• Aucun résultat trouvé

De la navigation bio-inspirée au développement sensorimoteur d’un robot humanoïde

N/A
N/A
Protected

Academic year: 2022

Partager "De la navigation bio-inspirée au développement sensorimoteur d’un robot humanoïde"

Copied!
41
0
0

Texte intégral

(1)

De la navigation bio-inspirée

au développement sensorimoteur d’un robot humanoïde

Philippe Gaussier

ETIS (Equipes de Traitement de l’Information et Systèmes) UMR CNRS 8051, Neurocybernetics team,

Cergy Pontoise University, France

(2)

Cognition, brain, neurons...

The limits of a reductionist approach…

-  Development

-  Social interactions

p2

(3)

Primate visual system

(Van Essen 91)

(4)

Problem:

Knowing the neuronal activity is not always helpful to understand the cognitive processing !

Understanding the link between the link between the neuronal activity and the behavioral dynamics.

Solution:

(5)

Our approach

•  Find a minimal model justified by strong theoretical arguments:

–  single NN formalism and architecture AND several tasks –  Taking into account a minimal number of biological

structures,

–  Trying to understand what is brought by a new structure on the global behavior (otherwise do not take it into account), –  Using robots to test the behavioral consequences of a given

model (proof by failure!)

 Strong collaborations with neurobiologists and psychologists

(6)

« Virtual » Laboratory

Joint works with:

 

Jean Paul Banquet : neurobiological modelling

 

Bruno Poucet (Marseille 3C): exp. neurobiology + S. Wiener group (Paris) ANR Neurobot

 

Jacqueline Nadel: developmental psycho pathology (+ inter-lab. association CNRS)

 

Yann Coello, Yvonne Delevoye (URECA-Lilles) ANR INTERACT / SESAME TINO

•  Lola Cañamero (Feelix growing UE STREP project) University of Hertfordshire, UK

+ K. Bard (Portsmouth)

(7)

Robotique et neurosciences ou

Robotique et sciences cognitives?

23/06/11 P. Gaussier, ETIS, Cergy Pontoise p7

(8)

Equipe neurocybernétique

23/06/11 P. Gaussier, ETIS, Cergy Pontoise p8

(9)

Neurobiologie

Expérimentation en exterieure

 navigation visuelle / syst neuromimétique

Apprentissage en ligne:

associations sensori-

motrices, carte cognitive et planification

modélisation en neurosciences computationnelles

Perception visuelle / mécanismes attentionels

ETIS - Equipe Neurocybernétique

(10)

INTERACTIONS

Psychologie developpementale

 Interactions sociales + IHM

 Apprentissage par imitation

Modèle des émotions / référencement social Robot hydraulique Interactif

Lien mécanique & cognition (compliance physique)

Modèles dynamiques neuronales  dynamiques d’interactions

Systèmes Multi-Agents

-  Solutions émergentes -  Optimisation collective -  Spécialisation des agents

(11)

Plan

1.  Navigation autonome bio-inspirée 2.  Apprendre en interagissant

3.  Emotions et interactions sociales

  une même architecture neuronale pour des applications très différentes

P. Gaussier, ETIS, Cergy Pontoise p11 23/06/11

(12)

1 st part

Navigation bio-inspirée Hipp-BG-PFC loop

Navigation and the building of attraction basin (+ transition building, novelty detection,

frustration…)

(13)
(14)

Action selection problem

How to deal with the bifurcation points?

Diffusion  Ford – Bellman alg.

C

D Goal

(15)

Solution: “transitory states”

One transition is always associated to a single action C

D Goal

B

[Revel98,Gaussier01]

[Hok2007]

(16)

•  Sequence learning: hipp. model Use timing capability of DG/CA3

[Banquet98]

(17)

Goal firing

Main field Goal firing

Main field Goal firing

Rat at goal for 2s

Hok et al. (2007)

Analyse de l’activité des cellules de lieu dans la période d’attente au but

Population activity

(18)

P. Gaussier, ETIS, Cergy Pontoise p18

Latent learning of the cognitive map.

Return path to the goal place from random

departure points.

Stay for 7s at the goal place.

