• Aucun résultat trouvé

Appendix 5 Tables for measurement error models

N/A
N/A
Protected

Academic year: 2022

Partager "Appendix 5 Tables for measurement error models"

Copied!
4
0
0

Texte intégral

(1)

Appendix 5

Tables for measurement error models

Description

The tables below present the full models for:

1. Productivity coefficients as a function of abundance coefficients (weighted mean noise level)

2. Productivity coefficients as a function of abundance coefficients (noise standard devi- ation)

3. Productivity coefficients as a function of song acoustic characteristics and life-history traits (weighted mean noise level)

4. Productivity coefficients as a function of song acoustic characteristics and life-history traits (noise standard deviation)

In all cases, all model selection criteria examined indicated that the best model was the intercept-only model (with no predictors). In each table, “CI (low)” and “CI (high)” indicate the lower and upper bounds of 95% credible intervals around the estimates. (Note: in most cases the shrinkage prior has resulted in slope parameter estimates that are approximately zero.)

1

(2)

Table 1: Model coefficients for measurement error model to predict productivity regression coefficients as a function of abundance regression coefficients, for effects of weighted mean noise level.

Term Estimate Standard Error CI (low) CI (high)

Intercept 0.0099 0.0039 0.0022 0.0175

Abundance 0.0000 0.0000 0.0000 0.0000

Table 2: Model coefficients for measurement error model to predict productivity regression coefficients as a function of abundance regression coefficients, for effects of noise standard deviation.

Term Estimate Standard Error CI (low) CI (high)

Intercept 0.0089 0.021 -0.0324 0.0498

Abundance 0.0000 0.000 0.0000 0.0000

Table 3: Model coefficients for measurement error model to predict productivity regression coefficients as a function of song acoustic characteristics and life-history traits, for effects of weighted mean noise level.

Term Estimate Standard Error CI (low) CI (high)

Intercept 0.0109 0.0038 0.0034 0.0184

Freq5 0.0000 0.0000 0.0000 0.0000

Freq95 0.0000 0.0000 0.0000 0.0000

IQR.BW 0.0000 0.0000 0.0000 0.0000

Peak 0.0000 0.0000 0.0000 0.0000

Q3 0.0000 0.0000 0.0000 0.0000

HabitatGrassland 0.0000 0.0000 0.0000 0.0000

HabitatOpenWoodland 0.0000 0.0000 0.0000 0.0000

HabitatScrub 0.0000 0.0000 0.0000 0.0000

HabitatTown 0.0000 0.0000 0.0000 0.0000

Insectsyes 0.0000 0.0000 0.0000 0.0000

NestingGround 0.0000 0.0000 0.0000 0.0000

NestingShrub 0.0000 0.0000 0.0000 0.0000

NestingTree 0.0000 0.0000 0.0000 0.0000

MigrationNonMMigrator 0.0000 0.0000 0.0000 0.0000 MigrationPartialMigrator 0.0000 0.0000 0.0000 0.0000

Page 2

(3)

Table 4: Model coefficients for measurement error model to predict productivity regression coefficients as a function of song acoustic characteristics and life-history traits, for effects of noise standard deviation.

Term Estimate Standard Error CI (low) CI (high)

Intercept 0.0073 0.0213 -0.0344 0.0488

Freq5 0.0000 0.0000 0.0000 0.0000

Freq95 0.0000 0.0000 0.0000 0.0000

IQR.BW 0.0000 0.0000 0.0000 0.0000

Peak 0.0000 0.0000 0.0000 0.0000

Q3 0.0000 0.0000 0.0000 0.0000

HabitatGrassland 0.0000 0.0000 0.0000 0.0000

HabitatOpenWoodland 0.0000 0.0000 0.0000 0.0000

HabitatScrub 0.0000 0.0000 0.0000 0.0000

HabitatTown 0.0000 0.0000 0.0000 0.0000

Insectsyes 0.0000 0.0000 0.0000 0.0000

NestingGround 0.0000 0.0000 0.0000 0.0000

NestingShrub 0.0000 0.0000 0.0000 0.0000

NestingTree 0.0000 0.0000 0.0000 0.0000

MigrationNonMMigrator 0.0000 0.0000 0.0000 0.0000 MigrationPartialMigrator 0.0000 0.0000 0.0000 0.0000

Table 5: Model coefficients for measurement error model to predict abundance regression coefficients as a function of song acoustic characteristics and life-history traits, for effects of weighted mean noise level.

