, les bornes 0 et ∞ ne dépendent pas de α ) ; mais

• On peut montrer que “tout” signal périodique “centré” de fréquence F peut être décomposé (équivalent à) une superposition de signaux sinusoïdaux de

• L'énergie électromagnétique contenue dans un certain volume V peut varier sous l'effet du travail W des actions exercées par le champ sur les charges de ce système, mais aussi