23/06/11

[Cuperlier 2006,

Hirel 2010]

(19)

2d part

Interactions capabilities

(20)

P. Gaussier, ETIS, Cergy Pontoise

Immediate imitation

Minimal mechanisms:

- Ambiguity of perception - Homeostatic control

 emergence of immediate

imitation [Andry et al 2002 & 2004]

Control of a 4DOF arm

Pan-tilt camera

Sensori-motor learning (robot alone)

Immediate imitation

23/06/11 20

(21)

P. Gaussier, ETIS, Cergy Pontoise 21

Sensori-motor controller

  learning of visuo-motor associations (online learning)

  visual activation of motor attractors

 extraction of the command on the basis of the selected attractors [Fukuyori 2008]

Minimal mechanisms necessary to the bootstrap of imitation ?

(22)

Observational learning

1.  Autonomous learning of visuo-motor associations (babbling)

2.  Inhibition of the motor command during human display (but sequence learning) 3.  Reproduction of the sequence from one item to the next (first item is either

triggered by human or by robot position)

[IROS2010]

(23)

Learning by demonstration more complex tasks

Cognitive map encoding the sequences of transitions

Visual categorisation to generate the goals  planning

Categories: proprioceptive states, transition detected and coded as new states (same as nav.)

Addition of the planning capabilities used for navigation (latent cognitive map learning)

(24)

Preliminary conclusions

•  « Mirror neurons » can emerge from the sensori-motor learning.

•  « mirror neurons » may be the consequence of the sensori-motor learning (not the cause!)

•  Is imitation so much important for learning?

P. Gaussier, ETIS, Cergy Pontoise p24 23/06/11

(25)

3 d part

Emotions and social interactions

A solution to build a developmental sequence bootstrapped from emotional

resonance…

(26)

Imitation and social interactions

(J. Nadel et al 2004, Interactive Studies)

(27)

(J. Nadel et al 2004, Interactive Studies)

Imitation and social interactions

(28)

Imitation and social interactions

(J. Nadel et al 2004, Interactive Studies)

(29)

Desired solution:

One possible architecture:

(based only on sensori-motor loops)

A toy problem: How to model baby learning

to recognize facial expressions?

(30)

After only 2 min of online learning

(SAB04, Epirob 06, 08)

(31)

Social referencing

• 

Toward complex behaviors (manipulation, interactions between behaviors at different levels…)

• 

Modeling emotions (metacontrol /communication)

Exp. on the devel.

of the social referencing (associate a value to an object)

[Russel97]

(32)

……Pierre……

15/02/11 P. Gaussier, ETIS, Cergy Pontoise p32

(33)

Social referencing for object manipulation

33 Providing an emotional value to an object

Behavior: take-and-deposit or avoid

(34)

Discussion

&

conclusions

P. Gaussier, ETIS, Cergy Pontoise p34

23/06/11

(35)

Conclusion

Les aller-retour neurobiologie/psychologie  robotique prennent du temps:

temps de boucle 6/7 ans minimum…

(modèles falsifiables / intérêt des doubles fonctions)

  collaboration sur du long terme

  management délicat / projets sur 3 ou 4 ans (ANR, Europe…)

23/06/11 P. Gaussier, ETIS, Cergy Pontoise p35

(36)

Nouveaux outils pour

les sciences cognitives

Tester des modèles du cerveau en conditions réelles !

Page 3!

"#$%&'(&')*! +'! ,-! ./)0$-&/1*'2! +*! $#+3,'! +4)-$/1*'2! +'5! .6#/7! +8-.&/#))'$')&! 9-/&5! %#*:! &#*&'5! ,'5!

-:&/.*,-&/#)5! +*! :#;#&2! )#*5! -<#)5! 0&-;,/2! %#*:! .6-1*'! -:&/.*,-&/#)2! ,'5! 5%0./9/.-&/#)5! +'! &#*&'! ,-! .6-=)'!

+8-.&/#))'$')&!+'%*/5!,'!$#&'*:!>*51*8?!,-!.6-=)'!+'!:0+*.&/#)!1*/!-)/$':-!,8-:&/.*,-&/#)@!