Term Estimate Standard Error CI (low) CI (high)

Intercept 0.0073 0.0213 -0.0344 0.0488

Freq5 0.0000 0.0000 0.0000 0.0000

Freq95 0.0000 0.0000 0.0000 0.0000

IQR.BW 0.0000 0.0000 0.0000 0.0000

Peak 0.0000 0.0000 0.0000 0.0000

Q3 0.0000 0.0000 0.0000 0.0000

HabitatGrassland 0.0000 0.0000 0.0000 0.0000

HabitatOpenWoodland 0.0000 0.0000 0.0000 0.0000

HabitatScrub 0.0000 0.0000 0.0000 0.0000

HabitatTown 0.0000 0.0000 0.0000 0.0000

Insectsyes 0.0000 0.0000 0.0000 0.0000

NestingGround 0.0000 0.0000 0.0000 0.0000

NestingShrub 0.0000 0.0000 0.0000 0.0000

NestingTree 0.0000 0.0000 0.0000 0.0000

MigrationNonMMigrator 0.0000 0.0000 0.0000 0.0000 MigrationPartialMigrator 0.0000 0.0000 0.0000 0.0000

Page 3

(4)

Table 6: Model coefficients for measurement error model to predict abundance regression coefficients as a function of song acoustic characteristics and life-history traits, for effects of noise standard deviation.

Term Estimate Standard Error CI (low) CI (high)

Intercept 0.0866 0.0251 0.0377 0.1364

Freq5 0.0000 0.0000 0.0000 0.0000

Freq95 0.0000 0.0000 0.0000 0.0000

IQR.BW 0.0000 0.0000 0.0000 0.0000

Peak 0.0000 0.0000 0.0000 0.0000

Q3 0.0000 0.0000 0.0000 0.0000

HabitatGrassland 0.0000 0.0000 0.0000 0.0000

HabitatOpenWoodland 0.0000 0.0000 0.0000 0.0000

HabitatScrub 0.0000 0.0000 0.0000 0.0000

HabitatTown 0.0000 0.0000 0.0000 0.0000

Insectsyes 0.0000 0.0000 0.0000 0.0000

NestingGround 0.0000 0.0000 0.0000 0.0000

NestingShrub 0.0000 0.0000 0.0000 0.0000

NestingTree 0.0000 0.0000 0.0000 0.0000

MigrationNonMMigrator 0.0000 0.0000 0.0000 0.0000 MigrationPartialMigrator 0.0000 0.0000 0.0000 0.0000

Page 4

Références

Documents relatifs

This paper focuses on insights gained from two practitioner workshops associated with ideation and prototyping methods and describes the results of pilot testing

QTLs for signal, receiver, and developmental traits Our analyses indicated QTLs of at least moderate influence (LOD score$1.8) for all of the male song, female response and

These modified values are deduced from numerical values of U at grid points near the interface and from jump conditions, so that the loss of accuracy due to the presence of

To take into account the tail length in Urodela, we also reported a total length for each species, in males, in females or both when sex-specific data were not available..

The first one is called the Godunov scheme, since it is based on the exact solution of the Riemann problem associated with the conservation law.. This Riemann problem may be

Patch transfer function as a tool to couple linear acoustic problems Morvan Ouisse, Laurent Maxit, C.. Cacciolati,

showing possible reflected wave vectors (solid arrows) for a T2 wave (dashed arrow) incident at 40° to the surface normal. There is no possible

Koeppe, we plan to apply the results of this article to derive a poly- nomial algorithm for computing the k 0 highest degree coefficients of a weighted Ehrhart quasi-polynomial