! !"#$%&'(#$)*+ !*,'-+

.$*+/01+

!*,'-+

.(2+/01+ 3)#-&"+ 4&$55(*%-+ 6$#-55-+7+6$8-+ 9)&:'-+

/8;.(""(,-1+ <;8&%#$)*+ =>+

?#(,-5+ <-*8-.-*#+ @+("#$%&A '($"-+

9+!"#$%&A '($"-+

B-(8+C+=-D+

!"#$% &'(% &'(%

% &)(% &*+,(% &*-./0(% &12,(%

% % &3(% &*+,(% &12,(%

B-(84$#%E+ (AB! AB! C'($-7AD! EE! FDEB! FFG2HF! B2BGAD! EIB2JDJ! D! KJ2KL! GK2KI! D2FB!

B-(8<)''+ (DG! DG! C'($-7AD! EE! FDEB! FFG2HF! B2BGAD! ABE2IBG! D! KJ2KL! IK2JE! F2AI!

=-%D4$#%E+ (DB! DB! C'AG! AB! JKIB! HBI2FI! B2AIK! JG2AD! I! FG2DL! EBE2AD! EG2EK!

=-%DF(G+ (HB! HB! C'AG! AB! JKIB! HBI2FI! B2AIK! JG2KI! D! KJ2KL! EBB2FJ! EI2JK!

9)'&.*+

H"&*DF(G+ (DG! DG! C'AG! AB! JKIB! HBI2FI! B2AIK! AJB2FF! I! FG2DL! IB2FD! DH2HI!

9)'&.*<)''I+ (EG! EG! C'AG! AB! JKIB! HBI2FI! B2AIK! EIB2JDJ! D! KJ2KL! KG2HG! AE2EJ!

9)'&.*<)''J+ (EG! EG! C'AG! AB! JKIB! HBI2FI! B2AIK! EIB2JDJ! D! KJ2KL! KG2HG! AE2EJ!

9)'&.*4$#%EI+ (DG! AB2E! C'AG! AB! JKIB! HBI2FI! B2AIK! EIB2JDJ! D! KJ2KL! KG2HG! AE2EJ!

9)'&.*4$#%EJ+ (DG! AB2E! C'AG! AB! JKIB! HBI2FI! B2AIK! EIB2JDJ! D! KJ2KL! KG2HG! AE2EJ!

KE)&'8-"+

KE)&'8-"4$#%E+ (HB! EAB! C'AG! AB! JKIB! HBI2FI! B2AIK! EIG2GJ! D! KJ2KL! KI2KG! AE2HD!

KE)&'8-"F(G+ (EB! HB! C'AG! AB! JKIB! HBI2FI! B2AIK! JG2KI! D! KJ2KL! EBB2FJ! EI2JK!

?'>)G+

?'>)GF(G+ (HB! B! C'AG! AB! JKIB! HBI2FI! B2AIK! JG2AD! I! FG2DL! EBE2AD! EG2EK!

?'>)G<)''+ (EAB! EAB! C'AG! AB! JKIB! HBI2FI! B2AIK! JG2KI! D! KJ2KL! EBB2FJ! EI2JK!

L"$5#+

L"$5#<)''+ (EAB! EAB! C'($-7AD! EE! FDEB! FFG2HF! B2BGAD! ABE2IBG! D! KJ2KL! IK2JE! F2AI!

L"$5#4$#%E+ (GK! GK! C'($-7EF! D2G! EBEBB! EBGF2KK! B2BEEF! EFI2AA! D! KJ2KL! GJ2IE! E2IH!

L"$5#F(G+ (AJ! AJ! C'($-7EF! D2G! EBEBB! EBGF2KK! B2BEEF! ADH2HG! D! KJ2KL! DB2DE! A2BE!

B(*8M$*,-"+ !! !! CM($-7EF! D2G! EBEBB! EBGF2KK! B2BEEF! EEI2EH! D! KJ2KL! JH2AI! B2HE!

B$:F(G+ (IB! GB! C'IB! KB! JDHB! JJH2BF! E2BA! EEE! I! FG2DL! FK2DH! JG2IA!

B$:<)''+ (IB! KB! C'DB! EGB! FGJB! FHI2FF! A2G! HJ! D! JF2BL! FF2IG! AEI2EG!

B$:4$#%E+ (EAB! IB! C'DB! EGB! FGJB! FHI2FF! A2G! HJ! D! JF2BL! FF2IG! AEI2EG!

N*--4$#%E+ (G! EIG! C'DB! EGB! FGJB! FHI2FF! A2G! KK!(!EGB! D! FJ2BL! EED2JG! AHA2GB!

!*D'-4$#%E+ (DG! DG! C'DB! EGB! FGJB! FHI2FF! A2G! HJ! D! JF2BL! FF2IG! AEI2EG!

!*D'-<)''+ (DG! DG! C'DB! EGB! FGJB! FHI2FF! A2G! HJ! D! JF2BL! FF2IG! AEI2EG!

H)-+:$#%E+ ')!+'<! ')!+'<! ')!+'<! ')!+'<! B! B! B! (DA! DA! E2HL! B2BB! B2BB!

!"#$%&'%($')*'$%($"+"+,('-%#.%/*)(&'%$'//"$+%0'%$1(('&%$1)2.'%&'/%"$+'*&/%'.%("/*+*".%3"$*4".+1&'5%

6*7#$'%89!N#+3,'!O0#$0&:/1*'!'&!</5*',!+*!%:'$/':!%:#&#&4%'!C#$'#!

Robotex

(37)

Emotions as a way to structure learning

•  Learning to recognize facial expression can precede the learning of face / non face recognition !

•  The emotion communication/interaction may be used as a way to shape and trigger more and more complex learning when no explicit reinforcement signal can be used (bootstrap).

Importance of social feedbacks

•  Taking into account the emotional development opens

new doors for autonomous learning

(38)

Videos on: www.etis.ensea.fr/~neurocyber/Videos/

15/02/11 p38

(39)

Visual navigation + arm control (SM level)

[Epirob 2010]

Joint work with EPFL

(40)

Use of a saliency map to speed-up learning

40

Saliency map Inspired from [Itti & Koch]

(41)

C. Giovannangeli (IROS 06, EPIROB 06)

web site: www.etis.ensea.fr/~neurocyber/

Videos/

Références

Documents relatifs

Once the lines have been processed from the data set, a control algorithm filters those lines and, using a fuzzy controller, generates the wheel speed commands to move the robot

Pour la m´ethode Enhanced Laser Scan , des exp´erimentations r´ealis´ees avec le robot immobile, ont montr´e que notre algorithme ´etait bien en mesure de : (i) d´etecter les

In addition, our method explicitly prevents the robot entering into the area where the user does not want the robot to do, because the robot moves by tracing

Li, Hui, Shanghai Jiaotong University, China Li, Xian-Fang, Central South University, China Liang, Yuanchang, University of Washington, USA Liawruangrath, Saisunee, Chiang

ﻲﺣوﻠﺑ دﻣﺣﻣ روﺗﻛدﻟا ﺔﯾﺑرﻌﻟﺎﺑ صﺧﻠﻣﻟا : ﺔﻣوﺳوﻣ ﺔﺣورطأ : لﯾوﺄﺗﻟاو صﻧﻟا تﺎﯾﻧﺎﺳﻟ ) ﺔﯾﻠﯾوﺄﺗ ،ﺔﯾﺋﺎﯾﻣﯾﺳ ،ﺔﯾﻧﺎﺳﻟ ﺔﺑرﺎﻘﻣ ( ﺔﻣدﻘﻣﻟا ﻲﻓ : لﻛﺎﺷﻣﻟا فﻠﺗﺧﻣ

3. Confiance Quel que soit le type de localisation, avec ou sans carte, il nous a semblé indis- pensable que notre système soit capable de prendre du recul par rapport à l’exécution

In a second learning stage, the navigation reservoir is trained with several examples of routes from a source location to a goal location, using inputs from the localization

(2004), unsuper- vised growing networks are used to build an architecture with idio- thetic and allothetic components that are combined in a hippocam- pal place cell layer to